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Abstract. Let G be a group of order mu and U a normal subgroup of G
of order u. Let G/U = {U1, U2, · · · , Um} be the set of cosets of U in G. We
say a matrix H = [hij ] order k with entries from G is a quasi-generalized
Hadamard matrix with respect to the cosets G/U if

∑
1≤t≤k hith

−1
jt = λij1U1 +

· · · + λijmUm (∃λij1, · · · , ∃λijm ∈ Z) for any i ̸= j. On the other hand, in our
previous article we defined a modified generalized Hadamard matrix GH(s, u, λ)
over a group G, from which a TDλ(uλ, u) admitting G as a semiregular auto-
morphism group is obtained. In this article, we present a method for combining
quasi-generalized Hadamard matrices and semiregular relative difference sets to
produce modified generalized Hadamard matrices.

Keywords: transversal design, generalized Hadamard matrix, semiregular rel-
ative difference set

1 Introduction

A transversal design TDλ(k, u) (u > 1, k = uλ) is an incidence structure (P,B),
where

(i) P is a set of uk points partitioned into k classes (called point classes),
each of size u,

(ii) B is a collection of k-subsets of P (called blocks),

(iii) Any two distinct points in the same point class are incident with no block
and any two points in distinct point classes are incident with exactly λ
blocks.

A transversal design D = (P,B) is called symmetric (and often denoted by
STDλ(k, u)) if the dual structure D∗ of D is also a transversal design with the
same parameters as D. If D is symmetric, the point classes of D∗ are said to
be the block classes of D. A transversal design D is called class regular with
respect to U if U is an automorphism group of D acting regularly on each point
class.
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Throughout the article all groups are assumed to be finite. Let G be a
group. A subset S of G is identified with a group ring element

∑
x∈S x ∈ Z[G]

and S(−1) denotes the set of inverses of the elements of S. A matrix M = [gij ]
of order k(= uλ) with entries from G is called a generalized Hadamard matrix
over G if it satisfies

∑
1≤t≤k gitg

−1
ℓt = λG for any i ̸= ℓ, where λ = k/|G|.

From a generalized Hadamard matrix we obtain a symmetric transversal design
admitting G as a class regular automorphism group ([3]). On the other hand
a modified generalized Hadamard matrix GH(s, u, λ) over a group is defined in
[6] and from this one can construct a transversal design TDλ(uλ, u) admitting
G as a automorphism group (see Result 2.2).

Let G be a group of order mu and U a normal subgroup of G of order u.
Let S = {U1, · · · , Um} be the set of cosets of U in G. We say that a matrix
M = [dij ] of order k with entries from G is a quasi-generalized Hadamard
matrix with respect to S if

∑
1≤t≤k ditd

−1
ℓt =

∑
1≤s≤m λiℓsUs(λiℓs ∈ Z) for any

i ̸= ℓ. In this article, we present a method for combining such matrices and
semiregular relative difference sets to produce modified generalized Hadamard
matrices (Theorem 4.1, Theorem 4.9).

2 Preliminaries

In [6] we introduced the notion of a modified generalized Hadamard matrix over
a group. We first give a summary of the related results, which we will use in
the later sections.

Definition 2.1. ([6]) Let G be a group of order su, where s is a divisor of uλ,
and u and λ are positive integers. For subsets Dij (1 ≤ i, j ≤ t, t = uλ/s) of G,
we call a matrix

[Dij ] =


D11 D12 · · · D1t

D21 D22 · · · D2t

... · · · · · ·
...

Dt1 Dt2 · · · Dtt


a modified generalized Hadamard matrix with respect to subgroups Ui (1 ≤ i ≤ t)
of G of order u if the following conditions are satisfied :

|Dij | = s for all i, j, 1 ≤ i, j ≤ t, and

∑
1≤j≤t

DijD
(−1)
ℓj =

{
uλ+ λ(G− Ui) if i = ℓ,

λG otherwise.
(1)

For short, we say [Dij ] is a GH(s, u, λ) matrix with respect to Ui, 1 ≤ i ≤ t.
If U1 = · · · = Ut = U for a subgroup U of G, we simply say that [Dij ] is a
GH(s, u, λ) matrix with respect to U . In this case, if U is normal in G, then a
GH(u, λ) matrix over U is obtained from the GH(s, u, λ) matrix (see Proposition
6.3 of [6]).
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We denote by Mt(Z[G]) the set of matrices of order t over the group ring
Z[G]. An incidence structure (P,B) is obtained from a GH(s, u, λ) matrix [Dij ] ∈
Mt(Z[G]) in the following way :

P = {1, 2, · · · , t} ×G, B = {Bjh : 1 ≤ j ≤ t, h ∈ G}, (2)

where Bjh =
∪

1≤i≤t

(i,Dijh) (=
∪

1≤i≤t

{(i, dh) : 1 ≤ i ≤ t, d ∈ Dij}).

Moreover, the action ofG on (P,B) is defined by (i, c)x = (i, cx), (Bj,d)
x = Bj,dx.

Then, by [6] we have

Result 2.2. ([6]) Let [Dij ] ∈ Mt(Z[G]) be a GH(s, u, λ) matrix over a group
G of order su with respect to subgroups Ui (1 ≤ i ≤ t), where t = uλ/s. If we
define P and B by (2), then the following holds.

(i) (P,B) is a transversal design TDλ(k, u), where k = uλ.

(ii) G is an automorphism group of (P,B) acting semiregularly both on P and
on B.

(iii) For any i(1 ≤ i ≤ t) and x ∈ G, Pi,Uix is a point class of (P,B), on which
x−1Uix acts regularly.

Using Result 2.2 we can obtain transversal designs by constructing modified
generalized Hadamard matrices. Transversal designs obtained from GH(s, u, λ)
matrices are not always symmetric (see Example 5.3 of [6]) and do not always
admit class regular automorphism groups even if they are symmetric (see [7]).
The following gives a criterion for the resulting transversal design to be sym-
metric.

Result 2.3. (Theorem 3.10 and Corollary 3.11 of [6]) Let [Dij ] be a GH(s, u, λ)
matrix over a group G with respect to subgroups Ui of G, 1 ≤ i ≤ t = uλ/s.
Then the transversal design TDλ(k, u), k = uλ, corresponding to [Dij ] is sym-
metric if and only if the matrix

[Dij
(−1)]T =


D11

(−1) D21
(−1) · · · Dt1

(−1)

D12
(−1) D22

(−1) · · · Dt2
(−1)

... · · · · · ·
...

D1t
(−1) D2t

(−1) · · · Dtt
(−1)


is a GH(s, u, λ) matrix over G with respect to suitable subgroups Vi of G, 1 ≤
i ≤ t, of order u. In particular, if G � U1 = · · · = Ut, then [Dij

(−1)]T is also a
GH(s, u, λ) matrix over G.

Let G be a group of order u2λ and U a subgroup of G of order u. A uλ-subset
D of G is called a (uλ, u, uλ, λ)-difference set relative to U if the list of quotients
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d1d
−1
2 with distinct elements d1, d2 ∈ D contains each element of G−U exactly

λ times and no elements of U :

DD(−1) = uλ+ λ(G− U) (3)

We note that if D is a (uλ, u, uλ, λ)-difference set relative to U , then [D] is a
GH(uλ, u, λ) matrix of order 1 and the corresponding transversal design is not
always symmetric (see Proposition 4.4 of [5]). A (uλ, u, uλ, λ)-difference set is
often called a semiregular relative difference set.

For an abelian group G, we denote by G∗ the set of (linear) characters of G.
Let χ0 be the principal character of G. The following is a well known result on
G∗.

Result 2.4. ([12]) Let G be an abelian group and let z ∈ Z[G]. If χ(z) = 0 for
any character χ ∈ G∗, χ ̸= χ0, then z = cG for an integer c.

The following is a slight modification of Result 2.4.

Lemma 2.5. Let U be a subgroup of an abelian group G and let z ∈ Z[G]. If
χ(z) = 0 for every character χ ∈ G∗ such that χ|U ̸= χ0, then z = Uf for some
f ∈ Z[G].

Proof. It suffices to show that zg = z for every g ∈ U . On the other hand,
for any χ ∈ G∗ we have χ(g − 1) = 0 or χ(z) = 0 according as χ|U = χ0 or
χ|U ̸= χ0. Hence χ(z(g − 1)) = 0. By Result 2.4 the lemma holds.

3 Quasi-Generalized Hadamard Matrices with
respect to cosets

In this section we give a modification of generalized Hadamard matrices from a
different point of view to construct GH(s, u, λ) matrices that we have given in
Definition 2.1.

Definition 3.1. Let N be a group of order mu and U a normal subgroup of
N of order u. Let N/U = {U1(= U), U2, · · · , Um} be the set of cosets of U
in N . We say a matrix H = [hij ] of order k(= uλ) with entries from N is a
quasi-generalized Hadamard matrix with respect to the cosets N/U (a QGH(u, λ)
matrix with respect to N/U for brevity) if there exist integers λijt ≥ 0 such that∑

1≤t≤k

hith
−1
jt = λij1U1 + · · ·+ λijmUm, (4)

for any i, j (1 ≤ i ̸= j ≤ k).

We note that the condition (4) is equivalent to the following :

H(H(−1))T =


k Uz12 · · · Uz1k

Uz21 k Uz2k
...

. . .
...

Uzk1 Uzk2 · · · k


4



where zij ∈ Z[N ] (i ̸= j) and each coefficient of zij is a non-negative integer
and satisfies χ0(zij) = λ for the principal character χ0 of N .

Remark 3.2. (i) An ordinary GH(u, λ) matrix over U is a QGH(u, λ) ma-
trix with respect to U/U .

(ii) If H = [hij ] is a generalized Hadamard matrix over a group U , then H
is also a quasi-generalized Hadamard matrix with respect to the cosets
U/V for any normal subgroup V of U . Hence, there always exists a
QGH(ps, pm) matrix of order ps+m over (Zp)

s with respect to the cosets
(Zp)

s/(Zp)
t for any non-negative integers m, s and t(≤ s) (see Table 5.10

of [2]).

(iii) Let U be a normal subgroup of a group G and N a subgroup of G such
that N ≥ U . If H is a QGH(u, λ) matrix with respect to N/U , then H
can be regarded as a QGH(u, λ) matrix with respect to G/U .

(iv) Since uλ = (λij1 + · · ·+ λijm)|U | by (4), we have

λ = λij1 + · · ·+ λijm

for any i, j (i ̸= j).

We give some examples of quasi-generalized Hadamard matrices with respect
to cosets.

Let pn be any prime power and r a positive integer. We denote by GR(pn, r)
the Galois ring over Zpn (see [10]).

Proposition 3.3. Let R =GR(pn, r) be the Galois ring over Zpn . We define a
matrix M = [mij ] of degree pnr over the additive group (R,+) by mij = ij for
i, j ∈ R. Then M is a QGH(pr, p(n−1)r) matrix with respect to the cosets R/I,
where I = (pn−1) is the smallest non-zero ideal of R.

Proof. As
∪

j∈R(mij − mℓj) = (i − ℓ)
∪

j∈R j. Assume i ̸= ℓ. Then, as a
mapping f(j) = (i − ℓ)j from R to the ideal (i − ℓ)R of R is an epimorphism,
(i − ℓ)

∪
j∈R j = dJ , where d is the order of the kernel of f and J = (i − ℓ)R.

We note that any nonzero ideal of R is of the form (ps)(⊃ (pn−1)) for some
s (0 ≤ s ≤ n − 1) (see [10] p.308). Set J = (ps) and I = (pn−1). Then∪

j∈R(mij −mℓj) = dU1 ∪ dU2 ∪ · · · ∪ dUt, where J/I = {U1(= I), U2, · · · , Ut}
and t = pn−s−1. Thus the proposition holds.

Example 3.4. (i) In Proposition 3.3, set n = 2 and r = 1. Then R = Zp2 .
Hence there exists a QGH(p, p) matrix over ⟨a⟩ ≃ Zp2 with respect to the cosets
⟨a⟩/⟨ap⟩ for any prime p.

(ii) Set N = ⟨a, b⟩ ≃ Z3 × Z3, U = ⟨b⟩ ≃ Z3. Then [ℓij ] below is a QGH(3, 3)
matrix with respect to N/U .
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[ℓij ] =



1 1 1 1 1 1 1 1 1
1 1 1 b b b b2 b2 b2

1 1 1 b2 b2 b2 b b b
1 b b2 1 b2 b a ab ab2

1 b b2 b 1 b2 ab2 a ab
1 b b2 b2 b 1 ab ab2 a
1 b2 b 1 b b2 a ab2 ab
1 b2 b b2 1 b ab a ab2

1 b2 b b b2 1 ab2 ab a


We can verify that

∑
1≤t≤9 ℓitℓ

−1
jt ∈ {3U, 2U + Ua, 2U + Ua2} (i ̸= j).

Example 3.5. Let N = ⟨a⟩ ≃ Z6 and U = ⟨a2⟩ ≃ Z3. Then the following
matrix [hij ] of degree 12 is a QGH(3, 4) matrix with respect to N/U . We note
that

∑
1≤t≤12 hithjt

−1 ∈ {4U, 3U + Ua, 2U + 2Ua} (i ̸= j).

[hij ] =



1 1 1 1 1 1 1 1 1 1 1 1
1 1 a a2 a4 a4 a5 1 a2 a2 a3 a4

1 1 a4 a2 1 a2 a4 a2 1 a4 a4 a2

1 1 a2 a4 1 a2 a2 a4 a4 1 a2 a4

1 a4 a 1 a2 a3 a a2 a5 a3 a5 a4

1 a4 a3 a4 a2 a5 a 1 a a5 a3 a2

1 a4 a3 a2 a2 a a5 a4 a3 a a5 1
1 a4 a5 a4 1 a4 a3 a2 a2 a2 a 1
1 a2 a5 a2 a2 1 a3 1 a4 a4 a a4

1 a2 a3 1 a4 a4 a5 a2 a4 1 a a2

1 a2 a a4 a4 1 a3 a4 1 a2 a5 a2

1 a2 a5 1 a4 a2 a a4 a2 a4 a3 1


By the definition of the Kronecker product the following holds.

Proposition 3.6. Let N be a group and U a normal subgroup of N . If Hi(i =
1, 2) is a QGH(u, λi) matrix with respect to N/U for i ∈ {1, 2}, then H1 ⊗H2

is a QGH(u, λ1λ2u) matrix with respect to N/U .

We note that when N = U the assertion of the proposition coincides with
that of Theorem 5.11 in [2].

4 Semiregular relative difference sets and QGH(u, λ)
matrices with respect to cosets

In this section we present a construction method for transversal designs by com-
bining quasi-generalized Hadamard matrices with respect to cosets and semireg-
ular relative difference sets.
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Theorem 4.1. Let G be a group of order u2µ and let U and N be subgroups of
G such that NG(U) ≥ N ≥ U and |U | = u. Let H = [hij ] be a QGH(u, λ)
matrix with respect to N/U and let D = (D1, D2, · · · , Dk) (k = uλ) be a
k-tuple of (uµ, u, uµ, µ)-difference sets in G relative to U . Then the follow-
ing is a GH(uµ, u, uλµ) matrix of order k with respect to U and the resulting
TDuµλ(u

2µλ, u) admits G as a semiregular automorphism group.

MH,D =


h11D1 h12D2 · · · h1kDk

h21D1 h22D2 · · · h2kDk

...
...

...
hk1D1 hk2D2 · · · hkkDk

 (5)

Proof. Set N/U = {U1(= U), U2, · · · , Um}, where m = [N : U ]. By assump-
tion, for any i, j (1 ≤ i ̸= j ≤ k) there exist λijs ≥ 0 (1 ≤ s ≤ m) satisfying∑

1≤t≤k

hithjt
−1 = λij1U1 + λij2U2 + · · ·+ λijmUm (6)

and λ = λij1 + · · ·+ λijm (7)

by Remark 3.2(iv). Moreover, by assumption,

DtD
(−1)
t = uµ+ µ(G− U) (1 ≤ t ≤ k) (8)

Set MH,D = [Dij ], where Dij = hijDj .
Assume i ̸= j. Then we have∑

1≤t≤k

DitDjt
(−1)

=
∑

1≤t≤k

hit(uµ+ µ(G− U))hjt
−1 (by (8))

=
∑

1≤t≤k

hithjt
−1(uµ+ µ(G− U)) (as N � U)

=
∑

1≤s≤m

λijsUs(uµ+ µ(G− U)) (by (6))

= uµ
∑

1≤s≤m

λijsUs + µ(
∑

1≤s≤m

λijs|Us|)G

−µ
∑

1≤s≤m

λijs|U |Us

= µ(
∑

1≤s≤m

λijsu)G = µλuG (by (7))

Assume i = j. Then, similarly we have∑
1≤t≤k

DitDit
(−1) =

∑
1≤t≤k

hit(uµ+ µ(G− U))hit
−1

= kuµ+ kµ(G− U)
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It follows that

∑
1≤t≤k

DitDjt
(−1) =

{
kuµ+ kµ(G− U) if i = j,

kµG otherwise.

Therefore the theorem holds.

Remark 4.2. (i) In Theorem 4.1, if there exists a (uµ, u, uµ, µ)-difference set
D in G relative to U , then we may choose a k-tuple D = (Dg1, Dg2, · · · , Dgk),
where g1, · · · , gk ∈ G.
(ii) We note that U is not always a normal subgroup of G in Theorem 4.1 and
so the transversal design corresponding to Di might not admit a class regular
automorphism group.

Corollary 4.3. Let G be a group of order u2µ and U a normal subgroup of
G of order u. Let H = [hij ] be a QGH(u, λ) matrix with respect to G/U and
D = (D1, D2, · · · , Dk)(k = uλ) an n-tuple of (uµ, u, uµ, µ)-difference sets in G
relative to U . Then the matrix of order k defined by (5) is a GH(uµ, u, uλµ)
matrix with respect to U and gives an STDuµλ(u

2µλ, u).

Proof. The corollary immediately follows from Result 2.3 and Theorem 4.1.

Lemma 4.4. Assume the existence of a (pµ, p, pµ, µ)-difference set in a group
G relative to a subgroup U ≃ Zp of G for a prime p. If p2 | |CG(U)|, then there
exists a TDp2µ(p

3µ, p) admitting G as a semiregular automorphism group.

Proof. By assumption, there exists a subgroup N of G such that U ≤ N ≃ Zp2

or Zp ×Zp. Let D = (D1, · · · , Dp2) be a p2-tuple of (pµ, p, pµ, µ)-difference sets
in G relative to U . It follows from Example 3.4(i) or Remark 3.2(ii) that there is
a QGH(p, p) matrix with respect to N/U , say H. Applying Theorem 4.1, MH,D
is a GH(pµ, p, p2µ) matrix with respect to U and we obtain a TDp2µ(p

3µ, p)
from MH,D, which admits G as a semiregular automorphism group. Thus the
lemma holds.

Example 4.5. (i) Set G = ⟨a, b, c | a7 = b3 = c3 = 1, ac = ca, bc = cb, b−1ab =
a2⟩ and let D be a (21, 3, 21, 7)-difference set relative to U = ⟨c⟩ ≃ Z3 ([1]) .
By Lemma 4.4, there exists a TD327(3

37, 3) admitting G ≃ (Z7 oZ3)×Z3 as a
semiregular automorphism group.
(ii) Set G = ⟨r, s⟩× ⟨t⟩ ≃ Sym(3)×Z6, where r

2 = s3 = t6 = 1, [r, t] = [s, t] = 1
and rsr = s−1 and let D be a (12, 3, 12, 4)-difference set in G relative to a non-
normal subgroup U = ⟨st2⟩ ([5]). By Lemma 4.4, there exists a TD36(108, 3)
admitting G ≃ Sym(3)× Z6 as a semiregular automorphism group.

Example 4.6. Assume that there exists a (3µ, 3, 3µ, µ)-difference set in a
group G relative to a subgroup U ≃ Z3 of G and that 2 | |CG(U)|. Let
D = (D1, · · · , D12) be a 12-tuple of (3µ, 3, 3µ, µ)-difference sets in G relative to
U . By assumption, there exists a subgroup N of G such that U ≤ N ≃ Z6. It
follows from Example 3.5 that there is a QGH(3, 4) matrix with respect to N/U ,
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say H. Applying Theorem 4.1, MH,D is a GH(3µ, 3, 12µ) matrix with respect
to U and we obtain a TD12µ(36µ, 3) from MH,D, which admits G as a semireg-
ular automorphism group. For example, let G be the group of Example 4.5(ii).
Then we obtain a TD48(144, 3) admitting G ≃ Sym(3) × Z6 as a semiregular
automorphism group.

Lemma 4.7. Let G be an abelian group of order u2µ and let D = (D1, · · · , Dk)
be a k-tuple of (uµ, u, uµ, µ)-difference sets in G relative to a subgroup U of G
of order u, where k = uλ for some λ ∈ Z. Let hij(1 ≤ i, j ≤ k) be elements
of G. Then a matrix M = [hijDj ] of order k is a GH(uµ, u, uλµ) matrix with
respect to U if and only if H = [hij ] is a QGH(u, λ) matrix with respect to G/U .
If this is the case, the resulting TDuµλ(u

2µλ, u) is symmetric.

Proof. By definition, M is a GH(uµ, u, uλµ) matrix if and only if

∑
1≤j≤k

hijDj(hℓjDj)
(−1) =

{
kuµ+ kµ(G− U) if j = ℓ,

µkG otherwise.
(9)

Since G is abelian,
∑

1≤j≤k hijDj(hℓjDj)
(−1) =

∑
1≤j≤k hijh

−1
ℓj DjD

(−1)
j =

(uµ+ µ(G− U))
∑

1≤j≤k hijh
−1
ℓj . Hence, by Result 2.4, (9) is equivalent to

χ(uµ− µχ(U))χ(
∑

1≤j≤k

hijh
−1
ℓj ) = 0 (i ̸= ℓ) (10)

for any character χ( ̸= χ0) ofG. Clearly (10) is equivalent to χ(
∑

1≤j≤k hijh
−1
ℓj ) =

0 for any character χ of G such that χ|U ̸= χ0. Applying Lemma 2.5, this is
equivalent to the condition that H is a QGH(u, λ) matrix with respect to the
cosets G/U . If this is the case, the resulting TDuλµ(u

2λµ, u) is symmetric by
Result 2.3. Therefore the proposition holds.

Example 4.8. Set G = ⟨a⟩ × ⟨b⟩ ≃ Z9 ×Z3, N = ⟨a⟩ ≃ Z9 and U = ⟨a3⟩ ≃ Z3.
Let H = [hij ] be a QGH(3, 3) matrix with respect to N/U in Example 3.4(i).
As G contains (9, 3, 9, 3)-difference sets relative to U (see [9]), we can choose a
9-tuple D = (D1, · · · , D9) of (9, 3, 9, 3)-difference sets in G relative to U . Then,
by Theorem 4.1, MH,D is a GH(9, 3, 27) matrix with respect to U . Moreover,
by Lemma 4.7, the TD27(81, 3) obtained from MH,D is symmetric.

When D is a (uµ, u, uµ, µ)-difference set in G relative to U , D is a complete
set of right coset representatives of U in G by (3), but D(−1) is not so in general.
If some (uµ, u, uµ, µ)-difference set in G satisfies this condition, then we have
the following.

Theorem 4.9. Let G be a group of order u2µ and let U and N be subgroups
of G such that |N | = mu, |U | = u and NG(U) ≥ N ≥ U and |U | = u. Let
H = [hij ] (hij ∈ N) be a QGH(u, λ) matrix with respect to N/U and let
D = (D1, D2, · · · , Dk) (k = uλ) be a k-tuple of (uµ, u, uµ, µ)-difference sets
in G. Assume at least k − 1 of Di’s are complete sets of right and left coset
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representatives of U in G. Then the following matrix M ′
H,D of order k is a

GH(uµ, u, uλµ) matrix with respect to U and the resulting TDuµλ(u
2µλ, u) ad-

mits G as a semiregular automorphism group.

M ′
H,D =


D1h11 D1h12 · · · D1h1k

D2h21 D2h22 · · · D2h2k

...
...

...
Dkhk1 Dnhk2 · · · Dkhkk

 (11)

Proof. Set N/U = Ug1 ∪ · · · ∪ Ugm (g1, · · · , gm ∈ N), where m = [N : U ]. By
assumption, ∑

1≤t≤k

hith
−1
jt = λij1Ug1 + · · ·+ λijmUgm (12)

for some non-negative integers λijs (1 ≤ i ̸= j, 1 ≤ s ≤ m).
Set M ′

H,D = [Dij ], where Dij = Dihij . Then Then∑
1≤t≤k

DitDjt
(−1) =

∑
1≤t≤k

Dihith
−1
jt D

(−1)
j

= Di

( ∑
1≤t≤k

hith
−1
jt

)
D

(−1)
j

Hence, by (12)

∑
1≤t≤k

DitDjt
(−1) =

{
k(uµ+ µ(G− U)) if i = j,

Di(λij1Ug1 + · · ·+ λijmUgm)D
(−1)
j otherwise.

Assume i ̸= j. By assumption, either Di or Dj is a complete set of right and
left coset representatives of U in G as i ̸= j. Hence we have either DiU = G or

UD
(−1)
j = G. In either case,

∑
1≤t≤k DitDjt

(−1) = λuµG as N � U . Thus

∑
1≤t≤k

DitDjt
(−1) =

{
kuµ+ kµ(G− U) if i = j,

kµG otherwise.

Therefore the theorem holds.

Corollary 4.10. Let G be a group of order u2µ and U a normal subgroup of G
of order u. Let H = [hij ] be a QGH(u, λ) matrix with respect to G/U and D =
(D1, D2, · · · , Dk) (k = uλ) a k-tuple of (uµ, u, uµ, µ)-difference sets in G rela-
tive to U . Then the matrix of order k defined by (11) is a GH(uµ, u, uλµ) matrix
with respect to U and the resulting TDuµλ(u

2µλ, u) admits G as a semiregular
automorphism group.
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Example 4.11. Many (4n2, 2n2 − n, n2 − n)-difference sets have been con-
structed in abelian groups of order 4n2 and they are called Menon Hadamard
difference sets ([8]). Let L be an abelian group of order 4n2 containing a Menon
Hadamard difference set A. Assume that L is not an elementary abelian 2-
group. We define a group G = L⟨t⟩ of order 8n2, where an element t of G
inverts L. By a similar way as in Proposition 4.14 of [4], we can verify that
D = A + (L − A(−1))t is a (4n2, 2, 4n2, 2n2)-difference set in G relative to
U = ⟨t⟩. We choose A so that it satisfies A = A(−1) (see Problem 2 in Chapter
4 of [8]). For g ∈ L, Dg is a (4n2, 2, 4n2, 2n2)-difference set in G relative to U .
However, as (Dg)(−1)(Dg) = 4n2 + 2n2(G − ⟨gt⟩), Dg is not a complete set of
left coset representatives of U in G. Clearly CG(t) contains a subgroup N of
the form N = ⟨t⟩ × ⟨s⟩ isomorphic to Z2 × Z2. Let H = [hij ] be the following
QGH(2, 2) matrix with respect to N/U :

H =


1 1 1 1
1 t s st
1 1 t t
1 t st s


SetD = (D,D,D,Dg). Then, applying Theorem 4.9,M ′

H,D is aGH(4n2, 2, 8n2)

matrix with respect to U and the resulting TD8n2(16n2, 2) admits G as a
semiregular automorphism group.
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