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Abstract. Let D be an affine difference set of order n in an abelian group
G relative to a subgroup N . Set H̃ = H \ {1, ω}, where H = G/N and ω =∏

σ∈H σ. Using D we define a two-to-one map g from H̃ to N . The map g
satisfies g(σm) = g(σ)m and g(σ) = g(σ−1) for any multiplier m of D and any
element σ ∈ H̃. As applications, we present some results which give a restriction
on the possible order n and the group theoretic structure of G/N .
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1 Introduction

Let G be a group of order n2 − 1 (n > 1) and N a subgroup of G of order
n − 1. An n-subset D of G is called an affine difference set of order n in G
relative to N if each element x ∈ G \ N is uniquely represented in the form
d1d

−1
2 (d1, d2 ∈ D) and no nonidentity element in N is represented in such a

form (see [9]). An affine difference set D is said to be abelian or cyclic if the
group G has the respective property. For a subset X of G and an integer s, we
set X(s) = {xs | x ∈ X}. An integer m is called a multiplier of D if D(m) = Da
for some a ∈ G.

It is a well-known conjecture that an abelian affine difference set is of prime
power order and cyclic ([9]). Many results on abelian affine difference sets are
known. We refer to [1], [2], [4], [7], [8] for the order of abelian affine difference
sets, [3] for the group theoretic structure, and §5.2 of [9], §7 of [10] for a survey.

Recently, in [5], J. C. Galati studied abelian affine difference sets of even
order from the group extension point of view and gave some non-existence re-
sults. In [6], the author also studied affine difference sets of order n including
odd order case.

Set H = G/N and ω =
∏
σ∈H

σ = Nw (∃w ∈ G). If we exchange D for its

suitable translate if necessary, we may assume thatD∩Nw = ∅,
∏

d∈D d = 1 and
S = D∪{w} is a complete set of coset representatives of H. Set H∗ = H \ {ω}.
Let d be a map from H∗ to G defined by {d(σ)} = Nx ∩D for σ = Nx ∈ H∗.
Then, clearly D = {d(σ) | σ ∈ H∗}. We define a map g from H∗ to N by
g(σ) = d(σ)d(σ−1) for σ ∈ H∗. Set H̃ = H \ {1, ω}. Then g|H̃ is a two-to-one
map (Lemma 2.4). Note that o(ω) = 1 or 2 according as n is even or odd since
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|H| = n+1 and a Sylow 2-subgroup of G is cyclic by a result of Arasu-Pott ([3]).
On the other hand o(g(σ)) is a divisor of m− 1 if and only if either σm−1 = 1
or σm+1 = 1 for m ∈ Λn, where Λn = {m ∈ N | π(m) ⊂ π(n)} and π(k) is the
set of primes dividing an integer k (see Proposition 3.1). As applications, we
present some results which give a restriction on the orders n of abelian affine
difference sets and the group theoretic structure of G/N (Theorems 3.2, 3.6,
4.1).

2 Preliminaries

Definition 2.1. An n-subset D of an abelian group G of order n2 − 1 is called
an affine difference set of order n relative to N if each element x ∈ G \ N is
uniquely represented in the form d1d

−1
2 (d1, d2 ∈ D) and no nonidentity element

in N is represented in such a form (see [9]).

Throughout the article we use the following notations.

Notation 2.2. (i) Let D be an affine difference set in an abelian group
G of order n2 − 1 relative to a subgroup N of G of order n − 1. Set

H = G = G/N and ω =
∏
σ∈H

σ = Nw (∃w ∈ G). Then, as a Sylow

2-subgroup of G is cyclic by [3],

o(ω) =

{
1 if 2|n,
2 otherwise.

(ii) If we exchange D for its suitable translate if necessary, we may assume

that D ∩Nw = ∅. Hence
∏
x∈D

x ∈ N . Since (|D|, |N |) = 1, exchanging D

for a suitable Da with a ∈ N if necessary, we may assume that∏
x∈D

x = 1.

(iii) Set H∗ = H \ {ω} and H̃ = H \ {1, ω}. Note that H∗ = H̃ iff 2 | n.

(iv) Let π(m) denote the set of primes dividing a positive integer m and set
Λn = {m ∈ N| π(m) ⊂ π(n)} for n ∈ N.

By Notation 2.2, H = D ∪ {ω}, where D = ∪x∈DNx. Let d be a map from
H∗ to G defined by {d(σ)} = Nx ∩ D for σ = Nx ∈ H∗. We define a map g
from H∗ to N by g(σ) = d(σ)d(σ−1) for σ ∈ H∗. Then the following holds (see
[6]).

Result 2.3. (i) D(m) = D ∀m ∈ Λn.

(ii) Let m ∈ Λn, then d(ξm) = d(ξ)m for any ξ ∈ H∗. In particular,
g(ξm) = g(ξ)m for any ξ ∈ H∗ and m ∈ Λn.
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(iii) If σ, τ ∈ H∗, then g(σ) = g(τ) if and only if {σ, σ−1} = {τ, τ−1}.

By Result 2.3(iii) we have the following.

Lemma 2.4. The map g restricted to H̃ is two-to-one.

Remark 2.5. Assume n is even. Then G = N × Q for a subgroup Q of G
of order n + 1. In his paper [5] J.C. Galati defined a map ϕ from Q to N
by D = {(ϕ(x), x) | x ∈ Q \ {1}} and ϕ(1) = 1. We can easily verify that
g(Nx) = ϕ(x)2 for x ∈ Q \ {1} when n is even.

3 Multipliers and divisors of n+ 1

Let G,N,H, ω,H∗, H̃,Λn and the map g be as defined in the last section. In
this section we present some results on the orders of abelian affine difference
sets as applications of the two-to-one map g.

The map g has the following property which is used repeatedly in this article.

Proposition 3.1. Let σ ∈ H∗ and m ∈ Λn. Then o(g(σ))|m − 1 if and only
if either σm−1 = 1 or σm+1 = 1.

Proof. Assume o(g(σ))|m − 1. Then, g(σ)m = g(σ) and so g(σm) = g(σ)m =
g(σ) by Result 2.3(ii). Hence σm ∈ {σ, σ−1} by Result 2.3(iii). Therefore we
have either σm−1 = 1 or σm+1 = 1. Conversely, assume either σm−1 = 1 or
σm+1 = 1. Then, σm = σ±1. Hence g(σ)m = g(σm) = g(σ±1) = g(σ) by Result
2.3(iii). Thus o(g(σ)) | m− 1.

If we have information on the group theoretic structure of N , the following
holds.

Theorem 3.2. Let G be an abelian group containing an affine difference set
of order n relative to a subgroup N . Let m ∈ Λn and assume a Sylow p-
subgroup of N is cyclic for each p ∈ π((m− 1, n− 1)). Then, (m+ 1, n+ 1) ≤
2(m− 1, n− 1) + (2,m+ 1).

Proof. We note that σm+1 = 1 if and only if σ(m+1,n+1) = 1 for m ∈ Λ and
σ ∈ H. Set H1 = {σ ∈ H | σ(m+1,n+1) = 1} \ {1, ω}. Then, clearly |H1| ≥
(m + 1, n + 1) − (2,m + 1). On the other hand |{x ∈ N | xm−1 = 1}| = |{x ∈
N | x(m−1,n−1) = 1}| = (m − 1, n − 1) by assumption. This, together with
Lemma 2.4 and Result 2.3(iii), gives |H1|/2 ≤ (m− 1, n− 1). Thus (m+ 1, n+
1)− (2,m+ 1) ≤ 2(m− 1, n− 1).

As a corollary of Theorem 3.2, we have the following.

Corollary 3.3. Assume the existence of an abelian affine difference set of
order n and let m ∈ Λn such that m+1 | n+1. If p2 - n− 1 for each odd prime
p dividing (m− 1, n− 1), then m−1

(m−1,2) |n− 1.
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Proof. Assume m is even. Then, by Theorem 3.2, m+ 1 ≤ 2(m− 1, n− 1) + 1
and so m ≤ 2(m − 1, n − 1). Hence (m − 1, n − 1) = m − 1 as m − 1 is odd.
Thus the corollary holds.

Assume m is odd. Then, by Theorem 3.2, m+ 1 ≤ 2(m− 1, n− 1) + 2 and
so m − 1 ≤ 2(m − 1, n − 1). Hence (m − 1, n − 1) ∈ {m − 1, m−1

2 }. Thus the
corollary holds in both cases.

Proposition 3.4. Assume the existence of an abelian affine difference set of
order n and let q be a prime divisor of n such that q + 1 | n+ 1 and q = 2p+ 1
for an odd prime p. Then p | n− 1.

Proof. Assume p - n−1. Then (q−1, n−1) = (2p, n−1) | 2. Applying Corollary
3.3 with m = q we have q−1

(q−1,2) = p | n − 1, contrary to the assumption. Thus

p | n− 1.

Example 3.5. Assume the existence of an abelian affine difference set of order
n. Applying Proposition 3.4 with q = 7, 11 or 23 we have the following.

(i) If n ≡ 0 (mod 7) and n ≡ 7 (mod 8), then 3 | n− 1.

(ii) If n ≡ 0 (mod 11) and n ≡ 11 (mod 12), then 5 | n− 1.

(iii) If n ≡ 0 (mod 23) and n ≡ 23 (mod 24), then 11 | n− 1.

The following is also an application of Proposition 3.1.

Theorem 3.6. Let G be an abelian group containing an affine difference set
of order n relative to a subgroup N . Let m ∈ Λn. Assume G/N contains an
element of order r and set e = ordr(m). If e > 2, then (me − 1, n− 1) - m− 1.

Proof. Let notations H∗ and g be as before. Let σ be an element of H∗ of
order r. As e = ordr(m) > 2, we have σme−1 = 1. Hence σme

= σ and so
g(σ)m

e

= g(σme

) = g(σ) by Result 2.3(ii). From this, g(σ)m
e−1 = 1. Thus

o(g(σ)) | (me − 1, n− 1). Assume (me − 1, n− 1) | m− 1. Then o(g(σ)) | m− 1
and so by Proposition 3.1, we have either σm−1 = 1 or σm+1 = 1. This implies
σm2−1 = 1 and therefore ordr(m) | 2, a contradiction.

As a corollary of Theorem 3.6, the following holds.

Corollary 3.7. Let G be an abelian group containing an affine difference set of
order n relative to a subgroup N . Let p ∈ π(n), q ∈ π(n+1) and set e = ordq(p).
If e > 2, then (pe − 1, n− 1) - p− 1.

Example 3.8. Assume n = 39 (mod 60). We take p = 3 ∈ π(n) and q = 5 ∈
π(n+1). Since e = ord5(3) = 4 and (pe− 1, n− 1) = (80, n− 1) = 2 | p− 1 = 2,
we have a contradiction by Corollary 3.7. Therefore, if n = 39 + 60s for some
integer s, then there exists no abelian affine difference set of order n.

The following is a slightly modified version of Theorem 3.6.
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Theorem 3.9. Let G be an abelian group containing an affine difference set of
order n relative to a subgroup N . Let m ∈ Λn, q ∈ π(n+1) and set e = ordq(m).
If e is even and e > 2, then (m

e
2 − 1, n− 1) - m− 1.

Proof. Set e = 2f . By assumption, f > 1 and q > 2. Let σ be an element of
H∗ of order q. Since q | (mf − 1)(mf + 1) and (mf − 1,mf + 1) ≤ 2, we have

q | mf + 1. Hence σmf

= σ−1. Thus g(σ)m
f

= g(σmf

) = g(σ−1) = g(σ) by

Result 2.3. From this, g(σ)m
f−1 = 1 and so o(g(σ)) | (mf − 1, n− 1). Assume

(mf −1, n−1) | m−1. Then, by Proposition 3.1, σm2−1 = 1. Hence q | m2−1.
Thus ordq(m) | 2, contrary to the assumption. Therefore (mf − 1, n − 1) -
m− 1.

As an application of Theorem 3.9, we have the following.

Example 3.10. Assume n = 3(7s + 2) for an integer s. We take m = 3 ∈ Λn

and q = 7 | n+1. Then, ordq(m) = 6. Applying Theorem 3.9, (33−1, n−1) - 2.
Since (33−1, n−1) ∈ {1, 2, 13, 26}, we have 13 | n−1. Thus, if n ≡ 6 (mod 21)
and there exists an abelian affine difference set of order n, then 13 | n− 1.

4 Sylow subgroups of G

As another application of Proposition 3.1 we consider the group theoretic struc-
ture of Sylow subgroups of G. Let mp be the highest power of a prime p dividing
an integer m. Then we have the following.

Theorem 4.1. Let G be an abelian group containing an affine difference set
of order n relative to a subgroup N . Let m ∈ Λn and assume m+ 1 | n+ 1 and
a Sylow p-subgroup of N is cyclic for each p ∈ π((m− 1, n− 1)). Then, a Sylow
q-subgroup of G is cyclic for any prime q ∈ π(n+1) such that (m+1)q < (n+1)q.

Proof. Set C = {x ∈ N | xm−1 = 1}. Then C = {x ∈ N | x(m−1,n−1) = 1}. By
assumption, a Sylow p-subgroup of N is cyclic for each p ∈ π((m − 1, n − 1)).
Hence |C| = (m − 1, n − 1). Set H1 = {σ ∈ H | σm+1 = 1} and let q ∈
π(m+ 1) ∩ π( n+1

m+1 ). Assume a Sylow q-subgroup of G is non-cyclic. Then, q is
an odd prime as a Sylow 2-subgroup of G is cyclic ([3]). Hence |H1| ≥ (m+1)q.
From this, |H1| ≥ 3(m+ 1). By Lemma 2.4, |{g(σ) | σ ∈ H1}| ≥ (3m+ 1)/2 >
3(m − 1, n − 1)/2 + 1. However, as a Sylow p-subgroup of N is cyclic for each
prime p ∈ π(m− 1, n− 1), |{g(σ) | σ ∈ H1}|− 1 ≤ (m− 1, n− 1) by Proposition
3.1. Hence (m− 1, n− 1) > (3(m− 1, n− 1)/2 + 1)− 1 = 3(m− 1, n− 1)/2, a
contradiction.

By Theorem 4.1, we have the following.

Corollary 4.2. Let m ∈ Λn and assume m+1 | n+1 and a Sylow p-subgroup
of N is cyclic for each p ∈ π((m−1, n−1)). Let q ∈ π(m+1) and qu = (m+1)q.

(i) If u = 1, then a Sylow q-subgroup of G is cyclic.
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(ii) If u = 2, then a Sylow q-subgroup of G is either cyclic or isomorphic to
Zq × Zq.

Proof. By a result of Arasu-Pott in [3] we may assume that q > 2 and so
q - n − 1. Assume a Sylow q-subgroup of G is non-cyclic. Then, applying
Theorem 4.1, qu exactly divides |G|. Hence, if u ≤ 2, then u = 2 and a Sylow
q-subgroup of G is isomorphic to Zq × Zq. Thus the corollary holds.

As an application of Corollary 4.2 we have the following.

Proposition 4.3. Let G be an abelian group containing an affine difference
set of order n relative to a subgroup N .

(i) If n is even and n ≡ 2 (mod 3), then a Sylow 3-subgroup of G is cyclic.
In particular, if n = 22s−1 for an integer s, then a Sylow 3-subgroup of G
is cyclic.

(ii) If n is odd and 3 | n, 5 | n + 1, then a Sylow 5-subgroup of G is cyclic.
In particular, if n = 32(2s−1) for an integer s, then a Sylow 5-subgroup of
G is cyclic.

(iii) If n is odd and 5 | n, 3 | n + 1, then a Sylow 3-subgroup of G is cyclic.
In particular, if n = 52s−1 for an integer s, then a Sylow 3-subgroup of G
is cyclic.

Proof. Assume 2 | n and n ≡ 2 (mod 3). Apply Corollary 4.2(i) with m = 2 ∈
Λn and q = 3. Then we have (i).

Assume 2 - n, 3 | n and 5 | n+1. Take m = 32 ∈ Λn. Then 10 = m+1 | n+1
and (m− 1, n− 1) | 8. Applying Corollary 4.2(i), we have (ii).

Assume 2 - n, 5 | n and 3 | n+1. Take m = 5 ∈ Λn. Then 6 = m+1 | n+1
and (m− 1, n− 1) | 4. Applying Corollary 4.2(i), we have (iii).
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