A two-to-one map and abelian affine difference sets

Yutaka Hiramine
Department of Mathematics, Faculty of Education, Kumamoto University, Kurokami, Kumamoto, Japan

hiramine@gpo.kumamoto-u.ac.jp

Abstract

Let D be an affine difference set of order n in an abelian group G relative to a subgroup N. Set $\tilde{H}=H \backslash\{1, \omega\}$, where $H=G / N$ and $\omega=$ $\prod_{\sigma \in H} \sigma$. Using D we define a two-to-one map g from \tilde{H} to N. The map g satisfies $g\left(\sigma^{m}\right)=g(\sigma)^{m}$ and $g(\sigma)=g\left(\sigma^{-1}\right)$ for any multiplier m of D and any element $\sigma \in \tilde{H}$. As applications, we present some results which give a restriction on the possible order n and the group theoretic structure of G / N.

Keywords: relative difference set, affine difference set, multiplier

1 Introduction

Let G be a group of order $n^{2}-1(n>1)$ and N a subgroup of G of order $n-1$. An n-subset D of G is called an affine difference set of order n in G relative to N if each element $x \in G \backslash N$ is uniquely represented in the form $d_{1} d_{2}^{-1}\left(d_{1}, d_{2} \in D\right)$ and no nonidentity element in N is represented in such a form (see [9]). An affine difference set D is said to be abelian or cyclic if the group G has the respective property. For a subset X of G and an integer s, we set $X^{(s)}=\left\{x^{s} \mid x \in X\right\}$. An integer m is called a multiplier of D if $D^{(m)}=D a$ for some $a \in G$.

It is a well-known conjecture that an abelian affine difference set is of prime power order and cyclic ([9]). Many results on abelian affine difference sets are known. We refer to [1], [2], [4], [7], [8] for the order of abelian affine difference sets, [3] for the group theoretic structure, and $\S 5.2$ of $[9], \S 7$ of [10] for a survey.

Recently, in [5], J. C. Galati studied abelian affine difference sets of even order from the group extension point of view and gave some non-existence results. In [6], the author also studied affine difference sets of order n including odd order case.

Set $H=G / N$ and $\omega=\prod_{\sigma \in H} \sigma=N w(\exists w \in G)$. If we exchange D for its suitable translate if necessary, we may assume that $D \cap N w=\emptyset, \prod_{d \in D} d=1$ and $S=D \cup\{w\}$ is a complete set of coset representatives of H. Set $H^{*}=H \backslash\{\omega\}$. Let d be a map from H^{*} to G defined by $\{d(\sigma)\}=N x \cap D$ for $\sigma=N x \in H^{*}$. Then, clearly $D=\left\{d(\sigma) \mid \sigma \in H^{*}\right\}$. We define a map g from H^{*} to N by $g(\sigma)=d(\sigma) d\left(\sigma^{-1}\right)$ for $\sigma \in H^{*}$. Set $\tilde{H}=H \backslash\{1, \omega\}$. Then $\left.g\right|_{\tilde{H}}$ is a two-to-one map (Lemma 2.4). Note that $\mathrm{o}(\omega)=1$ or 2 according as n is even or odd since
$|H|=n+1$ and a Sylow 2-subgroup of G is cyclic by a result of Arasu-Pott ([3]). On the other hand $\mathrm{o}(g(\sigma))$ is a divisor of $m-1$ if and only if either $\sigma^{m-1}=1$ or $\sigma^{m+1}=1$ for $m \in \Lambda_{n}$, where $\Lambda_{n}=\{m \in \mathbb{N} \mid \pi(m) \subset \pi(n)\}$ and $\pi(k)$ is the set of primes dividing an integer k (see Proposition 3.1). As applications, we present some results which give a restriction on the orders n of abelian affine difference sets and the group theoretic structure of G / N (Theorems 3.2, 3.6, 4.1).

2 Preliminaries

Definition 2.1. An n-subset D of an abelian group G of order $n^{2}-1$ is called an affine difference set of order n relative to N if each element $x \in G \backslash N$ is uniquely represented in the form $d_{1} d_{2}^{-1}\left(d_{1}, d_{2} \in D\right)$ and no nonidentity element in N is represented in such a form (see [9]).

Throughout the article we use the following notations.
Notation 2.2. (i) Let D be an affine difference set in an abelian group G of order $n^{2}-1$ relative to a subgroup N of G of order $n-1$. Set $H=\bar{G}=G / N$ and $\omega=\prod_{\sigma \in H} \sigma=N w(\exists w \in G)$. Then, as a Sylow 2 -subgroup of G is cyclic by [3],

$$
\mathrm{o}(\omega)= \begin{cases}1 & \text { if } 2 \mid n \\ 2 & \text { otherwise }\end{cases}
$$

(ii) If we exchange D for its suitable translate if necessary, we may assume that $D \cap N w=\emptyset$. Hence $\prod_{x \in D} x \in N$. Since $(|D|,|N|)=1$, exchanging D for a suitable $D a$ with $a \in N$ if necessary, we may assume that

$$
\prod_{x \in D} x=1
$$

(iii) Set $H^{*}=H \backslash\{\omega\}$ and $\tilde{H}=H \backslash\{1, \omega\}$. Note that $H^{*}=\tilde{H}$ iff $2 \mid n$.
(iv) Let $\pi(m)$ denote the set of primes dividing a positive integer m and set $\Lambda_{n}=\{m \in \mathbb{N} \mid \pi(m) \subset \pi(n)\}$ for $n \in \mathbb{N}$.

By Notation 2.2, $H=\bar{D} \cup\{\omega\}$, where $\bar{D}=\cup_{x \in D} N x$. Let d be a map from H^{*} to G defined by $\{d(\sigma)\}=N x \cap D$ for $\sigma=N x \in H^{*}$. We define a map g from H^{*} to N by $g(\sigma)=d(\sigma) d\left(\sigma^{-1}\right)$ for $\sigma \in H^{*}$. Then the following holds (see [6]).
Result 2.3. (i) $\quad D^{(m)}=D \quad \forall m \in \Lambda_{n}$.
(ii) Let $m \in \Lambda_{n}$, then $d\left(\xi^{m}\right)=d(\xi)^{m}$ for any $\xi \in H^{*}$. In particular, $g\left(\xi^{m}\right)=g(\xi)^{m}$ for any $\xi \in H^{*}$ and $m \in \Lambda_{n}$.
(iii) If $\sigma, \tau \in H^{*}$, then $g(\sigma)=g(\tau)$ if and only if $\left\{\sigma, \sigma^{-1}\right\}=\left\{\tau, \tau^{-1}\right\}$.

By Result 2.3(iii) we have the following.
Lemma 2.4. The map g restricted to \tilde{H} is two-to-one.

Remark 2.5. Assume n is even. Then $G=N \times Q$ for a subgroup Q of G of order $n+1$. In his paper [5] J.C. Galati defined a map ϕ from Q to N by $D=\{(\phi(x), x) \mid x \in Q \backslash\{1\}\}$ and $\phi(1)=1$. We can easily verify that $g(N x)=\phi(x)^{2}$ for $x \in Q \backslash\{1\}$ when n is even.

3 Multipliers and divisors of $n+1$

Let $G, N, H, \omega, H^{*}, \tilde{H}, \Lambda_{n}$ and the map g be as defined in the last section. In this section we present some results on the orders of abelian affine difference sets as applications of the two-to-one map g.

The map g has the following property which is used repeatedly in this article.
Proposition 3.1. Let $\sigma \in H^{*}$ and $m \in \Lambda_{n}$. Then $\mathrm{o}(g(\sigma)) \mid m-1$ if and only if either $\sigma^{m-1}=1$ or $\sigma^{m+1}=1$.

Proof. Assume $\mathrm{o}(g(\sigma)) \mid m-1$. Then, $g(\sigma)^{m}=g(\sigma)$ and so $g\left(\sigma^{m}\right)=g(\sigma)^{m}=$ $g(\sigma)$ by Result 2.3(ii). Hence $\sigma^{m} \in\left\{\sigma, \sigma^{-1}\right\}$ by Result 2.3(iii). Therefore we have either $\sigma^{m-1}=1$ or $\sigma^{m+1}=1$. Conversely, assume either $\sigma^{m-1}=1$ or $\sigma^{m+1}=1$. Then, $\sigma^{m}=\sigma^{ \pm 1}$. Hence $g(\sigma)^{m}=g\left(\sigma^{m}\right)=g\left(\sigma^{ \pm 1}\right)=g(\sigma)$ by Result 2.3(iii). Thus o $(g(\sigma)) \mid m-1$.

If we have information on the group theoretic structure of N, the following holds.

Theorem 3.2. Let G be an abelian group containing an affine difference set of order n relative to a subgroup N. Let $m \in \Lambda_{n}$ and assume a Sylow psubgroup of N is cyclic for each $p \in \pi((m-1, n-1))$. Then, $(m+1, n+1) \leq$ $2(m-1, n-1)+(2, m+1)$.

Proof. We note that $\sigma^{m+1}=1$ if and only if $\sigma^{(m+1, n+1)}=1$ for $m \in \Lambda$ and $\sigma \in H$. Set $H_{1}=\left\{\sigma \in H \mid \sigma^{(m+1, n+1)}=1\right\} \backslash\{1, \omega\}$. Then, clearly $\left|H_{1}\right| \geq$ $(m+1, n+1)-(2, m+1)$. On the other hand $\left|\left\{x \in N \mid x^{m-1}=1\right\}\right|=\mid\{x \in$ $\left.N \mid x^{(m-1, n-1)}=1\right\} \mid=(m-1, n-1)$ by assumption. This, together with Lemma 2.4 and Result 2.3(iii), gives $\left|H_{1}\right| / 2 \leq(m-1, n-1)$. Thus $(m+1, n+$ $1)-(2, m+1) \leq 2(m-1, n-1)$.

As a corollary of Theorem 3.2, we have the following.
Corollary 3.3. Assume the existence of an abelian affine difference set of order n and let $m \in \Lambda_{n}$ such that $m+1 \mid n+1$. If $p^{2} \nmid n-1$ for each odd prime p dividing $(m-1, n-1)$, then $\left.\frac{m-1}{(m-1,2)} \right\rvert\, n-1$.

Proof. Assume m is even. Then, by Theorem 3.2, $m+1 \leq 2(m-1, n-1)+1$ and so $m \leq 2(m-1, n-1)$. Hence $(m-1, n-1)=m-1$ as $m-1$ is odd. Thus the corollary holds.

Assume m is odd. Then, by Theorem 3.2, $m+1 \leq 2(m-1, n-1)+2$ and so $m-1 \leq 2(m-1, n-1)$. Hence $(m-1, n-1) \in\left\{m-1, \frac{m-1}{2}\right\}$. Thus the corollary holds in both cases.

Proposition 3.4. Assume the existence of an abelian affine difference set of order n and let q be a prime divisor of n such that $q+1 \mid n+1$ and $q=2 p+1$ for an odd prime p. Then $p \mid n-1$.

Proof. Assume $p \nmid n-1$. Then $(q-1, n-1)=(2 p, n-1) \mid 2$. Applying Corollary 3.3 with $m=q$ we have $\left.\frac{q-1}{(q-1,2)}=p \right\rvert\, n-1$, contrary to the assumption. Thus $p \mid n-1$.

Example 3.5. Assume the existence of an abelian affine difference set of order n. Applying Proposition 3.4 with $q=7,11$ or 23 we have the following.
(i) If $n \equiv 0(\bmod 7)$ and $n \equiv 7(\bmod 8)$, then $3 \mid n-1$.
(ii) If $n \equiv 0(\bmod 11)$ and $n \equiv 11(\bmod 12)$, then $5 \mid n-1$.
(iii) If $n \equiv 0(\bmod 23)$ and $n \equiv 23(\bmod 24)$, then $11 \mid n-1$.

The following is also an application of Proposition 3.1.
Theorem 3.6. Let G be an abelian group containing an affine difference set of order n relative to a subgroup N. Let $m \in \Lambda_{n}$. Assume G / N contains an element of order r and set $e=\operatorname{ord}_{r}(m)$. If $e>2$, then $\left(m^{e}-1, n-1\right) \nmid m-1$.

Proof. Let notations H^{*} and g be as before. Let σ be an element of H^{*} of order r. As $e=\operatorname{ord}_{r}(m)>2$, we have $\sigma^{m^{e}-1}=1$. Hence $\sigma^{m^{e}}=\sigma$ and so $g(\sigma)^{m^{e}}=g\left(\sigma^{m^{e}}\right)=g(\sigma)$ by Result 2.3(ii). From this, $g(\sigma)^{m^{e}-1}=1$. Thus $\mathrm{o}(g(\sigma)) \mid\left(m^{e}-1, n-1\right)$. Assume $\left(m^{e}-1, n-1\right) \mid m-1$. Then $\mathrm{o}(g(\sigma)) \mid m-1$ and so by Proposition 3.1, we have either $\sigma^{m-1}=1$ or $\sigma^{m+1}=1$. This implies $\sigma^{m^{2}-1}=1$ and therefore $\operatorname{ord}_{r}(m) \mid 2$, a contradiction.

As a corollary of Theorem 3.6, the following holds.
Corollary 3.7. Let G be an abelian group containing an affine difference set of order n relative to a subgroup N. Let $p \in \pi(n), q \in \pi(n+1)$ and set $e=\operatorname{ord}_{q}(p)$. If $e>2$, then $\left(p^{e}-1, n-1\right) \nmid p-1$.

Example 3.8. Assume $n=39(\bmod 60)$. We take $p=3 \in \pi(n)$ and $q=5 \in$ $\pi(n+1)$. Since $e=\operatorname{ord}_{5}(3)=4$ and $\left(p^{e}-1, n-1\right)=(80, n-1)=2 \mid p-1=2$, we have a contradiction by Corollary 3.7. Therefore, if $n=39+60 s$ for some integer s, then there exists no abelian affine difference set of order n.

The following is a slightly modified version of Theorem 3.6.

Theorem 3.9. Let G be an abelian group containing an affine difference set of order n relative to a subgroup N. Let $m \in \Lambda_{n}, q \in \pi(n+1)$ and set $e=\operatorname{ord}_{q}(m)$. If e is even and $e>2$, then $\left(m^{\frac{e}{2}}-1, n-1\right) \nmid m-1$.

Proof. Set $e=2 f$. By assumption, $f>1$ and $q>2$. Let σ be an element of H^{*} of order q. Since $q \mid\left(m^{f}-1\right)\left(m^{f}+1\right)$ and $\left(m^{f}-1, m^{f}+1\right) \leq 2$, we have $q \mid m^{f}+1$. Hence $\sigma^{m^{f}}=\sigma^{-1}$. Thus $g(\sigma)^{m^{f}}=g\left(\sigma^{m^{f}}\right)=g\left(\sigma^{-1}\right)=g(\sigma)$ by Result 2.3. From this, $g(\sigma)^{m^{f}-1}=1$ and so o $(g(\sigma)) \mid\left(m^{f}-1, n-1\right)$. Assume $\left(m^{f}-1, n-1\right) \mid m-1$. Then, by Proposition 3.1, $\sigma^{m^{2}-1}=1$. Hence $q \mid m^{2}-1$. Thus $\operatorname{ord}_{q}(m) \mid 2$, contrary to the assumption. Therefore $\left(m^{f}-1, n-1\right) \nmid$ $m-1$.

As an application of Theorem 3.9, we have the following.
Example 3.10. Assume $n=3(7 s+2)$ for an integer s. We take $m=3 \in \Lambda_{n}$ and $q=7 \mid n+1$. Then, $\operatorname{ord}_{q}(m)=6$. Applying Theorem 3.9, $\left(3^{3}-1, n-1\right) \nmid 2$. Since $\left(3^{3}-1, n-1\right) \in\{1,2,13,26\}$, we have $13 \mid n-1$. Thus, if $n \equiv 6(\bmod 21)$ and there exists an abelian affine difference set of order n, then $13 \mid n-1$.

4 Sylow subgroups of G

As another application of Proposition 3.1 we consider the group theoretic structure of Sylow subgroups of G. Let m_{p} be the highest power of a prime p dividing an integer m. Then we have the following.

Theorem 4.1. Let G be an abelian group containing an affine difference set of order n relative to a subgroup N. Let $m \in \Lambda_{n}$ and assume $m+1 \mid n+1$ and a Sylow p-subgroup of N is cyclic for each $p \in \pi((m-1, n-1))$. Then, a Sylow q-subgroup of G is cyclic for any prime $q \in \pi(n+1)$ such that $(m+1)_{q}<(n+1)_{q}$.

Proof. Set $C=\left\{x \in N \mid x^{m-1}=1\right\}$. Then $C=\left\{x \in N \mid x^{(m-1, n-1)}=1\right\}$. By assumption, a Sylow p-subgroup of N is cyclic for each $p \in \pi((m-1, n-1))$. Hence $|C|=(m-1, n-1)$. Set $H_{1}=\left\{\sigma \in H \mid \sigma^{m+1}=1\right\}$ and let $q \in$ $\pi(m+1) \cap \pi\left(\frac{n+1}{m+1}\right)$. Assume a Sylow q-subgroup of G is non-cyclic. Then, q is an odd prime as a Sylow 2-subgroup of G is cyclic ([3]). Hence $\left|H_{1}\right| \geq(m+1) q$. From this, $\left|H_{1}\right| \geq 3(m+1)$. By Lemma 2.4, $\left|\left\{g(\sigma) \mid \sigma \in H_{1}\right\}\right| \geq(3 m+1) / 2>$ $3(m-1, n-1) / 2+1$. However, as a Sylow p-subgroup of N is cyclic for each prime $p \in \pi(m-1, n-1),\left|\left\{g(\sigma) \mid \sigma \in H_{1}\right\}\right|-1 \leq(m-1, n-1)$ by Proposition 3.1. Hence $(m-1, n-1)>(3(m-1, n-1) / 2+1)-1=3(m-1, n-1) / 2$, a contradiction.

By Theorem 4.1, we have the following.
Corollary 4.2. Let $m \in \Lambda_{n}$ and assume $m+1 \mid n+1$ and a Sylow p-subgroup of N is cyclic for each $p \in \pi((m-1, n-1))$. Let $q \in \pi(m+1)$ and $q^{u}=(m+1)_{q}$.
(i) If $u=1$, then a Sylow q-subgroup of G is cyclic.
(ii) If $u=2$, then a Sylow q-subgroup of G is either cyclic or isomorphic to $\mathbb{Z}_{q} \times \mathbb{Z}_{q}$.

Proof. By a result of Arasu-Pott in [3] we may assume that $q>2$ and so $q \nmid n-1$. Assume a Sylow q-subgroup of G is non-cyclic. Then, applying Theorem 4.1, q^{u} exactly divides $|G|$. Hence, if $u \leq 2$, then $u=2$ and a Sylow q-subgroup of G is isomorphic to $\mathbb{Z}_{q} \times \mathbb{Z}_{q}$. Thus the corollary holds.

As an application of Corollary 4.2 we have the following.
Proposition 4.3. Let G be an abelian group containing an affine difference set of order n relative to a subgroup N.
(i) If n is even and $n \equiv 2(\bmod 3)$, then a Sylow 3-subgroup of G is cyclic. In particular, if $n=2^{2 s-1}$ for an integer s, then a Sylow 3-subgroup of G is cyclic.
(ii) If n is odd and $3|n, 5| n+1$, then a Sylow 5 -subgroup of G is cyclic. In particular, if $n=3^{2(2 s-1)}$ for an integer s, then a Sylow 5 -subgroup of G is cyclic.
(iii) If n is odd and $5|n, 3| n+1$, then a Sylow 3-subgroup of G is cyclic. In particular, if $n=5^{2 s-1}$ for an integer s, then a Sylow 3-subgroup of G is cyclic.

Proof. Assume $2 \mid n$ and $n \equiv 2(\bmod 3)$. Apply Corollary 4.2(i) with $m=2 \in$ Λ_{n} and $q=3$. Then we have (i).

Assume $2 \nmid n, 3 \mid n$ and $5 \mid n+1$. Take $m=3^{2} \in \Lambda_{n}$. Then $10=m+1 \mid n+1$ and $(m-1, n-1) \mid 8$. Applying Corollary 4.2(i), we have (ii).

Assume $2 \nmid n, 5 \mid n$ and $3 \mid n+1$. Take $m=5 \in \Lambda_{n}$. Then $6=m+1 \mid n+1$ and $(m-1, n-1) \mid 4$. Applying Corollary 4.2(i), we have (iii).

References

[1] K.T. Arasu and D. Jungnickel, Affine difference sets of even order, J. of Combin. Theory, Ser. A, Vol. 52 (1989), 188-196.
[2] K.T.Arasu, Cyclic affine planes of even order, Discrete Math., Vol. 76 (1989),177-181.
[3] K. T. Arasu and A. Pott, On quasi-regular collineation groups of projective planes, Designs Codes and Cryptography Vol. 1 (1991), pp. 83-92.
[4] K. T. Arasu and A. Pott, Cyclic affine planes and Paley difference sets, Discrete Math., vol 106-7 (1992), 19-23.
[5] J.C. Galati, A group extensions approach to affine relative difference sets of even order, Discrete Mathematics Vol. 306 (2006), pp. 42-51.
[6] Y. Hiramine, On affine difference sets and their multipliers, to appear in Discrete Math.
[7] D. Jungnickel, A note on affine difference sets, .Arch. Math. vol. 47 (1986), pp 279-280
[8] A. Pott, An affine analogue of Wilbrink's theorem, J. of Combin. Theory, Ser. A, Vol. 55 (1990), 313-315
[9] A. Pott, Finite Geometry and Character Theory, Lecture Notes in Mathematics 1601 Springer-Verlag, Berlin (1995)
[10] A. Pott, Groups, Difference sets, and the Monster (K.T. Arasu et al. eds.), Walter de Gruyter, 1996, pp 195-232.

