A construction for modified generalized Hadamard matrices using QGH matrices

Yutaka Hiramine
Department of Mathematics, Faculty of Education, Kumamoto University, Kurokami, Kumamoto, Japan

hiramine@gpo.kumamoto-u.ac.jp

Abstract

Let G be a group of order $m u$ and U a normal subgroup of G of order u. Let $G / U=\left\{U_{1}, U_{2}, \cdots, U_{m}\right\}$ be the set of cosets of U in G. We say a matrix $H=\left[h_{i j}\right]$ order k with entries from G is a quasi-generalized Hadamard matrix with respect to the cosets G / U if $\sum_{1 \leq t \leq k} h_{i t} h_{j t}^{-1}=\lambda_{i j 1} U_{1}+$ $\cdots+\lambda_{i j m} U_{m}\left(\exists \lambda_{i j 1}, \cdots, \exists \lambda_{i j m} \in \mathbb{Z}\right)$ for any $i \neq j$. On the other hand, in our previous article we defined a modified generalized Hadamard matrix GH (s, u, λ) over a group G, from which a $\mathrm{TD}_{\lambda}(u \lambda, u)$ admitting G as a semiregular automorphism group is obtained. In this article, we present a method for combining quasi-generalized Hadamard matrices and semiregular relative difference sets to produce modified generalized Hadamard matrices.

Keywords: transversal design, generalized Hadamard matrix, semiregular relative difference set

1 Introduction

A transversal design $\mathrm{TD}_{\lambda}(k, u)(u>1, k=u \lambda)$ is an incidence structure (\mathbb{P}, \mathbb{B}), where
(i) \mathbb{P} is a set of $u k$ points partitioned into k classes (called point classes), each of size u,
(ii) \mathbb{B} is a collection of k-subsets of \mathbb{P} (called blocks),
(iii) Any two distinct points in the same point class are incident with no block and any two points in distinct point classes are incident with exactly λ blocks.

A transversal design $\mathcal{D}=(\mathbb{P}, \mathbb{B})$ is called symmetric (and often denoted by $\operatorname{STD}_{\lambda}(k, u)$) if the dual structure \mathcal{D}^{*} of \mathcal{D} is also a transversal design with the same parameters as \mathcal{D}. If \mathcal{D} is symmetric, the point classes of \mathcal{D}^{*} are said to be the block classes of \mathcal{D}. A transversal design \mathcal{D} is called class regular with respect to U if U is an automorphism group of \mathcal{D} acting regularly on each point class.

Throughout the article all groups are assumed to be finite. Let G be a group. A subset S of G is identified with a group ring element $\sum_{x \in S} x \in \mathbb{Z}[G]$ and $S^{(-1)}$ denotes the set of inverses of the elements of S. A matrix $M=\left[g_{i j}\right]$ of order $k(=u \lambda)$ with entries from G is called a generalized Hadamard matrix over G if it satisfies $\sum_{1 \leq t \leq k} g_{i t} g_{\ell t}^{-1}=\lambda G$ for any $i \neq \ell$, where $\lambda=k /|G|$. From a generalized Hadamard matrix we obtain a symmetric transversal design admitting G as a class regular automorphism group ([3]). On the other hand a modified generalized Hadamard matrix $\operatorname{GH}(s, u, \lambda)$ over a group is defined in [6] and from this one can construct a transversal design $\mathrm{TD}_{\lambda}(u \lambda, u)$ admitting G as a automorphism group (see Result 2.2).

Let G be a group of order $m u$ and U a normal subgroup of G of order u. Let $\mathcal{S}=\left\{U_{1}, \cdots, U_{m}\right\}$ be the set of cosets of U in G. We say that a matrix $M=\left[d_{i j}\right]$ of order k with entries from G is a quasi-generalized Hadamard matrix with respect to \mathcal{S} if $\sum_{1 \leq t \leq k} d_{i t} d_{\ell t}^{-1}=\sum_{1 \leq s \leq m} \lambda_{i \ell_{s}} U_{s}\left(\lambda_{i \ell s} \in \mathbb{Z}\right)$ for any $i \neq \ell$. In this article, we present a method for combining such matrices and semiregular relative difference sets to produce modified generalized Hadamard matrices (Theorem 4.1, Theorem 4.9).

2 Preliminaries

In [6] we introduced the notion of a modified generalized Hadamard matrix over a group. We first give a summary of the related results, which we will use in the later sections.

Definition 2.1. ([6]) Let G be a group of order $s u$, where s is a divisor of $u \lambda$, and u and λ are positive integers. For subsets $D_{i j}(1 \leq i, j \leq t, t=u \lambda / s)$ of G, we call a matrix

$$
\left[D_{i j}\right]=\left[\begin{array}{cccc}
D_{11} & D_{12} & \cdots & D_{1 t} \\
D_{21} & D_{22} & \cdots & D_{2 t} \\
\vdots & \cdots & \cdots & \vdots \\
D_{t 1} & D_{t 2} & \cdots & D_{t t}
\end{array}\right]
$$

a modified generalized Hadamard matrix with respect to subgroups $U_{i}(1 \leq i \leq t)$ of G of order u if the following conditions are satisfied :
$\left|D_{i j}\right|=s$ for all $i, j, 1 \leq i, j \leq t$, and

$$
\sum_{1 \leq j \leq t} D_{i j} D_{\ell j}^{(-1)}= \begin{cases}u \lambda+\lambda\left(G-U_{i}\right) & \text { if } i=\ell \tag{1}\\ \lambda G & \text { otherwise }\end{cases}
$$

For short, we say $\left[D_{i j}\right]$ is a $G H(s, u, \lambda)$ matrix with respect to $U_{i}, 1 \leq i \leq t$. If $U_{1}=\cdots=U_{t}=U$ for a subgroup U of G, we simply say that $\left[D_{i j}\right]$ is a $\mathrm{GH}(s, u, \lambda)$ matrix with respect to U. In this case, if U is normal in G, then a $\mathrm{GH}(u, \lambda)$ matrix over U is obtained from the $\mathrm{GH}(s, u, \lambda)$ matrix (see Proposition 6.3 of [6]).

We denote by $\mathrm{M}_{t}(\mathbb{Z}[G])$ the set of matrices of order t over the group ring $\mathbb{Z}[G]$. An incidence structure (\mathbb{P}, \mathbb{B}) is obtained from a $\operatorname{GH}(s, u, \lambda)$ matrix $\left[D_{i j}\right] \in$ $\mathrm{M}_{t}(\mathbb{Z}[G])$ in the following way :

$$
\begin{align*}
& \mathbb{P}=\{1,2, \cdots, t\} \times G, \quad \mathbb{B}=\left\{B_{j h}: 1 \leq j \leq t, h \in G\right\} \tag{2}\\
& \quad \text { where } B_{j h}=\bigcup_{1 \leq i \leq t}\left(i, D_{i j} h\right)\left(=\bigcup_{1 \leq i \leq t}\left\{(i, d h): 1 \leq i \leq t, d \in D_{i j}\right\}\right)
\end{align*}
$$

Moreover, the action of G on (\mathbb{P}, \mathbb{B}) is defined by $(i, c)^{x}=(i, c x),\left(B_{j, d}\right)^{x}=B_{j, d x}$. Then, by [6] we have

Result 2.2. ([6]) Let $\left[D_{i j}\right] \in \mathrm{M}_{t}(\mathbb{Z}[G])$ be a $\mathrm{GH}(s, u, \lambda)$ matrix over a group G of order $s u$ with respect to subgroups $U_{i}(1 \leq i \leq t)$, where $t=u \lambda / s$. If we define \mathbb{P} and \mathbb{B} by (2), then the following holds.
(i) (\mathbb{P}, \mathbb{B}) is a transversal design $\mathrm{TD}_{\lambda}(k, u)$, where $k=u \lambda$.
(ii) G is an automorphism group of (\mathbb{P}, \mathbb{B}) acting semiregularly both on \mathbb{P} and on \mathbb{B}.
(iii) For any $i(1 \leq i \leq t)$ and $x \in G, \mathbb{P}_{i, U_{i} x}$ is a point class of (\mathbb{P}, \mathbb{B}), on which $x^{-1} U_{i} x$ acts regularly.

Using Result 2.2 we can obtain transversal designs by constructing modified generalized Hadamard matrices. Transversal designs obtained from $G H(s, u, \lambda)$ matrices are not always symmetric (see Example 5.3 of [6]) and do not always admit class regular automorphism groups even if they are symmetric (see [7]). The following gives a criterion for the resulting transversal design to be symmetric.

Result 2.3. (Theorem 3.10 and Corollary 3.11 of $[6])$ Let $\left[D_{i j}\right]$ be a $\operatorname{GH}(s, u, \lambda)$ matrix over a group G with respect to subgroups U_{i} of $G, 1 \leq i \leq t=u \lambda / s$. Then the transversal design $\mathrm{TD}_{\lambda}(k, u), k=u \lambda$, corresponding to $\left[D_{i j}\right]$ is symmetric if and only if the matrix

$$
\left[D_{i j}{ }^{(-1)}\right]^{T}=\left[\begin{array}{cccc}
D_{11}^{(-1)} & D_{21}(-1) & \ldots & D_{t 1}(-1) \\
D_{12}(-1) & D_{22}(-1) & \cdots & D_{t 2}^{(-1)} \\
\vdots & \ldots & \cdots & \vdots \\
D_{1 t}(-1) & D_{2 t}(-1) & \cdots & D_{t t}(-1)
\end{array}\right]
$$

is a $\mathrm{GH}(s, u, \lambda)$ matrix over G with respect to suitable subgroups V_{i} of $G, 1 \leq$ $i \leq t$, of order u. In particular, if $G \triangleright U_{1}=\cdots=U_{t}$, then $\left[D_{i j}{ }^{(-1)}\right]^{T}$ is also a $\mathrm{GH}(s, u, \lambda)$ matrix over G.

Let G be a group of order $u^{2} \lambda$ and U a subgroup of G of order u. A $u \lambda$-subset D of G is called a ($u \lambda, u, u \lambda, \lambda$)-difference set relative to U if the list of quotients
$d_{1} d_{2}^{-1}$ with distinct elements $d_{1}, d_{2} \in D$ contains each element of $G-U$ exactly λ times and no elements of U :

$$
\begin{equation*}
D D^{(-1)}=u \lambda+\lambda(G-U) \tag{3}
\end{equation*}
$$

We note that if D is a $(u \lambda, u, u \lambda, \lambda)$-difference set relative to U, then $[D]$ is a $\mathrm{GH}(u \lambda, u, \lambda)$ matrix of order 1 and the corresponding transversal design is not always symmetric (see Proposition 4.4 of [5]). A $(u \lambda, u, u \lambda, \lambda)$-difference set is often called a semiregular relative difference set.

For an abelian group G, we denote by G^{*} the set of (linear) characters of G. Let χ_{0} be the principal character of G. The following is a well known result on G^{*}.

Result 2.4. ([12]) Let G be an abelian group and let $z \in \mathbb{Z}[G]$. If $\chi(z)=0$ for any character $\chi \in G^{*}, \chi \neq \chi_{0}$, then $z=c G$ for an integer c.

The following is a slight modification of Result 2.4.
Lemma 2.5. Let U be a subgroup of an abelian group G and let $z \in \mathbb{Z}[G]$. If $\chi(z)=0$ for every character $\chi \in G^{*}$ such that $\chi_{\mid U} \neq \chi_{0}$, then $z=U f$ for some $f \in \mathbb{Z}[G]$.
Proof. It suffices to show that $z g=z$ for every $g \in U$. On the other hand, for any $\chi \in G^{*}$ we have $\chi(g-1)=0$ or $\chi(z)=0$ according as $\chi_{\mid U}=\chi_{0}$ or $\chi_{\mid U} \neq \chi_{0}$. Hence $\chi(z(g-1))=0$. By Result 2.4 the lemma holds.

3 Quasi-Generalized Hadamard Matrices with respect to cosets

In this section we give a modification of generalized Hadamard matrices from a different point of view to construct $\mathrm{GH}(s, u, \lambda)$ matrices that we have given in Definition 2.1.

Definition 3.1. Let N be a group of order $m u$ and U a normal subgroup of N of order u. Let $N / U=\left\{U_{1}(=U), U_{2}, \cdots, U_{m}\right\}$ be the set of cosets of U in N. We say a matrix $H=\left[h_{i j}\right]$ of order $k(=u \lambda)$ with entries from N is a quasi-generalized Hadamard matrix with respect to the cosets $N / U(\operatorname{a} \operatorname{QGH}(u, \lambda)$ matrix with respect to N / U for brevity) if there exist integers $\lambda_{i j t} \geq 0$ such that

$$
\begin{equation*}
\sum_{1 \leq t \leq k} h_{i t} h_{j t}^{-1}=\lambda_{i j 1} U_{1}+\cdots+\lambda_{i j m} U_{m}, \tag{4}
\end{equation*}
$$

for any $i, j(1 \leq i \neq j \leq k)$.
We note that the condition (4) is equivalent to the following :

$$
H\left(H^{(-1)}\right)^{T}=\left[\begin{array}{cccc}
k & U z_{12} & \cdots & U z_{1 k} \\
U z_{21} & k & & U z_{2 k} \\
\vdots & & \ddots & \vdots \\
U z_{k 1} & U z_{k 2} & \cdots & k
\end{array}\right]
$$

where $z_{i j} \in \mathbb{Z}[N](i \neq j)$ and each coefficient of $z_{i j}$ is a non-negative integer and satisfies $\chi_{0}\left(z_{i j}\right)=\lambda$ for the principal character χ_{0} of N.

Remark 3.2. (i) An ordinary $\mathrm{GH}(u, \lambda)$ matrix over U is a $\operatorname{QGH}(u, \lambda)$ matrix with respect to U / U.
(ii) If $H=\left[h_{i j}\right]$ is a generalized Hadamard matrix over a group U, then H is also a quasi-generalized Hadamard matrix with respect to the cosets U / V for any normal subgroup V of U. Hence, there always exists a $\mathrm{QGH}\left(p^{s}, p^{m}\right)$ matrix of order p^{s+m} over $\left(\mathbb{Z}_{p}\right)^{s}$ with respect to the cosets $\left(\mathbb{Z}_{p}\right)^{s} /\left(\mathbb{Z}_{p}\right)^{t}$ for any non-negative integers m, s and $t(\leq s)$ (see Table 5.10 of [2]).
(iii) Let U be a normal subgroup of a group G and N a subgroup of G such that $N \geq U$. If H is a $\operatorname{QGH}(u, \lambda)$ matrix with respect to N / U, then H can be regarded as a $\operatorname{QGH}(u, \lambda)$ matrix with respect to G / U.
(iv) Since $u \lambda=\left(\lambda_{i j 1}+\cdots+\lambda_{i j m}\right)|U|$ by (4), we have

$$
\lambda=\lambda_{i j 1}+\cdots+\lambda_{i j m}
$$

for any $i, j(i \neq j)$.
We give some examples of quasi-generalized Hadamard matrices with respect to cosets.

Let p^{n} be any prime power and r a positive integer. We denote by $\operatorname{GR}\left(p^{n}, r\right)$ the Galois ring over $\mathbb{Z}_{p^{n}}$ (see [10]).

Proposition 3.3. Let $R=G R\left(p^{n}, r\right)$ be the Galois ring over $\mathbb{Z}_{p^{n}}$. We define a matrix $M=\left[m_{i j}\right]$ of degree $p^{n r}$ over the additive group $(R,+)$ by $m_{i j}=i j$ for $i, j \in R$. Then M is a $Q G H\left(p^{r}, p^{(n-1) r}\right)$ matrix with respect to the cosets R / I, where $I=\left(p^{n-1}\right)$ is the smallest non-zero ideal of R.

Proof. As $\bigcup_{j \in R}\left(m_{i j}-m_{\ell j}\right)=(i-\ell) \bigcup_{j \in R} j$. Assume $i \neq \ell$. Then, as a mapping $f(j)=(i-\ell) j$ from R to the ideal $(i-\ell) R$ of R is an epimorphism, $(i-\ell) \bigcup_{j \in R} j=d J$, where d is the order of the kernel of f and $J=(i-\ell) R$. We note that any nonzero ideal of R is of the form $\left(p^{s}\right)\left(\supset\left(p^{n-1}\right)\right)$ for some $s(0 \leq s \leq n-1)$ (see [10] p.308). Set $J=\left(p^{s}\right)$ and $I=\left(p^{n-1}\right)$. Then $\bigcup_{j \in R}\left(m_{i j}-m_{\ell j}\right)=d U_{1} \cup d U_{2} \cup \cdots \cup d U_{t}$, where $J / I=\left\{U_{1}(=I), U_{2}, \cdots, U_{t}\right\}$ and $t=p^{n-s-1}$. Thus the proposition holds.

Example 3.4. (i) In Proposition 3.3, set $n=2$ and $r=1$. Then $R=\mathbb{Z}_{p^{2}}$. Hence there exists a $\operatorname{QGH}(p, p)$ matrix over $\langle a\rangle \simeq \mathbb{Z}_{p^{2}}$ with respect to the cosets $\langle a\rangle /\left\langle a^{p}\right\rangle$ for any prime p.
(ii) Set $N=\langle a, b\rangle \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3}, U=\langle b\rangle \simeq \mathbb{Z}_{3}$. Then $\left[\ell_{i j}\right]$ below is a $\operatorname{QGH}(3,3)$ matrix with respect to N / U.

$$
\left[\ell_{i j}\right]=\left[\begin{array}{ccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & b & b & b & b^{2} & b^{2} & b^{2} \\
1 & 1 & 1 & b^{2} & b^{2} & b^{2} & b & b & b \\
1 & b & b^{2} & 1 & b^{2} & b & a & a b & a b^{2} \\
1 & b & b^{2} & b & 1 & b^{2} & a b^{2} & a & a b \\
1 & b & b^{2} & b^{2} & b & 1 & a b & a b^{2} & a \\
1 & b^{2} & b & 1 & b & b^{2} & a & a b^{2} & a b \\
1 & b^{2} & b & b^{2} & 1 & b & a b & a & a b^{2} \\
1 & b^{2} & b & b & b^{2} & 1 & a b^{2} & a b & a
\end{array}\right]
$$

We can verify that $\sum_{1 \leq t \leq 9} \ell_{i t} \ell_{j t}^{-1} \in\left\{3 U, 2 U+U a, 2 U+U a^{2}\right\}(i \neq j)$.
Example 3.5. Let $N=\langle a\rangle \simeq \mathbb{Z}_{6}$ and $U=\left\langle a^{2}\right\rangle \simeq \mathbb{Z}_{3}$. Then the following matrix $\left[h_{i j}\right]$ of degree 12 is a $\operatorname{QGH}(3,4)$ matrix with respect to N / U. We note that $\sum_{1 \leq t \leq 12} h_{i t} h_{j t}^{-1} \in\{4 U, 3 U+U a, 2 U+2 U a\}(i \neq j)$.

$$
\left[h_{i j}\right]=\left[\begin{array}{cccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & a & a^{2} & a^{4} & a^{4} & a^{5} & 1 & a^{2} & a^{2} & a^{3} & a^{4} \\
1 & 1 & a^{4} & a^{2} & 1 & a^{2} & a^{4} & a^{2} & 1 & a^{4} & a^{4} & a^{2} \\
1 & 1 & a^{2} & a^{4} & 1 & a^{2} & a^{2} & a^{4} & a^{4} & 1 & a^{2} & a^{4} \\
1 & a^{4} & a & 1 & a^{2} & a^{3} & a & a^{2} & a^{5} & a^{3} & a^{5} & a^{4} \\
1 & a^{4} & a^{3} & a^{4} & a^{2} & a^{5} & a & 1 & a & a^{5} & a^{3} & a^{2} \\
1 & a^{4} & a^{3} & a^{2} & a^{2} & a & a^{5} & a^{4} & a^{3} & a & a^{5} & 1 \\
1 & a^{4} & a^{5} & a^{4} & 1 & a^{4} & a^{3} & a^{2} & a^{2} & a^{2} & a & 1 \\
1 & a^{2} & a^{5} & a^{2} & a^{2} & 1 & a^{3} & 1 & a^{4} & a^{4} & a & a^{4} \\
1 & a^{2} & a^{3} & 1 & a^{4} & a^{4} & a^{5} & a^{2} & a^{4} & 1 & a & a^{2} \\
1 & a^{2} & a & a^{4} & a^{4} & 1 & a^{3} & a^{4} & 1 & a^{2} & a^{5} & a^{2} \\
1 & a^{2} & a^{5} & 1 & a^{4} & a^{2} & a & a^{4} & a^{2} & a^{4} & a^{3} & 1
\end{array}\right]
$$

By the definition of the Kronecker product the following holds.
Proposition 3.6. Let N be a group and U a normal subgroup of N. If $H_{i}(i=$ $1,2)$ is a $Q G H\left(u, \lambda_{i}\right)$ matrix with respect to N / U for $i \in\{1,2\}$, then $H_{1} \otimes H_{2}$ is a $\operatorname{QGH}\left(u, \lambda_{1} \lambda_{2} u\right)$ matrix with respect to N / U.

We note that when $N=U$ the assertion of the proposition coincides with that of Theorem 5.11 in [2].

4 Semiregular relative difference sets and QGH (u, λ) matrices with respect to cosets

In this section we present a construction method for transversal designs by combining quasi-generalized Hadamard matrices with respect to cosets and semiregular relative difference sets.

Theorem 4.1. Let G be a group of order $u^{2} \mu$ and let U and N be subgroups of G such that $N_{G}(U) \geq N \geq U$ and $|U|=u$. Let $H=\left[h_{i j}\right]$ be a $\operatorname{QGH}(u, \lambda)$ matrix with respect to N / U and let $\mathcal{D}=\left(D_{1}, D_{2}, \cdots, D_{k}\right)(k=u \lambda)$ be a k-tuple of $(u \mu, u, u \mu, \mu)$-difference sets in G relative to U. Then the following is a $G H(u \mu, u, u \lambda \mu)$ matrix of order k with respect to U and the resulting $T D_{u \mu \lambda}\left(u^{2} \mu \lambda, u\right)$ admits G as a semiregular automorphism group.

$$
M_{H, \mathcal{D}}=\left[\begin{array}{cccc}
h_{11} D_{1} & h_{12} D_{2} & \cdots & h_{1 k} D_{k} \tag{5}\\
h_{21} D_{1} & h_{22} D_{2} & \cdots & h_{2 k} D_{k} \\
\vdots & \vdots & & \vdots \\
h_{k 1} D_{1} & h_{k 2} D_{2} & \cdots & h_{k k} D_{k}
\end{array}\right]
$$

Proof. Set $N / U=\left\{U_{1}(=U), U_{2}, \cdots, U_{m}\right\}$, where $m=[N: U]$. By assumption, for any $i, j(1 \leq i \neq j \leq k)$ there exist $\lambda_{i j s} \geq 0(1 \leq s \leq m)$ satisfying

$$
\begin{align*}
\sum_{1 \leq t \leq k} h_{i t} h_{j t}^{-1} & =\lambda_{i j 1} U_{1}+\lambda_{i j 2} U_{2}+\cdots+\lambda_{i j m} U_{m} \tag{6}\\
\quad \text { and } \quad \lambda & =\lambda_{i j 1}+\cdots+\lambda_{i j m} \tag{7}
\end{align*}
$$

by Remark 3.2(iv). Moreover, by assumption,

$$
\begin{equation*}
D_{t} D_{t}^{(-1)}=u \mu+\mu(G-U) \quad(1 \leq t \leq k) \tag{8}
\end{equation*}
$$

Set $M_{H, \mathcal{D}}=\left[D_{i j}\right]$, where $D_{i j}=h_{i j} D_{j}$.
Assume $i \neq j$. Then we have

$$
\left.\left.\begin{array}{rl}
& \sum_{1 \leq t \leq k} D_{i t} D_{j t}^{(-1)} \\
= & \sum_{1 \leq t \leq k} h_{i t}(u \mu+\mu(G-U)) h_{j t}{ }^{-1} \\
= & \sum_{1 \leq t \leq k} h_{i t} h_{j t}{ }^{-1}(u \mu+\mu(G-U)) \\
=\sum_{1 \leq s \leq m} \lambda_{i j s} U_{s}(u \mu+\mu(G-U)) \\
= & u \mu \sum_{1 \leq s \leq m} \lambda_{i j s} U_{s}+\mu\left(\sum_{1 \leq s \leq m} \lambda_{i j s}\left|U_{s}\right|\right) G \\
& -\mu \sum_{1 \leq s \leq m} \lambda_{i j s}|U| U_{s} \\
= & \mu\left(\sum_{1 \leq s \leq m} \lambda_{i j s} u\right) G=\mu \lambda u G \tag{7}
\end{array} \quad \text { (bs } N \triangleright U\right) \text { (b) }\right)
$$

Assume $i=j$. Then, similarly we have

$$
\begin{aligned}
\sum_{1 \leq t \leq k} D_{i t} D_{i t}^{(-1)} & =\sum_{1 \leq t \leq k} h_{i t}(u \mu+\mu(G-U)) h_{i t}^{-1} \\
& =k u \mu+k \mu(G-U)
\end{aligned}
$$

It follows that

$$
\sum_{1 \leq t \leq k} D_{i t} D_{j t}^{(-1)}= \begin{cases}k u \mu+k \mu(G-U) & \text { if } i=j \\ k \mu G & \text { otherwise }\end{cases}
$$

Therefore the theorem holds.
Remark 4.2. (i) In Theorem 4.1, if there exists a ($u \mu, u, u \mu, \mu$)-difference set D in G relative to U, then we may choose a k-tuple $\mathcal{D}=\left(D g_{1}, D g_{2}, \cdots, D g_{k}\right)$, where $g_{1}, \cdots, g_{k} \in G$.
(ii) We note that U is not always a normal subgroup of G in Theorem 4.1 and so the transversal design corresponding to D_{i} might not admit a class regular automorphism group.

Corollary 4.3. Let G be a group of order $u^{2} \mu$ and U a normal subgroup of G of order u. Let $H=\left[h_{i j}\right]$ be a $Q G H(u, \lambda)$ matrix with respect to G / U and $\mathcal{D}=\left(D_{1}, D_{2}, \cdots, D_{k}\right)(k=u \lambda)$ an n-tuple of $(u \mu, u, u \mu, \mu)$-difference sets in G relative to U. Then the matrix of order k defined by (5) is a $G H(u \mu, u, u \lambda \mu)$ matrix with respect to U and gives an $S T D_{u \mu \lambda}\left(u^{2} \mu \lambda, u\right)$.

Proof. The corollary immediately follows from Result 2.3 and Theorem 4.1.
Lemma 4.4. Assume the existence of a $(p \mu, p, p \mu, \mu)$-difference set in a group G relative to a subgroup $U \simeq \mathbb{Z}_{p}$ of G for a prime p. If $p^{2}| | C_{G}(U) \mid$, then there exists a $T D_{p^{2} \mu}\left(p^{3} \mu, p\right)$ admitting G as a semiregular automorphism group.

Proof. By assumption, there exists a subgroup N of G such that $U \leq N \simeq \mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Let $\mathcal{D}=\left(D_{1}, \cdots, D_{p^{2}}\right)$ be a p^{2}-tuple of $(p \mu, p, p \mu, \mu)$-difference sets in G relative to U. It follows from Example 3.4(i) or Remark 3.2(ii) that there is a $\operatorname{QGH}(p, p)$ matrix with respect to N / U, say H. Applying Theorem 4.1, $M_{H, \mathcal{D}}$ is a $\mathrm{GH}\left(p \mu, p, p^{2} \mu\right)$ matrix with respect to U and we obtain a $\mathrm{TD}_{p^{2} \mu}\left(p^{3} \mu, p\right)$ from $M_{H, \mathcal{D}}$, which admits G as a semiregular automorphism group. Thus the lemma holds.

Example 4.5. (i) Set $G=\langle a, b, c| a^{7}=b^{3}=c^{3}=1, a c=c a, b c=c b, b^{-1} a b=$ $\left.a^{2}\right\rangle$ and let D be a (21,3,21, $)$-difference set relative to $U=\langle c\rangle \simeq \mathbb{Z}_{3}$ ([1]). By Lemma 4.4, there exists a $\mathrm{TD}_{3^{2} 7}\left(3^{3} 7,3\right)$ admitting $G \simeq\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right) \times \mathbb{Z}_{3}$ as a semiregular automorphism group.
(ii) Set $G=\langle r, s\rangle \times\langle t\rangle \simeq \operatorname{Sym}(3) \times \mathbb{Z}_{6}$, where $r^{2}=s^{3}=t^{6}=1,[r, t]=[s, t]=1$ and $r s r=s^{-1}$ and let D be a $(12,3,12,4)$-difference set in G relative to a nonnormal subgroup $U=\left\langle s t^{2}\right\rangle([5])$. By Lemma 4.4, there exists a $\operatorname{TD}_{36}(108,3)$ admitting $G \simeq \operatorname{Sym}(3) \times \mathbb{Z}_{6}$ as a semiregular automorphism group.

Example 4.6. Assume that there exists a $(3 \mu, 3,3 \mu, \mu)$-difference set in a group G relative to a subgroup $U \simeq \mathbb{Z}_{3}$ of G and that $2\left|\left|C_{G}(U)\right|\right.$. Let $\mathcal{D}=\left(D_{1}, \cdots, D_{12}\right)$ be a 12-tuple of $(3 \mu, 3,3 \mu, \mu)$-difference sets in G relative to U. By assumption, there exists a subgroup N of G such that $U \leq N \simeq \mathbb{Z}_{6}$. It follows from Example 3.5 that there is a $\operatorname{QGH}(3,4)$ matrix with respect to N / U,
say H. Applying Theorem 4.1, $M_{H, \mathcal{D}}$ is a $\mathrm{GH}(3 \mu, 3,12 \mu)$ matrix with respect to U and we obtain a $\mathrm{TD}_{12 \mu}(36 \mu, 3)$ from $M_{H, \mathcal{D}}$, which admits G as a semiregular automorphism group. For example, let G be the group of Example 4.5(ii). Then we obtain a $\mathrm{TD}_{48}(144,3)$ admitting $G \simeq \operatorname{Sym}(3) \times \mathbb{Z}_{6}$ as a semiregular automorphism group.

Lemma 4.7. Let G be an abelian group of order $u^{2} \mu$ and let $\mathcal{D}=\left(D_{1}, \cdots, D_{k}\right)$ be a k-tuple of $(u \mu, u, u \mu, \mu)$-difference sets in G relative to a subgroup U of G of order u, where $k=u \lambda$ for some $\lambda \in \mathbb{Z}$. Let $h_{i j}(1 \leq i, j \leq k)$ be elements of G. Then a matrix $M=\left[h_{i j} D_{j}\right]$ of order k is a $G H(u \mu, u, u \lambda \mu)$ matrix with respect to U if and only if $H=\left[h_{i j}\right]$ is a $Q G H(u, \lambda)$ matrix with respect to G / U. If this is the case, the resulting $T D_{u \mu \lambda}\left(u^{2} \mu \lambda, u\right)$ is symmetric.

Proof. By definition, M is a $\mathrm{GH}(u \mu, u, u \lambda \mu)$ matrix if and only if

$$
\sum_{1 \leq j \leq k} h_{i j} D_{j}\left(h_{\ell j} D_{j}\right)^{(-1)}= \begin{cases}k u \mu+k \mu(G-U) & \text { if } j=\ell \tag{9}\\ \mu k G & \text { otherwise }\end{cases}
$$

Since G is abelian, $\sum_{1 \leq j \leq k} h_{i j} D_{j}\left(h_{\ell j} D_{j}\right)^{(-1)}=\sum_{1 \leq j \leq k} h_{i j} h_{\ell j}^{-1} D_{j} D_{j}^{(-1)}=$ $(u \mu+\mu(G-U)) \sum_{1 \leq j \leq k} h_{i j} h_{\ell j}^{-1}$. Hence, by Result 2.4, (9) is equivalent to

$$
\begin{equation*}
\chi(u \mu-\mu \chi(U)) \chi\left(\sum_{1 \leq j \leq k} h_{i j} h_{\ell j}^{-1}\right)=0 \quad(i \neq \ell) \tag{10}
\end{equation*}
$$

for any character $\chi\left(\neq \chi_{0}\right)$ of G. Clearly (10) is equivalent to $\chi\left(\sum_{1 \leq j \leq k} h_{i j} h_{\ell j}^{-1}\right)=$ 0 for any character χ of G such that $\chi_{\mid U} \neq \chi_{0}$. Applying Lemma 2.5, this is equivalent to the condition that H is a $\operatorname{QGH}(u, \lambda)$ matrix with respect to the cosets G / U. If this is the case, the resulting $\mathrm{TD}_{u \lambda \mu}\left(u^{2} \lambda \mu, u\right)$ is symmetric by Result 2.3. Therefore the proposition holds.

Example 4.8. Set $G=\langle a\rangle \times\langle b\rangle \simeq \mathbb{Z}_{9} \times \mathbb{Z}_{3}, N=\langle a\rangle \simeq \mathbb{Z}_{9}$ and $U=\left\langle a^{3}\right\rangle \simeq \mathbb{Z}_{3}$. Let $H=\left[h_{i j}\right]$ be a $\operatorname{QGH}(3,3)$ matrix with respect to N / U in Example 3.4(i). As G contains ($9,3,9,3$)-difference sets relative to U (see [9]), we can choose a 9 -tuple $\mathcal{D}=\left(D_{1}, \cdots, D_{9}\right)$ of $(9,3,9,3)$-difference sets in G relative to U. Then, by Theorem 4.1, $M_{H, \mathcal{D}}$ is a $\mathrm{GH}(9,3,27)$ matrix with respect to U. Moreover, by Lemma 4.7 , the $\operatorname{TD}_{27}(81,3)$ obtained from $M_{H, \mathcal{D}}$ is symmetric.

When D is a $(u \mu, u, u \mu, \mu)$-difference set in G relative to U, D is a complete set of right coset representatives of U in G by (3), but $D^{(-1)}$ is not so in general. If some ($u \mu, u, u \mu, \mu$)-difference set in G satisfies this condition, then we have the following.

Theorem 4.9. Let G be a group of order $u^{2} \mu$ and let U and N be subgroups of G such that $|N|=m u,|U|=u$ and $N_{G}(U) \geq N \geq U$ and $|U|=u$. Let $H=\left[h_{i j}\right] \quad\left(h_{i j} \in N\right)$ be a $Q G H(u, \lambda)$ matrix with respect to N / U and let $\mathcal{D}=\left(D_{1}, D_{2}, \cdots, D_{k}\right)(k=u \lambda)$ be a k-tuple of $(u \mu, u, u \mu, \mu)$-difference sets in G. Assume at least $k-1$ of D_{i} 's are complete sets of right and left coset
representatives of U in G. Then the following matrix $M_{H, \mathcal{D}}^{\prime}$ of order k is a $G H(u \mu, u, u \lambda \mu)$ matrix with respect to U and the resulting $T D_{u \mu \lambda}\left(u^{2} \mu \lambda, u\right)$ admits G as a semiregular automorphism group.

$$
M_{H, \mathcal{D}}^{\prime}=\left[\begin{array}{cccc}
D_{1} h_{11} & D_{1} h_{12} & \cdots & D_{1} h_{1 k} \tag{11}\\
D_{2} h_{21} & D_{2} h_{22} & \cdots & D_{2} h_{2 k} \\
\vdots & \vdots & & \vdots \\
D_{k} h_{k 1} & D_{n} h_{k 2} & \cdots & D_{k} h_{k k}
\end{array}\right]
$$

Proof. Set $N / U=U g_{1} \cup \cdots \cup U g_{m}\left(g_{1}, \cdots, g_{m} \in N\right)$, where $m=[N: U]$. By assumption,

$$
\begin{equation*}
\sum_{1 \leq t \leq k} h_{i t} h_{j t}^{-1}=\lambda_{i j 1} U g_{1}+\cdots+\lambda_{i j m} U g_{m} \tag{12}
\end{equation*}
$$

for some non-negative integers $\lambda_{i j s}(1 \leq i \neq j, 1 \leq s \leq m)$.
Set $M_{H, \mathcal{D}}^{\prime}=\left[D_{i j}\right]$, where $D_{i j}=D_{i} h_{i j}$. Then Then

$$
\begin{aligned}
\sum_{1 \leq t \leq k} D_{i t} D_{j t}^{(-1)} & =\sum_{1 \leq t \leq k} D_{i} h_{i t} h_{j t}^{-1} D_{j}^{(-1)} \\
& =D_{i}\left(\sum_{1 \leq t \leq k} h_{i t} h_{j t}^{-1}\right) D_{j}^{(-1)}
\end{aligned}
$$

Hence, by (12)

$$
\sum_{1 \leq t \leq k} D_{i t} D_{j t}^{(-1)}= \begin{cases}k(u \mu+\mu(G-U)) & \text { if } i=j \\ D_{i}\left(\lambda_{i j 1} U g_{1}+\cdots+\lambda_{i j m} U g_{m}\right) D_{j}^{(-1)} & \text { otherwise }\end{cases}
$$

Assume $i \neq j$. By assumption, either D_{i} or D_{j} is a complete set of right and left coset representatives of U in G as $i \neq j$. Hence we have either $D_{i} U=G$ or $U D_{j}^{(-1)}=G$. In either case, $\sum_{1 \leq t \leq k} D_{i t} D_{j t}^{(-1)}=\lambda u \mu G$ as $N \triangleright U$. Thus

$$
\sum_{1 \leq t \leq k} D_{i t} D_{j t}^{(-1)}= \begin{cases}k u \mu+k \mu(G-U) & \text { if } i=j \\ k \mu G & \text { otherwise }\end{cases}
$$

Therefore the theorem holds.
Corollary 4.10. Let G be a group of order $u^{2} \mu$ and U a normal subgroup of G of order u. Let $H=\left[h_{i j}\right]$ be a $\operatorname{QGH}(u, \lambda)$ matrix with respect to G / U and $\mathcal{D}=$ $\left(D_{1}, D_{2}, \cdots, D_{k}\right)(k=u \lambda)$ a k-tuple of $(u \mu, u, u \mu, \mu)$-difference sets in G relative to U. Then the matrix of order k defined by (11) is a $G H(u \mu, u, u \lambda \mu)$ matrix with respect to U and the resulting $T D_{u \mu \lambda}\left(u^{2} \mu \lambda, u\right)$ admits G as a semiregular automorphism group.

Example 4.11. Many $\left(4 n^{2}, 2 n^{2}-n, n^{2}-n\right)$-difference sets have been constructed in abelian groups of order $4 n^{2}$ and they are called Menon Hadamard difference sets ([8]). Let L be an abelian group of order $4 n^{2}$ containing a Menon Hadamard difference set A. Assume that L is not an elementary abelian 2group. We define a group $G=L\langle t\rangle$ of order $8 n^{2}$, where an element t of G inverts L. By a similar way as in Proposition 4.14 of [4], we can verify that $D=A+\left(L-A^{(-1)}\right) t$ is a $\left(4 n^{2}, 2,4 n^{2}, 2 n^{2}\right)$-difference set in G relative to $U=\langle t\rangle$. We choose A so that it satisfies $A=A^{(-1)}$ (see Problem 2 in Chapter 4 of [8]). For $g \in L, D g$ is a $\left(4 n^{2}, 2,4 n^{2}, 2 n^{2}\right)$-difference set in G relative to U. However, as $(D g)^{(-1)}(D g)=4 n^{2}+2 n^{2}(G-\langle g t\rangle), D g$ is not a complete set of left coset representatives of U in G. Clearly $C_{G}(t)$ contains a subgroup N of the form $N=\langle t\rangle \times\langle s\rangle$ isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Let $H=\left[h_{i j}\right]$ be the following $\mathrm{QGH}(2,2)$ matrix with respect to N / U :

$$
H=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & t & s & s t \\
1 & 1 & t & t \\
1 & t & s t & s
\end{array}\right]
$$

Set $\mathcal{D}=(D, D, D, D g)$. Then, applying Theorem $4.9, M_{H, \mathcal{D}}^{\prime}$ is a $G H\left(4 n^{2}, 2,8 n^{2}\right)$ matrix with respect to U and the resulting $\operatorname{TD}_{8 n^{2}}\left(16 n^{2}, 2\right)$ admits G as a semiregular automorphism group.

Acknowledgment

The author would like to thank the referees for valuable suggestions and comments. The author also thanks one of the referees who showed him a shorter proof of Lemma 2.5.

References

[1] K. Akiyama, M. Ogawa and C. Suetake, On STD ${ }_{6}[18 ; 3]$'s and STD $_{7}[21 ; 3]$'s admitting a semiregular automorphism group of order 9 , preprint.
[2] C. J. Colbourn and J. H. Dinitz (eds), The CRC Handbook of Combinatorial Designs, Second Edition, Chapman \& Hall/CRC Press, Boca Raton, 2007
[3] T. Beth, D. Jungnickel and H. Lenz, "Design Theory" Volume I, Second Edition, Cambridge University Press, 1999.
[4] A.D. Garciano, Y. Hiramine and T. Yokonuma, On Relative Difference Sets in Dihedral Groups, Des. Codes Cryptogr. 39, (2006) 51-63.
[5] Y. Hiramine, On non-symmetric relative difference sets, Hokkaido Mathematical Journal, Vol. 37 (2008) 427-435.
[6] Y. Hiramine, Modified generalized Hadamard matrices and constructions for transversal designs, Des. Codes Cryptogr. 56, 21-33 (2010).
[7] Y. Hiramine, A family of non class-regular symmetric transversal designs of spread type, to appear in Des. Codes Cryptogr.
[8] E. S. Lander, Symmetric Designs : An Algebraic Approach, Lecture Note Series 74, Cambridge University Press, Cambridge.
[9] S. L. Ma and A. Pott, Relative Difference Sets, Planar Functions, and Generalized Hadamard matrices, J. Algebra Vol. 175 (1995) 505-525.
[10] B. R. McDonald, "Finite Rings with Identity", Pure and Applied Mathematics, A Series of Monographs and Textbooks, New York, Dekker, 1974.
[11] A. Pott, A survey on relative difference sets, in "Groups, Difference sets and the Monster" (K.T.Arasu et al, eds.) deGruyter Verlag, Berlin-New York.
[12] B. Schmidt, Characters and Cyclotomic Fields in Finite Geometry, Lecture Notes in Mathematics 1797, Springer-Verlag, Berlin Heidelberg, 2002.

