Cdk5rap1-mediated 2-methylthio-N⁶-isopentenyladenosine modification is absent from nuclear-derived RNA species (Cdk5rap1 媒介性 2-メチルチオーN⁶-イソペンテニルアデノシン修飾は核に由来する RNA 種には存在しない)

Background and Purpose: 2-Methylthio-*N*⁶-isopentenyl modification of adenosine (ms²i⁶A) is an evolutionally conserved modification that is found in transfer RNAs (tRNAs). It has been recently shown that Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1) specifically converts i⁶A to ms²i⁶A at position A37 of four mitochondrial DNA-encoded tRNAs, and that the modification regulates efficient mitochondrial translation and energy metabolism in mammals. Curiously, a previous study reported that ms²i⁶A is present abundantly in nuclear-derived RNA species such as microRNAs, but not in tRNA fractions. To fully understand the molecular property of ms²i⁶A, the existence of non-canonical ms²i⁶A must be carefully validated.

Methods: Through mass-spectrometry, ms^2i^6A modification was determined in total RNA extracted from mitochondrial DNA deficient cells ($\rho 0$ cells) of HeLa cells (human cervical cancer cells) and B82 cells (mouse fibroblasts) as well as HeLa cells and B82 cells. Monoclonal antibody recognizing ms^2i^6A was prepared and used to examine for the presence of ms^2i^6A in mitochondrial RNA and total RNA by Northern blotting. In addition, intracellular localization of ms^2i^6A was investigated by fluorescent immunostaining using ms^2i^6A antibody.

Results: In the present study, ms^2i^6A was analyzed in total RNA purified from human and murine $\rho 0$ cells, in which mitochondrial DNA-derived tRNAs were completely depleted. The ms^2i^6A was not detected in these cells at all. A monoclonal antibody was generated against ms^2i^6A and ms^2i^6A was examined in murine RNAs using the antibody. The anti- ms^2i^6A antibody only reacted with the tRNA fractions and not with other RNA species. Furthermore, immunocytochemistry analysis using the antibody showed the predominant localization of ms^2i^6A in mitochondria and co-localization with the mitochondrial elongation factor, TUFM.

Conclusions: ms²i⁶A is not present in nuclear DNA-derived RNAs but exists only in four mitochondrial DNA-derived tRNAs (mt-tRNA). In addition, ms²i⁶A is present in mitochondria and co-localizes with mitochondrial protein translation machinery.