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Abstract. Let D be an affine difference set of order n in an abelian group
G relative to a subgroup N. Set H = H \ {1,w}, where H = G/N and w =
[I,cqo. Using D we define a two-to-one map g from H to N. The map g
satisfies g(0™) = g(0)™ and g(0) = g(o~') for any multiplier m of D and any

element o € H. As applications, we present some results which give a restriction
on the possible order n and the group theoretic structure of G/N.

Keywords: relative difference set, affine difference set, multiplier

1 Introduction

Let G be a group of order n2 —1 (n > 1) and N a subgroup of G of order
n — 1. An n-subset D of G is called an affine difference set of order n in G
relative to N if each element x € G\ N is uniquely represented in the form
didy ! (d1,d2 € D) and no nonidentity element in N is represented in such a
form (see [9]). An affine difference set D is said to be abelian or cyclic if the
group G has the respective property. For a subset X of G and an integer s, we
set X(8) = {z° | z € X}. An integer m is called a multiplier of D if D("™) = Daq
for some a € G.

It is a well-known conjecture that an abelian affine difference set is of prime
power order and cyclic ([9]). Many results on abelian affine difference sets are
known. We refer to [1], [2], [4], [7], [8] for the order of abelian affine difference
sets, [3] for the group theoretic structure, and §5.2 of [9], §7 of [10] for a survey.

Recently, in [5], J. C. Galati studied abelian affine difference sets of even
order from the group extension point of view and gave some non-existence re-
sults. In [6], the author also studied affine difference sets of order n including
odd order case.

Set H = G/N and w = H o = Nw (Jw € G). If we exchange D for its

oc€EH
suitable translate if necessary, we may assume that DN\Nw = 0, [ depd@=1land

S = DU{w} is a complete set of coset representatives of H. Set H* = H \ {w}.
Let d be a map from H* to G defined by {d(0)} = Nz N D for 0 = Nz € H*.
Then, clearly D = {d(¢) | 0 € H*}. We define a map ¢ from H* to N by
g(0) = d(o)d(c™ ") for 0 € H*. Set H = H \ {1,w}. Then g|j is a two-to-one
map (Lemma 2.4). Note that o(w) = 1 or 2 according as n is even or odd since



|H| = n+1 and a Sylow 2-subgroup of G is cyclic by a result of Arasu-Pott ([3]).
On the other hand o(g(c)) is a divisor of m — 1 if and only if either o™~ =1
or o™t =1 for m € A, where A,, = {m € N | 7(m) C n(n)} and w(k) is the
set of primes dividing an integer k (see Proposition 3.1). As applications, we
present some results which give a restriction on the orders n of abelian affine
difference sets and the group theoretic structure of G/N (Theorems 3.2, 3.6,
4.1).

2 Preliminaries

Definition 2.1. An n-subset D of an abelian group G of order n? — 1 is called
an affine difference set of order n relative to N if each element z € G\ N is
uniquely represented in the form dyds ! (d1,dy € D) and no nonidentity element
in N is represented in such a form (see [9]).

Throughout the article we use the following notations.

Notation 2.2. (i) Let D be an affine difference set in an abelian group
G of order n? — 1 relative to a subgroup N of G of order n — 1. Set
H =G =G/N and w = H 0 = Nw (Gw € G). Then, as a Sylow

ocH

2-subgroup of G is cyclic by [3],

o(w) = {1 if 2|n,

2 otherwise.

(ii) If we exchange D for its suitable translate if necessary, we may assume

that DN Nw = (. Hence H x € N. Since (|D|,|N|) = 1, exchanging D

xzeD
for a suitable Da with a € N if necessary, we may assume that

H =1
zeD
(iii) Set H* = H \ {w} and H = H \ {1,w}. Note that H* = H iff 2 | n.
(iv) Let m(m) denote the set of primes dividing a positive integer m and set
A, ={m eN| n(m) C n(n)} for n € N.

By Notation 2.2, H = D U {w}, where D = U,epNx. Let d be a map from
H* to G defined by {d(0)} = Nz N D for 0 = Nz € H*. We define a map g
from H* to N by g(o) = d(o)d(c™1) for o € H*. Then the following holds (see

[6]).-
Result 2.3. (i) D™ =D VmcA,.

(i)  Let m € Ay, then d(¢™) = d(£§)™ for any { € H*. In particular,
g(€m) = g(§)™ for any £ € H* and m € A,,.



(iii) If o,7 € H*, then g(o) = g(7) if and only if {0,071} = {r,771}.
By Result 2.3(iii) we have the following,.

Lemma 2.4. The map g restricted to H is two-to-one.

Remark 2.5. Assume n is even. Then G = N x @Q for a subgroup @ of G
of order n + 1. In his paper [5] J.C. Galati defined a map ¢ from Q to N
by D = {(¢(x),z) | z € Q\ {1}} and ¢(1) = 1. We can easily verify that
g(Nx) = ¢(x)? for z € Q \ {1} when n is even.

3 Multipliers and divisors of n + 1

Let G, N, H,w, H*, H, A, and the map ¢ be as defined in the last section. In
this section we present some results on the orders of abelian affine difference
sets as applications of the two-to-one map g.

The map g has the following property which is used repeatedly in this article.

Proposition 3.1. Let o € H* and m € A,,. Then o(g(c))|m — 1 if and only
if either o™ 1 =1 or o™t =1.

Proof. Assume o(g(c))|m — 1. Then, g(o)™ = g(o) and so g(c™) = g(o)™ =
g(c) by Result 2.3(ii). Hence o™ € {o,07'} by Result 2.3(iii). Therefore we
have either c™~! = 1 or ¢™*! = 1. Conversely, assume either ¢™ ! = 1 or
o™*! = 1. Then, 0™ = o*!. Hence g(0)™ = g(c™) = g(o*') = g(c) by Result
2.3(iii). Thus o(g(o)) | m — 1. O

If we have information on the group theoretic structure of NV, the following
holds.

Theorem 3.2. Let G be an abelian group containing an affine difference set
of order n relative to a subgroup N. Let m € A, and assume a Sylow p-
subgroup of N is cyclic for eachp € m((m —1,n—1)). Then, (m+1,n+1) <
2(m—-1,n—1)+ (2,m+1).

Proof. We note that ¢™*! = 1 if and only if ¢(+t17+1) = 1 for m € A and
o€ H. Set H = {0 € H | o+ttt = 11\ {1,w}. Then, clearly |H;| >
(m+1,n+1) — (2,m +1). On the other hand [{x € N | 2™ 1 =1}| = [{x €
N | zm=tn=1) = 1} = (m — 1,n — 1) by assumption. This, together with
Lemma 2.4 and Result 2.3(iii), gives |H1|/2 < (m —1,n—1). Thus (m+1,n+
H—-2,m+1)<2(m—-1,n-1). O

As a corollary of Theorem 3.2, we have the following.

Corollary 3.3. Assume the existence of an abelian affine difference set of
order n and let m € A, such that m+1|n+1. If p>tn—1 for each odd prime
p dividing (m — 1,n — 1), then 0 m*12) |n — 1.

m—1



Proof. Assume m is even. Then, by Theorem 3.2, m+1<2(m—1,n—1)+1
and som < 2(m—1,n—1). Hence (m—1,n—1) =m —1as m—1is odd.
Thus the corollary holds.

Assume m is odd. Then, by Theorem 3.2, m+1<2(m —1,n— 1)+ 2 and
som—1<2(m—1,n—1). Hence (m—1,n—1) € {m — 1,21}, Thus the
corollary holds in both cases. O

Proposition 3.4. Assume the existence of an abelian affine difference set of
order n and let q be a prime divisor of n such that ¢+1|n+1 and g=2p+1
for an odd prime p. Thenp|n — 1.

Proof. Assume ptn—1. Then (¢—1,n—1) = (2p,n—1) | 2. Applying Corollary
3.3 with m = g we have ((1[1_;112) =p | n—1, contrary to the assumption. Thus
pln-—1. O

Example 3.5. Assume the existence of an abelian affine difference set of order
n. Applying Proposition 3.4 with ¢ = 7,11 or 23 we have the following.

(i) fn=0 (mod 7) and n =7 (mod 8), then 3 | n — 1.
(i) fn=0 (mod 11) and n =11 (mod 12), then 5| n — 1.
(iii) Ifn=0 (mod 23) and n =23 (mod 24), then 11 | n — 1.
The following is also an application of Proposition 3.1.

Theorem 3.6. Let G be an abelian group containing an affine difference set
of order n relative to a subgroup N. Let m € A,,. Assume G/N contains an
element of order r and set e = ord,.(m). If e > 2, then (m¢ —1,n—1){m — 1.

Proof. Let notations H* and g be as before. Let ¢ be an element of H* of
order 7. As e = ord,(m) > 2, we have 0™ ~! = 1. Hence ¢™ = o and so
g(o)™ = g(6™) = g(o) by Result 2.3(ii). From this, g(¢)™ ' = 1. Thus
o(g(a)) | (m®—=1,n—1). Assume (m®—1,n—1) | m—1. Then o(g(c)) | m—1
and so by Proposition 3.1, we have either o™ 1 =1 or ¢™+! = 1. This implies

o™ =1 =1 and therefore ord,.(m) | 2, a contradiction. O

As a corollary of Theorem 3.6, the following holds.

Corollary 3.7. Let G be an abelian group containing an affine difference set of
order n relative to a subgroup N. Letp € m(n),q € m(n+1) and set e = ordy(p).
Ife > 2, then (p° —1,n—1)tp—1.

Example 3.8. Assume n = 39 (mod 60). We take p =3 € n(n) and ¢ =5 €
m(n+1). Since e = ord5(3) =4 and (p°—1,n—1)=(80,n—1) =2 |p—1=2,
we have a contradiction by Corollary 3.7. Therefore, if n = 39 + 60s for some
integer s, then there exists no abelian affine difference set of order n.

The following is a slightly modified version of Theorem 3.6.



Theorem 3.9. Let G be an abelian group containing an affine difference set of
order n relative to a subgroup N. Letm € A,,, ¢ € m(n+1) and set e = ordy(m).
If e is even and e > 2, then (m? —1,n —1){m — 1.

Proof. Set e = 2f. By assumption, f > 1 and ¢ > 2. Let o be an element of
H* of order q. Since ¢ | (m/ —1)(m/ + 1) and (m# — 1,m? + 1) < 2, we have
q | mf + 1. Hence o™ = =1 Thus g(a)mf = g(amf) = g(oc71) = g(o) by
Result 2.3. From this, g(o)™ =1 = 1 and so o(g(0)) | (mf — 1,n — 1). Assume
(mf —1,n—1) | m—1. Then, by Proposition 3.1, 0™ =1 = 1. Hence ¢ | m? — 1.
Thus ord,(m) | 2, contrary to the assumption. Therefore (m/ — 1,n — 1) {
m — 1. O

As an application of Theorem 3.9, we have the following.

Example 3.10. Assume n = 3(7s + 2) for an integer s. We take m =3 € A,
and ¢ = 7 | n+1. Then, ord,(m) = 6. Applying Theorem 3.9, (3°—1,n—1){2.
Since (32 —1,n—1) € {1,2,13,26}, we have 13 | n— 1. Thus, if n =6 (mod 21)
and there exists an abelian affine difference set of order n, then 13 | n — 1.

4 Sylow subgroups of GG

As another application of Proposition 3.1 we consider the group theoretic struc-
ture of Sylow subgroups of G. Let m, be the highest power of a prime p dividing
an integer m. Then we have the following.

Theorem 4.1. Let G be an abelian group containing an affine difference set
of order n relative to a subgroup N. Let m € A, and assume m+1|n+1 and
a Sylow p-subgroup of N is cyclic for each p € 7((m—1,n—1)). Then, a Sylow
g-subgroup of G is cyclic for any prime q € w(n+1) such that (m+1), < (n+1),.

Proof. Set C ={x € N | 2™ ' =1}. Then C = {x € N | z(m~tn=1 =1}, By
assumption, a Sylow p-subgroup of N is cyclic for each p € n((m — 1,n — 1)).
Hence |C| = (m — 1,n —1). Set H; = {o¢ € H | ™! = 1} and let ¢ €
m(m+1)N ﬂ(%) Assume a Sylow g-subgroup of G is non-cyclic. Then, q is
an odd prime as a Sylow 2-subgroup of G is cyclic ([3]). Hence |[H;| > (m+1)g.
From this, |H1| > 3(m + 1). By Lemma 2.4, [{g(0) | 0 € H1}| > 3m +1)/2 >
3(m —1,n—1)/2+ 1. However, as a Sylow p-subgroup of N is cyclic for each
prime p € m(m—1,n—-1), [{g(c) | 0 € H1}| =1 < (m—1,n—1) by Proposition
3.1. Hence (m—-1,mn—1) > B(m—-1,n—-1)/241)—-1=3(m—1,n—1)/2,a
contradiction. O

By Theorem 4.1, we have the following.

Corollary 4.2. Let m € A,, and assume m+1|n+1 and a Sylow p-subgroup
of N is cyclic for eachp € m((m—1,n—1)). Let ¢ € 71(m+1) and ¢* = (m+1),.

(i) Ifu=1, then a Sylow q-subgroup of G is cyclic.



(i) If u =2, then a Sylow q-subgroup of G is either cyclic or isomorphic to
Ly X Ly.

Proof. By a result of Arasu-Pott in [3] we may assume that ¢ > 2 and so
gt n—1. Assume a Sylow g¢-subgroup of G is non-cyclic. Then, applying
Theorem 4.1, ¢* exactly divides |G|. Hence, if u < 2, then v = 2 and a Sylow
g-subgroup of G is isomorphic to Zq x Zg4. Thus the corollary holds. O

As an application of Corollary 4.2 we have the following.

Proposition 4.3. Let G be an abelian group containing an affine difference
set of order n relative to a subgroup N.

(i) Ifn is even and n =2 (mod 3), then a Sylow 3-subgroup of G is cyclic.
In particular, if n = 22571 for an integer s, then a Sylow 3-subgroup of G
is cyclic.

(i) If n is odd and 3 | n, 5| n+ 1, then a Sylow 5-subgroup of G is cyclic.
In particular, if n = 3=V for an integer s, then a Sylow 5-subgroup of
G is cyclic.

(iii) If n is odd and 5 | n, 3 | n+ 1, then a Sylow 3-subgroup of G is cyclic.
In particular, if n = 52*~1 for an integer s, then a Sylow 3-subgroup of G
18 cyclic.

Proof. Assume 2 | n and n =2 (mod 3). Apply Corollary 4.2(i) with m =2 €
A,, and ¢ = 3. Then we have (i).

Assume 24 n, 3 |nand5 | n+1. Take m = 32 € A,,. Then 10 = m+1 | n+1
and (m —1,n — 1) | 8. Applying Corollary 4.2(i), we have (ii).

Assume 24n, 5|nand 3 |n+1. Takem=5¢€ A,,. Then6=m+1|n+1
and (m —1,n —1) | 4. Applying Corollary 4.2(i), we have (iii). O
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