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abstract 

The properties of refraction of extraordinary rays at principal surfaces of a uniaxial 

crystal having a strongly anisotropic dielectric dispersion are studied. Subject to optical 

nonabsorptivity of the crystal, the criteria for characterizing the refraction behavior are 

derived from Maxwell’s equations. The criteria reveal that in sapphire a variety of 

specific oblique-incidence reflection spectra arise from negative refraction and 

counterposition in the infrared region of multimode polar optical phonons. The effects of 

light dissipation due to damping of the phonons are explored further to interpret the 

oblique-incidence reflection spectrum measured for the c-surface of a synthetic crystal of 

sapphire. We pay attention to the directions of wave-normal and Poynting vectors of the 

infrared light transmitted into the crystal. It turns out that the damping of phonons gives 

rise to a true negative refraction that the two vectors are simultaneously refracted or 

deflected negatively in a certain frequency range. 

KEYWORDS: negative refraction, counterposition, evanescence, Poynting vector, 

Brewster’s null reflection, Snell’s total reflection, LO phonon, sapphire  

 

1. Introduction 

Electric field E, magnetic field H, and wave 

vector k of an electromagnetic plane wave propagating 

in an isotropic nonabsorbing medium are orthogonal to 

each other at any instances, since Maxwell’s equations 

for E, H  exp[i(krt)] give the relationships 

k  E = 
0
H,               (1) 

and 

H  k = 

E,               (2) 

where r,  and t are the spatial position, angular 

frequency, and time, respectively;  and  are the 

relative permeability and the dielectric constant of the 

medium, respectively, and 
0
 and 

0
 are the magnetic 

permeability and electric permittivity of free space, 

respectively. In most substances, both  and  are 

positive quantities, and thus E, H, and k form a 

right-handed triad. Suppose exceptionally that  > 0 

but  < 0 in a substance, or  < 0 but  > 0 in another 

substance. In the former, if k  E and H are kept 

parallel to each other in accord with eq. (1), H  k 

becomes antiparallel to E in contradiction to eq. (2), 

while in the latter, k  E becomes antiparallel to H in 

contradiction to eq. (1) if H  k and E are kept parallel 

to each other in accord with eq. (2). Consequently, if 

either one of  and  is negative, no electromagnetic 

wave can propagate over an arbitrary distance. 

However, if both of and  are negative, the 

contradictions between eqs. (1) and (2) are eliminated 

in turn, and the nonvanishing E and H that form a 

left-handed orthogonal triad with k are permitted to 

propagate as the electromagnetic wave.
1,2,3)

 The 

left-handed triad is obtained by reversing the direction 

of k of the right-handed triad. In the left-handed 

system, therefore, the refractive index of light, which 

is defined by Snell’s law for refraction of k, is negative 

to cause negative phase velocity to plane waves.
4)

 In 

this sense, the left-handed system is called 

negative-refractive-index medium
 2,5)

, or the backward 

wave medium
 6,7) 

.   

When a light is obliquely incident into a substance 

with negative refractive-index, the refraction angle 

would also be negative. Then k of the transmitted light 

would be inclined backward against the interface 

normal, while pointing in the backward direction as if 

the light goes out of interior of the substance. 

Nevertheless, since the energy flow, being given by 

the Poynting vector S = EH, is directed antiparallel 

to k, the rays of light transmitted into the substance 

would be deflected backward from the incident 
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position. To obtain such a negative-refractive-index 

medium, artificial structures called metamaterials have 

been fabricated by alternately stacking arrays of short 

conducting wires and small split-ring metallic 

resonators.
8)

 After the proposal of the perfect lens by 

Pendry
9)

 and the experimental verification of the 

negative refractive index at microwave frequencies by 

Shelby et al.,
10)

 an enormous amount of studies have 

been carried out on the optical properties of 

metamaterials.
11)

 

Similar unusual refractions occur in natural 

crystals with anisotropic structures. In uniaxial crystals 

 and  are tensors of 2nd rank, which have each two 

principal elements, that is, the elements parallel and 

normal to the symmetry axes. (Hereafter, these tensors 

are written as ̂ and ̂ .) This situation forces S to be 

noncollinear with k. Lindell et al. have examined the 

refraction of s-polarized (i.e., transverse electric) and 

p-polarized (i.e., transverse magnetic) light in uniaxial 

crystals.
6)

 Their concern is to see if such a lateral 

backward deflection of S as that in metamaterials may 

take place. They have found that at the c-surface at 

least the c-component of either ̂  or ̂  should be 

negative to cause a lateral backward deflection of S. 

Subsequently, Belov has examined the refraction of 

the p-polarized light at a- and c-surfaces of uniaxial 

dielectric crystals with the c-element of ̂  being 

negative.
7)

 The result demonstrates that at the 

a-surface k undergoes negative refraction although S 

deflects to a forward direction, whereas at the 

c-surface k undergoes usual positive refraction and S 

deflects backward as noticed by Lindell et al. To 

distinguish it from the negative refraction of k, 

Lakhtakia and McCall have referred to the latter type 

of refraction as counterposition in view that the 

vectors k and S lie on opposite sides of the surface 

normal.
12)

 Regarding substances exhibiting 

counterposition as analogues of metamaterials, 

Narimanov and his coworkers
13,14)

 have proposed 

exploitation of those substances for the core of a 

planar wave guide for visible and infrared light. 

Eritsyan has argued that the counterposition at a plane 

surface of a crystal functions to focus a diverging light 

beam.
15)

 As for the negative refraction in nonmagnetic, 

anisotropic substances, however, most of the previous 

studies are in the abstract or of numerical simulation. 

Furthermore, only a very little efforts have been made 

so far for spectroscopic studies on unusual refraction 

phenomena in natural crystals.   

Spectroscopically, if  and  vary with , it 

should be in a portion of an originally evanescent 

frequency region that  and  become simultaneously 

negative to open a spectral transmission window for 

left-handed waves.
3)

 In the present paper we are 

concerned with natural compound crystals with 

uniaxial structures, focusing attention on the refraction 

of infrared light in the spectral region which is 

dominated by polar optical phonons. In a uniaxial 

polar substance the a- or c-element of ̂  becomes 

negative at frequencies in every TO-LO gap, where 

TO and LO signify the transverse optical and 

longitudinal optical mode of phonons, respectively. It 

has been recently found that, if the p-polarized light is 

obliquely incident to the a and c surfaces of uniaxial 

binary compounds, a transmission window opens in a 

certain frequency region in the TO-LO gaps, 

depending on the angle of incidence.
16,17)

 In the case of 

sapphire, -corundum Al
2
O

3, a variety of anomalies 

appear in the spectrum of oblique-incidence reflection 

due to multimode optical phonons.
18)

 These 

observations strongly suggest that some unusual 

refractions occur in uniaxial polar substances.  

In §2 the propagation of extraordinary rays in the 

principal configurations of a nonabsorbing uniaxial 

dielectric crystal are described, where the term 

nonabsorbing means that ̂  is a purely real tensor 

and thus the crystal causes no dissipation of light. On 

the basis of the result criteria for classifying the 

refraction properties are derived. It is shown that the 

angle of incidence, as well as the relative magnitudes 

and signs of the principal elements of ̂ , is an 

important ingredient for the refraction behavior of 

extraordinary rays. In §3 the results of §2 are applied 

to sapphire. The frequency vs angle-of-incidence 

diagrams, which show how the counterposition and 

negative refraction arise as a function of the angle of 

incidence, are derived in the appropriate frequency 

regions. To see how the spectral transmission window 

develops, the spectra of the refractive index, extinction 

coefficient, and reflectivity are calculated with the 

angle of incidence taken as the parameter. In §4 the 

effect of damping of relevant optical phonons are 

discussed in terms of the properties of the 

electromagnetic plane wave and the Pointing vector to 

interpret the practical infrared reflection spectra of 

sapphire. In §5 an example of the oblique-incidence 

infrared reflection spectrum newly measured for a 

synthetic crystal of sapphire at a moderately large 

angle of incidence is presented. It is shown that the 

transmission windows are produced by counter- 



 3 

position and negative refraction in the relevant spectral 

regions of anisotropic multimode polar optical 

phonons. On the basis of the present experimental data 

we evaluate the wave vector and the Poynting vector 

of the light refracted at the crystal surface to clarify 

how and in which directions the transmitted waves and 

rays propagate in the crystal.  

2. Electromagnetic Plane Waves in Uniaxial 

Materials 

We are concerned with nonmagnetic, nonabsorbing 

materials having uniaxial crystal structures. Let the 

linearly polarized infrared light be incident obliquely 

from free space to the flat surface of a crystal in 

principal configurations, as shown in Fig. 1. For a 

uniaxial crystal, principal configurations may be 

expressed as sxz or pxz, where s and p signify the s- 

and p-polarization of light, respectively, whereas x and 

z are the crystal axes along which the plane of 

incidence and the surface normal stand, respectively. 

Since the crystal is optically symmetric under rotation 

around the c-axis, we may regard any direction within 

the c-plane as a. Consequently, the principal 

configurations are represented as sac, pac, saa, paa, 

sca, and pca.  

In general, the linearly polarized plane waves 

in uniaxial substances are classified into magnetic and 

electric modes.
19)

 The light waves in configurations 

pac, saa, and pca belong to the electric modes. In 

dielectric, nonmagnetic substances such as sapphire 

they are extraordinary rays. The isofrequency 

wave-vector curve of a plane wave propagating in a 

uniaxial crystal is an ellipse or a hyperbola in 

configurations pac and pca, depending on the sign 

combination of the elements of the ̂  tensor, whereas 

the isofrequency wave-vector curve is a circle in the 

configuration saa. It is in the configurations pac and 

pca that the spectral transmission window opens in 

between the spectral regions of total reflection.
16-18)

 In 

the present study, therefore, we are concerned with the 

refraction of light in the two configurations pac and 

pca. 

The vector n drawn in Fig. 1 as )i(n , )r(n , and 
)t(n  represents the wave-normal vector  

              

0k

k
n   ,  

0

0
c

k


                 (3)  

of incident, reflected, and transmitted waves, 

respectively, and k
0
 and c

0
 are the wavenumber and 

velocity of light in free space, respectively. Here we 

represent the energy flow density in terms of the 

ray-index vector s, which is defined as
20) 

 

Sc

c

r

S
s 0 ,               (4)  

where S is the Poynting vector, and c
r
 is the ray 

velocity, that is, the velocity of energy flow of a 

monochromatic light beam. With respect to the fields 
)t(E  and )t(H  of the transmitted waves, substitution 

of )t(k for k into eqs. (1) and (2) yields   

)t(
00

)t()t( HEn c  ,             (5) 

and 

)t(
00

)t()t( ˆ EnH c ,              (6) 

where  in eq. (1) is taken to be unity since we deal 

with nonmagnetic crystals, whereas  in eq. (2) is 

replaced by the tensor ̂ .  

In pac and pca configurations, by virtue of the 

continuity of the tangential components of E and H at 

the the crystal surface, E is polarized linearly within 

the plane of light propagation also in the crystal, 

whereas H is directed normal to the plane of light 

propagation. The light beam is incident at an angle i  

from free space to the crystal surface; the wave-normal 

and ray-index vectors, )i(n  and )i(s , are refracted at 

angles t  and 't as drawn in Fig. 1 by )t(n  and 
)t(s , respectively. Vectors )t(n  and )t(s  are not 

collinear, and )t(s  is related to )t(n  as
20)

  

)cos( tt
)t()t(   'ns  .            (7) 

Since the displacement )t(D  is given by )t(
0

)t( ˆ ED  , 

't  is related to t  as 

, tantan tt 





z

x'                 (8) 

Fig. 1.   (Color online) Schematic representation of 

reflection and refraction of light at a plane surface of a 

uniaxial crystal. 
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with 
x
 and 

z being xx and zz elements of ̂ , 

respectively. We find from eq. (8) that the unusual 

refraction phenomena mentioned in §1 arise generally 

when 
x
 and 

z
 have opposite signs. From the law of 

conservation of momentum, the transverse component 

of k, that is, k
x
, is conserved upon refraction. The same 

is true of n, yielding Snell’s law  

t
)t()t(

i sinsin  nnx 
 
.              (9) 

The dispersion equation for electric modes in pac and 

pca configurations
19)

 leads to Fresnel’s equation, 

which relates )t(n  with t  as  

2)t(

t
2

t
2 1cossin

nxz









 .            (10) 

In the present study, in order to permit )t(n  to 

explicitly bear the sign, we restrict the variation of 
t
 

to the range  9090 t . As regards the ray 

refractive angle 't  it is postulated that 

 9090 t'  since the refracted ray carries energy 

into the crystal. In the case of  90tt '  the 

refracted light wave is purely evanescent.  

With the aid of eqs. (8), (9), and (10) we find 

that eq. (5) yields 

)t(i
2

00
)t()t( )

sin
1( y

z

xz HcEn



   .     (11) 

Turning attention to eq. (6), we obtain  

)t(
00

)t()t(
xxyz EcHn   .            (12) 

The fields )t(
xE  and )t(

yH  are oscillating 

synchronously, but the z component )t()t(
yx HE  of the 

stationary part of the Poynting vector )t()t( HES   

is always positive. Consequently, it emerges from eqs. 

(11) and (12) that the factors z /sin1 i
2  and x  

are crucial for determining )t(
zn  just like  and  

determining )t(n  to be   in the case of an 

isotropic metamaterial. Taking account of signs of the 

two factors, we find that Mosteller and Wooten’s early 

expression of the wave-normal vector
21)

 is valid even 

for unusual refractions. From Fresnel’s equation (10) 

and Snell’s law (9), in accordance with eq. (39) of ref. 

21, we can write )t(n  as 

zxn )t()t()t(
zx nn  ,               (13)  

with  

 
z

xzn



 i

2
)t(

sin
1 ,             (14)    

where x and z are unit vectors along x and z axes, 

respectively. This finding gives the following criteria 

for characterizing the refraction behavior:  

(a) When z /sin1 i
2  and 

x
 are simultaneously 

positive, )t(n  is positive, being given by 

  )
sin

1(sin i
2

i
2)t(

z

xn



 

 
.      (15) 

If 
z
 > sin

2
i
, both 

t
 and 

t
 are positive as they are in 

the usual refraction. When 
z
 < 0,  we still have 

t
 > 0, 

but eq. (8) claims that 
t
 < 0. The latter is the 

counterposition of the wave-normal and ray-index 

vectors. 

(b) When z /sin1 i
2  and 

x
 are simultaneously 

negative, that is, 0 < 
z
 < sin

2
i
 and 

x
 < 0, )t(

zn  is 

negative to give  

)
sin

1(sin i
2

i
2)t(

z

xn



 

 
.       (16) 

Although 0t  , we see that 0t '  from eq. (8), so 

that the rays of light penetrate into the crystal toward a 

positive direction of x.  

(c) When either z /sin1 i
2  or x  is negative, )t(

zn  

is imaginary, so that the refracted light wave is 

evanescent. Then, the refracted wave propagates along 

the surface without penetrating into the crystal. If 

0x  and i
2sin0   z , or 0x  and 

i
2sin  z , Snell’s total reflection (STR) occurs. 

When both 
x  and z  are negative, the crystal 

behaves as a metal-like reflector.  

It turns out from above considerations that the 

unusual refractions, that is, negative refraction and 

counterposition, take place when z /sin1 i
2  and 

x
 

are simultaneously positive or negative providing that 


x
 and 

z have opposite signs, namely ̂  is 

indefinite
22)

. What is different from the case of 

isotropic metamaterials is that the properties of 

refraction depend essentially on the angle of incidence 
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of light. In unusual refractions, either wavevector or 

ray alone is refracted or deflected negatively. Another 

point is the frequency dependence of 
x
 and 

z
. 

Supposed that 
x
 and 

z are increasing functions of 

frequency with zeros at each individual frequencies, 

either negative refraction or counterposition is 

predicted to appear near the zeros in between 

evanescent regions.  

In connection with these unusual refractions 

Brewster’s law plays an important role in the infrared 

spectrometry, producing null reflections at (
i
, ) = 

(
B
, 

B
) satisfying

18, 23)
  

B
2

B

B

B tan)(
1)(

1)(










z

z

x  
.      (17) 

Not only when both 
x
 and 

z are positive, but also 

when they are in opposite signs, a solution (
B
, 

B
) 

may exist to eq. (17). This Brewster’s null reflection 

(BNR) has been the subject of recent studies of 

small-angle oblique-incidence reflectometry in ZnO
17)

 

and sapphire
18)

.  

3. Refraction of Lattice-Vibrational Infrared Light 

in Sapphire 

The primitive unit cell of the -corundum structure 

of sapphire belongs to the D
3d

 point group and yields 

the following normal modes of lattice vibration:
24)

  

 = 2A
1g

 + 2A
1u

 + 3A
2g

 + 3A
2u

 + 5E
g
 + 5E

u
 .  (18) 

Among these normal modes, two representations of 

A
2u

 and four representations of E
u
 are infrared-active 

optical modes polarized parallel and perpendicular to 

the c-axis, respectively. Each infrared-active optical 

mode produces a pair of TO and LO phonon branches. 

In Gervais and Piriou’s FPSQ oscillator model
25)

, the 

principal dielectric functions are given by 

 





jj

jj

j

)(||)(||

)(||)(||

TO

22

TO

LO

22

LO

)(||)(||
i

i

)(









 
 ,    (19) 

where 
||
() and


() are the principal elements of ̂  

for the directions of E and D parallel to c and a axes, 

respectively, 
∞
 is the optical dielectric constant, 


LO(TO)

 is the frequency of the LO(TO) phonon, and  

 LO(TO)
 is the damping energy of the LO(TO) phonon. 

Two 
j

||LO (
j

||TO )’s with j = 1 and 2 signify two 

LO(TO) phonons of the A
2u

 modes, whereas four 

j

LO ( j

TO )’s with j = 1  4 signify four LO(TO) 

phonons of the E
u
 modes. Table I lists the frequencies 

and damping energies of those phonons obtained from 

recent infrared experiment
18)

 and the present work 

described in §5. The values of 
∞||

 and 
∞

 are known 

to be 3.038 and 3.064, respectively.
26)

 In this Section, 

to keep consistency with the arguement in §2, the 

Table I. Frequencies (cm-1) of polar optical modes in 
sapphire. Numbers in parentheses are the damping energies 
(cm-1). 

     Representation       TO              LO  

            398.0 (5.7)        511.0 (1.5)  

            583.0 (2.5)        879.4 (25) 

                   384.6 (4.8)        387.7 (4.8) 

            439.3 (4.8)        481.2 (1.8) 

            569.5 (4.5)        629.2 (6.5) 

            633.5 (5.2)        908.5 (18) 

400 600 800 1000

 (cm
-1

)

1 2 3 4 5 6

A2u A2u
1

Eu Eu Eu Eu
1 3 4

2

2

Fig. 2.  (Color online) TO-LO bands of two u2A  and 

four uE  modes of polar optical phonons in sapphire. 

The areas numbered 1 through 6 are the frequency 

regions in which ||  and   have opposite signs. 

 

Table II. Type of refraction in configurations pac and pca in 

the frequency regions 1 through 6.  

Frequency region 
  Type of refraction 

 pac             pca 

     1        Evanescence       Counterposition 

       2      Counterposition        Evanescence 

       3      Counterposition    Negative Refraction*1 

       4        Evanescence       Counterposition 

       5      Counterposition    Negative Refraction*2 

       6      Negative Refraction*3   Counterposition 

*1The upper bound of the negative refraction region is   

 when  lies below . 

*2The upper bound of the negative refraction region is . 

*3The upper bound of the negative refraction region depends 

on 
i
. See text of §3.2. 
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damping energies, ’s, are assumed to be vanishingly 

small unless otherwise noted. Within the framework of 

this assumption, 
||
 and 


 are purely real and positive 

outside the TO-LO gap of every A
2u

 and E
u
 mode, 

respectively, while 
||
 and 


 are purely real and 

negative inside the gap of every A
2u

 and E
u
 mode, 

respectively. The point to be noted is that 
||
 and 


 

diverge to ∞ at the frequencies of j
||TO  and j

TO , 

and then go up through zeros at the frequencies of
 j

||LO  and j
LO , respectively, as  increases.  

There are six regions of frequency where 
||
 and 


 

have opposite signs as shown in Fig. 2. In the pac 

configuration we have 
x
 = 

 and 
z
 = 

||
, while in the 

pca configuration we have 
x
 = 

|| and 
z
 = 


. Table II 

summarizes the results of application of the criteria (a), 

(b), and (c) given in §2 to the pac and pca 

configurations in the six regions of frequency. In the 

followings, as the representative example of 

counterposition and negative  refraction, we look 

closely at the refraction properties around the regions 

3 and 6, respectively, in the pac configuration.  

3.1 Counterposition in region 3 

The region 3 ranges from 481.2 cm
-1

 of 2LO  to 

511.0 cm
-1

 of 1
||LO . In this region we have 


 > 0 but 


||
 < 0, so that there should occur counterposition in the 

configuration pac. Figure 3 illustrates the diagram of 

refraction in the 
i
 coordinates covering the region 

3. In Fig. 4 are shown the spectra of the real and 

imaginary )t(
zn , signified by 'nz

)t(  and ''nz
)t( , 

respectively, around the region 3 at 
i
 = 20°, for 

example. Since the damping energies are assumed to 

be negligibly small here, )t(
zn  is either purely real or 

purely imaginary at any frequencies. Note that the 

region 3 is sandwiched between evanescent regions. 

The width of the evanescenct region due to STR on the 

higher frequency side is vanishingly small at 
i
 = 0, 

but enlarges as 
i
 increases. This is because the region 

of the frequency satisfying 0/sin1 ||i
2    with 

0||   widens as 
i
 increases. The boundary is 

determined by the polariton state 1
||S  of which the 

frequency 
S
 is given by 

   
||
(

S
) = sin2

i .              (20)       

We can calculate the isofrequency curve of 

wave-normal vector from eq. (10). Figure 5 shows the 

curves in free space and the sapphire crystal at a 

frequency  = 483.8 cm
-1

 in the region 3. At this value 

of  eq. (19) gives 
||
 = 5.534 and 


 = 1.157, with 

which eq. (17) yields Brewster’s angle 
B
 to be 20°. 

The curve in the sapphire crystal is a hyperbola with 

its main axis lying normal to the surface of the crystal. 

The vectors )i(n , )i(s , )t(n , and )t(s  at  = 483.8 

cm
-1

 and 
i
 = 20° are drawn along with the 

isofrequency curves. Note that )t(s  is deflected to a 

backward direction although )t(n  is refracted to a 

forward direction in a usual way.  

To grasp the role of counterposition we shall now 

survey the reflection spectrum. The reflectivity for the 

configuration pac is given by
18, 21)
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 7 

 

Figure 6 shows the reflection spectra calculated for 
i
 

= 0°, 20°, and 40°. For the normal incidence of 
i
 = 0°, 

the total reflection starting from 2TO  lasts up to 
2LO : With increasing  beyond 2LO  the 

reflectivity drops down rapidly to become null at the 

frequency 483.4 cm
-1

 which satisfies 

 = 1, and then 

rises again toward the resonance with 3TO  located at 

569.5 cm
-1

. For 
i
 > 0°, this null reflection is 

transformed into BNR, and 
B
 increases gradually 

from 483.4 cm
-1

 with increasing 
i
. At the same time, 

another BNR appears at a frequency just below 1
||LO . 

In addition, the aforementioned evanescence band 

develops from the edge of 1
||LO  up to the frequency 

of 1
||S . The two null reflections due to BNR come up 

to one another as 
i
 increases. As a result, the 

reflectivity inside the region 3 diminishes, and thus the 

power of the incident light is transmitted more and 

more into the crystal as 
i
 increases.  

3.2 Negative refraction in region 6  

Figure 7 shows the 
i
 diagram of refraction 

around the region 6 in the pac configuration. In the 

region 6 we have 
||
 > 0 but 

 < 0, so that there should 
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occur negative refraction. At 
i
 = 0°, however, the 

crystal behaves as a metal-like total reflector for 

frequencies up to 879.4 cm
-1

 of 2
||LO , and then 

undergoes STR up to 908.5 cm
-1

 of 4LO
 since, in 

accord with the criterion (c) given in §2, ||i
2 /sin1   

and 
 have opposite signs such that ||i

2 /sin1   = 1 

and 

 < 0. When 

i
 > 0° a transmission window due 

to negative refraction opens in the frequency range 

satisfying i
2

|| sin0   . The width of the 

transmission window increases with increasing 
i
: The 

upper bound of this transmission window scales with 


i
 as the frequency of the polariton state 2

||S  until 

reaching 4LO
 at 

i
 = 31.7°. Figure 8 shows the 

spectra of 'nz
)t(  and ''nz

)t(  at 
i
 = 20°. The alternate 

change in the spectral region from metal-like 

evanescence through normal positive refraction with 

increasing frequency is illustrated clearly. If 
i
 exceeds 

31.7° the upper bound of negative refraction is pinned 

to 4LO
. At frequencies above 4LO

 up to 2
||S , the 

signs of the discrimination parameters are reversed 

such that 0/sin1 ||i
2    and 

 
> 0, and therefore 

STR causes evanescence.  

Figure 9 shows the isofrequency curves of 

wave-normal vector for  = 889.3 cm
-1

. The curves for 

sapphire are obtained from the values of 
||
 = 0.098 

and 
 = 0.215. In this case the main axis of the 

hyperbola is parallel to the crystal surface. We note, 

therefore, that the refraction is possible only for 
i
 ≥ 

18.5°, consistent with the argument given in the 

preceding paragraph. Taking into account that at this 

frequency Brewster’s angle 
B  is 20°, vectors )i(n , 

)i(s , )t(n , and )t(s  for 
i
 = 20° are drawn along with 

the isofrequency curves. It is obvious that n undergoes 

a negative refaction, and s is deflected to a forward 

direction. In Fig. 10 are shown the vectors )t(D  and 
)t(

0E  of the plane wave at the surface of the crystal 

under this Brewster condition. Their magnitudes are 

normalized with )i(
0E of the incident light at the 

crystal surface. Because of negative refractive index of 
)t(n =  0.397, )t(D  points in a direction on the side 

of negative x, subtending an angle of |
t
| ≈ 60° from 

the crystal surface. Then the relationship 
)t(1)t(

0
ˆ DE    with 

||

-1
 ≈ 10 and 



-1
 ≈ 5 forces 

)t(
0E  to upturn steeply from the crystal surface, 

while inclining toward the positive x direction. The 

produced polarization vector )t(
0

)t()t( EDP   is 

inclined at 20°, being equal to B , against the surface 

normal, in accordance with Brewster’s law.
27-29)

  

Figure 11 shows the reflection spectra calculated 

from eq. (23) for 
i
 of 0°, 20° and 40°. At 

i
 = 0°, the 

total reflection lasts up to the frequency 908.5 cm
-1

 of 
4LO . The spectra for 

i
 = 20° and 40° demonstrate 

that a transmission window opens above 2
||LO , and 

widens with increasing 
i
; for 

i > 31.7° the window 

covers the whole range of region 6 to connect to the 

STR region which is bounded by 2
||S . In accord with 
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the refraction diagram of Fig. 7, Brewster’s null 

reflection (BNR) occurs inside the transmission 

window for 
i < 31.7°, while moving outside the STR 

region for 
i > 31.7°.  

3.3 Positive refraction outside region 6 

For comparison with the case of negative refraction 

described above, Fig. 12 shows the isofrequency 

curves of wave-normal vector for positive refraction at 

a frequency outside the region 6. The frequency is 

chosen to be 934.1 cm
-1

 in order to set Brewster’s 

angle to be 40°. Since both of 
|| = 0.484 and 


 = 

0.251 at this frequency are positive, the curve of 

sapphire is elliptic. Vectors )i(n , )i(s , )t(n , and )t(s  

for  40i  are drawn along with the isofrequency 

curves. Note that the critical angle of incidence for 

STR is 44.8°, and that as long as 0  i  44.8°, 

vectors )t(n  and )t(s  are non-collinear irrespective 

of i . 

4. Effect of Damping 

Optical phonons of sapphire inherently have 

significant levels of damping which cause ||  and 
  

to be complex.
18,25)

 The imaginary parts of ||  and 

  function to relax the conditions for discriminating 

the type of refraction, and enlarge in turn the variety of 

unusual refractions.
30)

 As stressed by Markel and 

Schotland,
31)

 the power dissipation of light caused by 

the imaginary part of dielectric constants is an 

important ingredient for practical applications of 

negative refraction.  

When x  and z  are complex, )t(
zn  is also 

complex, so that we can write 

     ''n'nn zzz
)t()t()t( i .             (22)   

The nonvanishing imaginary part ''nz
)t(  causes 

refracted waves to be inhomogeneous, and thus to be 

evanescent in a general sense. In this case, the real part 

'nz
)t(  permits the refracted waves to penetrate into the 

crystal. Following the procedure of Mosteller and 

Wooten
21)

 for treating Maxwell’s equations in 

absorbing uniaxial crystals, the electromagnetic fields 

of the refracted light in the configurations pac and pca 

are given by 

     

, ]})(sin[i        

exp{]
sin

[

)t(

i0

0

)t(i

)t(

00

)i(

0)t(

t'znxk

z''kn
n

c

H

z

z

zx

zy













 zxE
   

     
   (23)                              , }])          

(sin[iexp{

)t(

i00

)t()i(

0

)t(

t'zn

xkz''knH

z

zy







 yH
  

with 

     
i

)t(

i

cos

cos2






xz

x

n 
  ,            (24) 
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where )i(
0yH  is the value of )i(

yH  at the origin on the 

crystal surface, and y is the unit vector along the y axis. 

Hence the time-averaged Poynting vector )t(S  is 

given by   

 

  *][ Re
2

1
)t()t()t( HES    

      

(25)                . ]2[ exp ]    

sin
[ Re

2

||||

0

)t(

)t(

i

00

22)i(

0

z''kn
n

c

H

z

x

z

z

y





z

x











 

Here, we obtain the real angle of refraction from   

      
'nz

)t(

i
t

sin
tan


  .            (26) 

The real refractive index can be expressed as  

    
2)t(

i

2

)t()t(
 sin

1
'n

'nn
z

z


 ,       (27) 

showing that the sign of 'nz
)t(  determines the sign of 

)t(n . With respect to the deflection of the rays of light 

we see from eq. (25) that  

    

][ Re

]
sin

[ Re

tan
)t(

i

t

x

z

z

n
'







   ,       (28)   

corresponding to eq. (8) for nonabsorbing crystals. 

Bringing to mind that the denominator of the right 

hand side of eq. (28) comes from the z-component of 
)t(S , and thus is always positive, the rays are found to 

exhibit negative deflection whenever 0)Re( z , 

irrespective of the sign of x . This is an example of 

the relaxation of refraction criteria due to damping.  

We see from eqs. (23) and (25) that the wave fronts 

of constant amplitude of electromagnetic fields are the 

planes z''knz 0
)t( constant and the fronts of the 

constant intensity of light are the planes z''knz 0
)t(2

constant. Let us now look at the spectra of 'nz
)t(  and 

the absorption coefficient 

       0
)t(2 ''knz            (29)  

for  25i  in the pac configuration by introducing 

practical damping energies of phonons listed in Table I 

into eq. (19) for   and || . The value 25  of i  

is chosen so as to be consistent with the experiment 

described in §5. Figures 13(a) and 13(b) show the 

spectra of 'nz
)t(  and  at frequencies around the 

regions 3 and 6, respectively. As expected, damping 

energies cause the boundaries between the spectral 

regions of propagating and evanescent waves to 

become significantly obscure. The result around region 

3 shown in Fig. 13(a) agrees substantially with the 

behavior shown in Fig. 4, since the damping energies 

of the phonons 2LO  and 1
||LO  are comparatively 

small. As for the result around region 6 shown in Fig. 

13(b), the structures of metal-like evanescence and 

STR, which are expected to appear in the  spectrum 

just below 2
||LO  and between 2

||S  and 4LO , 

respectively (see Fig. 8), if the damping of 2
||LO  and 

4LO  is small, are strongly obscured. As a 

consequence, the influence of absorption extends over 

the region of original negative refraction. The spectral 

negative peak of 'nz
)t(  is also suppressed and 

broadened, so that the frequency region of negative 

refraction expands to the lower frequency side of 
2
||LO .  

5. Experimental Result and Discussion 

To experimentally examine the power flow of light 

into the crystal through the refraction at the surface, 
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we measure the infrared reflection spectrum of 

sapphire in the configuration pac with 
i
 of 20°~40°. 

We employ an FTIR apparatus which is identical with 

that employed previously for the studies of 

small-angle oblique-incidence reflectometry
17,18)

 

except that the beam-focusing equipment is replaced 

by the angle-variable one which is prepared for the 

present experiment. We also use one of the same 

synthetic crystals of sapphire from KYOCERA 

Corporation as those used in a previous study
18)

. The 

crystal is a plate with the c-face and a thickness of 

0.33 mm. 

Figure 14 shows the experimental result for 
i
 = 

25° in the configuration pac along with theoretical 

curves for 
i
 = 0° and 25°. Half a reststrahlen band of 

the 2
uE  mode and the whole bands of the 3

uE  and 
4
uE  modes are observed in the spectral range 

examined. The theoretical curves are calculated from 

eq. (21) with the phonon frequencies and damping 

energies listed in Table I. All the phonon frequencies 

and most of the damping energies are identical with 

those of ref. 18; only the damping energies of 2
||LO  

and 4LO  are adjusted by several wavenumbers. The 

experimental result is reproduced very well by the 

calculated curve. Compared with the theoretical curve 

for 
i
 = 0°, the spectrum for 

i
 = 25° exhibits 

pronounced differences around 510 cm
-1

 and 900 cm
-1

. 

A rapid drop of reflectivity to nearly null at 484.2 cm
-1

 

and an asymmetric spike at 511.0 cm
-1

 arise from BNR 

and STR specific to the counterposition in the region 3, 

though the height of the spike is extremely suppressed 

by the damping of 1
||LO . On the other hand, the large 

cut of the shoulder around 900 cm
-1

 shows the spectral 

transmission window which is produced by the 

negative refraction, and is promoted by BNR in the 

region 6. However, because of comparatively strong 

damping of 2
||LO  and 4LO , the observed 

transmittivity is insufficient in view of the calculated 

spectrum (see the spectrum for i = 20° in Fig. 11). In 

the following, taking account of the damping of 

optical phonons, these observations are interpreted 

quantitatively in terms of the Poynting vector of the 

rays transmitted into the crystal. 

Since the thickness, being 0.33 mm, of the crystal 

employed for the experiment is sufficiently large 
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compared with the reciprocal absorption coefficient, 

the measured quantity 1R should be practically equal 

to the rate of the light flux transmitted into the crystal 

from the surface. The Poynting vector represents the 

energy flow per unit cross section per unit time, while 

in our experiment we measure the total energy flow 

per unit time of the incident and reflected light beams. 

Taking into account that the cross-sectional area of the 

light beam changes by a factor of it cos/cos  '  upon 

refraction, the power transmittance is given by 

     |)0(|  
cos

cos
  

||

2
)t(

i

t

2)i(

0

00 S


 '

H

c
F

y

   

  zx  ][ Re ]
sin

[ Re||
cos

cos )t(

i2

i

t

x

z

z

n'









 ,  (30) 

where |)0(| )t(S  is the absolute value of )t(S  at z = 

0. The transmitted energy flux of light is composed of 

x and z components of  

           

)31(                    . ]Re[||
cos

cos

       ],
sin

Re[||
cos

cos

)t(

2

i

t

i2

i

t

x

z

z

z

x

n'
F

'
F


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
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









  

It is algebraically straightforward to prove F = 1R. 

Figures 15(a) and 15(b) show the experimental values 

of 1R around the regions 3 and 6, respectively, along 

with the curves of F, xF , and zF  evaluated for 
i
 = 

25° with   x  and || z . 

From experimental and calculated curves of F of 

Fig. 15(a), the spectral transmission window due to 

counterposition in the region 3 can be recognized to be 

present between 2LO  and 1
||LO . The ratio zx FF /  

indicates that 't  = 4.5° at the frequency of 2LO  

but the negative deflection of the energy flux is 

enhanced largely in the vicinity of 1
||LO  to reach the 

largest negative deflection of 't = 74° at 510 cm
-1

.  

In the region 6, it is evident from Fig. 15(b) that 

negative refraction promotes the energy transmission 

of light into crystal. The hump around 890 cm
-1

 arises 

from BNR mentioned in §3, and the subsequent 

hollow around 900 cm
-1

 indicates the onset of STR 

which is expected to manifest itself between 2
||S  and 

4LO  when damping of phonons is small. If the 

damping is negligibly small, as mentioned in the 

argument on the criterion (b) in §2, the energy of the 

light beam continues to flow toward the positive 

direction of x in the crystal, that is, the deflection of 
)t(S  is positive, even upon negative refraction of the 

waves. Interestingly, however, Fig. 15(b) shows that at 

frequencies below 2
||LO  (879 cm

-1
), being the lower 

boundary of the region 6, ]Re[ ||  becomes negative, 

and thus xF  becomes negative. This fact means that 

the deflection of )t(S  becomes negative at 

frequencies below 879 cm
-1

. We have already seen in 

Fig. 13(b) that a negative refraction of the real 

wave-normal vector is induced by damping 

additionally in a frequency region from 860 cm
-1

 up to 

890 cm
-1

. Consequently, )t(S  and the real 

wave-normal vector are simultaneously deflected and 

refracted negatively at frequencies between 860 cm
-1

 

and 879 cm
-1

. Hence, we may regard that a true 

negative refraction takes place there, although the 

penetration lengths of the plane waves and the rays are 

quite small because of a strong dissipation. As an 

example of this situation, Fig.16 illustrates the 

directions and penetration lengths of the wave and the 

ray at 875.0 cm
-1

 for  25i .  

6. Conclusions 

Being prompted by the recent works on 

small-angle oblique-incidence reflectometry for ZnO 

and sapphire, we have studied the negative refraction 

phenomenon in natural crystals of uniaxial dielectric 

substances. The universal criteria characterizing the 

refraction behavior of light which is incident obliquely 

x (10
-3

 cm)

S
(i)

, k
(i)

S
(r)

, k
(r)

-0.1-0.2-0.3

0.1

-0.1

0.1

k
(t)

S
(t)

z = zA

z = zP

Vacuum

Sapphire

0

z 
(1

0
-3

 c
m

)

Fig. 16.  (Color online) Wave vector k and the Poynting 

vector S of incident, reflected, and refracted infrared light 

with frequency 875.0 cm-1 in sapphire. The light is incident 

at  = 25° in the configuration pac. The head and the 

length of each arrow show the direction and the penetration 

length, respectively, of each vector. Dotted lines signified as 

z = zP and z = zA show the planes of penetration depths 1/ 

and 2/ of the Poynting vector and the wave vector, 

respectively.  
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to a nonabsorbing crystal are derived from Maxwell’s 

equations. It is shown that the relative magnitudes and 

signs of the principal elements of the dielectric 

constant tensor are crucial for the refraction behavior 

of extraordinary rays. Applying the derived criteria to 

the infrared light dispersed by anisotropic multimode 

polar optical phonons in sapphire, it has been clarified 

how the negative refraction and counterposition arise 

as a function of the angle of incidence as well as the 

frequency of light. Anisotropic LO phonons are found 

to play major roles there through their contribution to 

the dielectric tensor. 

The effect of damping of optical phonons on the 

refraction properties has been explored further to 

interpret the practical oblique-incidence reflection 

spectrum at the c-surface of a synthetic crystal of 

sapphire. The experimental spectrum demonstrates 

that spectral transmission windows are produced by 

counterposition and negative refraction in between 

evanescent regions. We have paid attention to the 

directions of the wave vector and the Poynting vector 

of the infrared light in the spectral range covering 

those transmission windows. The spectrum of the 

energy flux of light transmitted into the crystal, which 

is obtained by 1R from the experimental reflection 

spectrum, is found to be explained successfully in 

terms of the frequency dependence of the direction of 

the Poynting vector. From this finding the waves and 

rays of infrared light turn out to be refracted and 

deflected simultaneously toward negative directions in 

a certain frequency range. This is the first 

experimental confirmation of a true negative refraction 

in a natural crystal. 

The criteria obtained in the present study claim that 

the a-surface of sapphire exhibits different refraction 

behavior which is as rich in variety as the c-surface 

exhibits. Furthermore, any uniaxial dielectric 

substances other than sapphire will individually 

exhibit specific, unusual refractions.  
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