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Abstract

Simple Adaptive Control (SAC) is a direct model reference adaptive control
(based on the command generator tracker theory) which has robustness with re-
gard to disturbances, unmodelled dynamics and non-linearities. Since the struc-
ture of adaptive controller in SAC is very simple compared with conventional
adaptive schemes, one can easily apply the method to practical plants. However,
there are some severe constraints to implement the method, such as the require-
ment of the almost strictly positive realness (ASPR-ness) of the controlled plant.
Thus, somewhat serious problems have remained with regard to the applicability
of the SAC to the wider class of the controlled plant.

The objective of this research is to expand the applicable class of SAC meth-
ods to a wider class of controlled plants, including both minimum and non-
minimum phase non-ASPR plants with unmodelled dynamics, large-scale systems,
plants with unknown disturbances, and so on.

In this thesis, first of all, a basic concept of SAC for ASPR plants is reviewed
in Chapter 2 for the sake of brevity of discussions in the following chapters. The
command generator tracker (CGT) theory and the ASPR-ness of the plant are
discussed. A basic algorithm of the SAC and stability of the control system are
also given in this chapter. In Chapter 3, to expand the applicable class of the
SAC method to non-ASPR plants, design schemes of compensators (which make
non-ASPR plants ASPR in the sense that the resulting augmented plant with
compensators is ASPR) are presented. Systematic design schemes of a parallel
feedforward compensator (PFC) for both single-input/single-output (SISO) and
multi-input/multi-output (MIMO) minimum phase plants with unknown orders
but known relative degrees are given. Further, robust design schemes of com-
pensators (PFC and pre-compensator) using frequency domain analysis are also
presented for plants with multiplicative plant uncertainties. Chapter 4 presents a
robust SAC algorithm for plants with state-dependent disturbances. By adding
a robust adaptive control term to the original SAC algorithm, the control per-
formance of the SAC system will be significantly improved. In Chapter 5, de-
centralized SAC schemes for large-scale systems with unknown interconnections
are presented. The stability conditions corresponding to M-matrix condition and
range condition are derived. A modified SAC algorithm with a derivative control
term aimed at robust performance in transient state is presented in Chapter 6.
In each chapter, the effectiveness of proposals are confirmed through numerical
simulations.
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1 Introduction

1.1 Historical Review

Adaptive control is a direct aggregation of a control methodology with some
form of recursive system identification. It combines the design of controllers based
on plant system models with the on-line estimation of the model parameter or
controller parameters using input and output data measurements.

Most conventional control techniques are based on a certain knowledge of the
controlled plant. However, in practice, there are uncertainties on practical plants
and parameters of the plant frequently vary and change. In this situation, one is
required to design a controller which works well during the whole operation. The
adaptive control is an effective one that adjusts controller parameters automat-
ically so as to obtain good control performance in the presence of uncertainties
and parameter changes (Landau 1979, Narendra and Monopoli 1980, Sastry and
Bodson 1989, Bitmead et al. 1990, Isermann et al. 1991).

There are two extremes in adaptive controls. One is an indirect adaptive
control and the other is a direct adaptive control. A typical scheme of the indirect
adaptive control is the Self-tuning Regulator which was originally proposed by
Kalman (1958). Since then, the method was further established by Astrom and
Wittenmark (1973). In this method, the controller structure is first determined
using a conventional controller under the assumption that plant parameters are
known. After that, unknown parameters of the plant are identified at on-line, and
the controller parameters are adjusted using these estimated parameters. MRAC
(Model Reference Adaptive Control) is a typical direct adaptive control. This
method was first developed by Whitaker and co-workers (1958). The method
was based on the so-called M.I.T. rule. Unfortunately, closed loop stability or
convergence of the error signal could not be ensured by this rule. Since then,
Parks (1966) showed a proof of stability using the Lyapunov theory with the
Kalman-Yakubovich lemma, but only for the case where the plant transfer function
is positive definite. A more general and fundamental strategy for MRAC was
developed by Monopoli (1974) using augmented error signal. As mentioned above,
the basic formulations of adaptive controls were built up during the late 1950’s
and the first 1970’s.



During the late 1970’s, the global stability of adaptive control systems was
resolved, mainly for MRAC. Many interesting proofs of stability for several types
of adaptive control systems appeared. Narendra and Valavani (1980) and Morse
(1980) showed proofs of stability based on the Lyapunov theorem. Landau (1979)
and Egardt (1979) adopted the Popov hyperstability theorem to prove stability.
For discrete time control systems, Goodwin and co-workers (1984) also showed
proofs of the stability of adaptive control systems. This period marked the devel-
opment of the fundamental field of adaptive control.

In the above-mentioned works, it was assumed that some prior information
regarding the plant transfer function (order of the plant, relative degree of the
plant, and sign of high frequency gain) were available and that no external distur-
bances were present. However, these assumptions are seldom valid in practice. At
this point, Rohrs and his co-workers (1982) first pointed out that the presence of
unmodelled dynamics or disturbances often very much degrades the control per-
formance of the system and sometimes makes the control system unstable. With
these points as background, during the late 1980’s a great deal of attention was
devoted to analyzing the robustness of the adaptive controller. Many modified
adaptive control algorithms aimed at improving the robustness of the control sys-
tems were proposed (Ioannou and Kokotovic 1983, 1984a, 1984b, Ioannou and
Tsakalis 1986, Kreisselmeier and Anerson 1986, Narendra and Annaswamy 1987,
Tao and Ioannou 1988, Ortega and Tang 1989). At present, the robustness of
the adaptive control system is still an important problem for practical applica-
tion of adaptive schemes, and several teams of researchers are trying to complete
this problem (Tao and Ioannou 1991, Chen 1992, Bartolini and Ferrara 1992, Tao
1992, Chien and Fu 1992, Lee and Anderson 1993, Zang and Bitmead 1994, Tao
Kokotovic 1994).

The general on-line adaptive control algorithms depend on a large number
of estimated parameters within a given mathematical model structure. Thus the
structure of the adaptive controller sometimes becomes extremely complicated
compared with that of usual conventional controllers. As a result, a slight mis-
counting of the order between the mathematical model and the real plant due to
presence of unmodelled dynamics often degrades the control performance of the
system and sometimes makes the control system unstable. Research of robust
adaptive controls was begun with these points in mind and several interesting
modifications in adaptive algorithms countered to plant uncertainties and exter-
nal disturbances have been proposed as mentioned above. However, most of these
modifications caused complications of the adaptive controller structure.

The simplicity of controller structure is extremely fascinating for practicing
engineers since they are able to understand and easily implement the control
schemes. With this in mind, a new strategy to direct model reference adaptive

2



control, which makes it possible to construct the adaptive control system regard-
less of the plant order, was first proposed by Sobel, Kaufman and Mabius (1979,
1982). From the simplicity of the controller, this adaptive scheme is called Simple
Adaptive Control (SAC). The basic idea of this adaptive method is to ensure the
stability of the control system by using the output feedback under the ASPR (al-
most strictly positive real) condition on the plant (the plant is said to be ASPR if
there exists a static output feedback such that the resulting closed-loop transfer
function is SPR. (strictly positive real)) and to attain the model output following
by forward compensation based on the Command Generator Tracker (CGT) the-
ory (Broussard and O’Brien 1980). Thus, the structure of the adaptive controller
of the method consists of a linear combination of the reference model states, ref-
erence inputs, and output error feedback between the plant and reference model
outputs. Since the order of the reference model can be chosen irrespective of the
order of the plant, the number of adaptive gain parameters to be identified can
be decreased in the adaptive controller if one chooses a low-order reference model.
That is, we can obtain a simple form of adaptive controller with a low-order ref-
erence model even if the plant has higher order. This is why the method is called
Simple Adaptive Control.

The original SAC algorithm was modified by incorporating o- modification
term (loannou and Kokotovic 1983) into the parameter adjusting laws (Bar-Kana
1987b, Bar-Kana and Kaufman 1985a). This algorithm is applicable to control
systems with not only step reference input but also arbitrary time varying refer-
ence inputs and_applicable to controlled plants with bounded disturbances. The
SAC schemes have also been developed for discrete-time systems (Bar-Kana and
Kaufman 1983, Bar-Kana 1986, 1989, Ohtsuka et al. 1992, Shibata and Kure-
bayashi 1995), time-varying systems (Bar-Kana 1988, 1990), and non-linear sys-
tems (Bar-Kana and Guez 1990).

In spite of the simplicity of the controller, SACs have much robustness with re-
gard to disturbances, unmodelled dynamics and non-linearities because the ASPR
characteristics of the plant enable us to stabilize the plant robustly with hight gain
output feedback (Steinberg and Corless 1985, Steinberg 1988, Zeheb 1986, and Gu
1990). These robust performances have been confirmed through several numeri-
cal simulations and practical experiments on large flexible structures (Bar-Kana
1987b, Bar-Kana, Kaufman and Balas 1983, Ih et al. 1985, 1987, Lee et al. 1988,
Sanchez 1986, Iwai et al. 1993, 1995, Hino et al. 1995), robotic manipulators (Bar-
Kana 1987a, Meldrum and Balas 1986, Bar-Kana and Guez 1991, Mizumoto et
al. 1993,), servo systems (Bar-Kana and Kaufman 1988, Ohtsuka and co-workers
1992, 1993, 1994, Ohtomo et al. 1992, Iwai et al. 1992), automated guided ve-
hicles (Kawasaki, Iwai and Haramaki 1994), inverted pendulums (Kawasaki et
al. 1993, 1994), and drug infusions (Kaufman, Roy and Xu 1984). However, the
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ASPR condition on the controlled plants is a severe restriction in practical plants
because most practical plants do not satisfy the ASPR condition. As a counter-
measure to this problem, the introduction of a parallel feedforward compensator
(PFC) to non-ASPR plants was suggested by Bar-Kana and Kaufman (1985b).
It has also been shown that if there exists a known dynamic output feedback
compensator: H(s) which stabilizes the closed-loop system, then the augmented
plant with H(s)~! in parallel is ASPR (Bar-Kana 1987a). Unfortunately, this
approach does not guarantee perfect output following in general because of a bias
effect from the additional PFC. However, it is argued that if the gain of the PFC
can be chosen small enough, we can approximately attain the control objective
for original controlled plants. In SAC system designs, how to design PFCs is the
most important problem to ensure the robust performance of the control system.

Recently, new SAC system configurations for asymptotic output tracking are
suggested by Kaufman and Neat (1993) and Su and Sobel (1992). Kaufman’s
approach incorporates the PFC dynamics into the reference model in a manner
such that asymptotic tracking of the original plant and reference model outputs
is ensured subject to asymptotic tracking of the augmented plant and reference
model outputs. Su’s method introduces an adaptive gain to supplementary dy-
namics, which is implemented in the plant in parallel to guarantee asymptotic
tracking only for the case where the reference model input is constant.

1.2 Outline of the Dissertation

The objective of this research is to expand the applicable class of SAC meth-
ods to a wider class of controlled plants, including both minimum and non-
minimum phase non-ASPR plants with unmodelled dynamics, large-scale sys-
tems, plants with unknown disturbances, and so on. The obtained schemes for
SAC system design are very useful and powerful for practical plants with several
uncertainties.

The contents are organized as follows. Chapter 2 presents a basic concept
of SAC for ASPR plants for the sake of brevity of discussions in the following
chapters. In this chapter, the command generater tracker (CGT) theory (which
is a basic theory on the SAC scheme) and ASPR conditions of the plant are
discussed. A basic algorithm of the SAC for ASPR plants and stability of the
control system are also given in this chapter.

In Chapter 3, design schemes of compensators, which make non-ASPR plants
ASPR in the sense that the resulting augmented plant with compensators is
ASPR, are presented to expand the applicable class of the SAC method to non-
ASPR plants. Systematic design schemes of a parallel feedforward compensator
(PFC) for both single-input/single-output (SISO) and multi-input/multi-output



(MIMO) minimum phase plants with unknown orders but known relative de-
grees are given. Further, robust design schemes of compensators (PFC and pre-
compensator) using frequency domain analysis are presented for plants with mul-
tiplicative plant uncertainties which might be non-minimum phase. Chapter 4
presents a robust SAC algorithm for plants with state-dependent disturbances.
SAC has robustness with regard to disturbances in general. However, in the case
where large external disturbances or state-dependent disturbances are present, of
course, the control performance might become worse. By adding a robust adaptive
control term to the original SAC algorithm, the control performance of the SAC
system will be significantly improved. In Chapter 5, decentralized SAC schemes
for large-scale systems with unknown interconnections are presented. The sta-
bility conditions corresponding to M-matrix and range conditions are clarified.
It is also shown that the use of the robust SAC scheme given in Chapter 4 in
decentralized SAC systems is effective in eliminating the affects of interconnec-
tions. A modified SAC algorithm with a derivative control term aimed at robust
performance in transient state is presented in Chapter 6. In each chapter, the
effectiveness of proposals are confirmed through numerical simulations.



2 Basic Concept of Simple Adaptive Control

2.1 Introduction

In this chapter, a basic concept of the simple adaptive control (SAC) is re-
viewed for the sake of brevity of discussions in the following chapters. First, the
command generator tracker (CGT) theory which is a basic theory on the SAC
scheme is discussed. A sufficient condition, under which the signals generated by
the CGT are bounded, is considered. Almost strictly positive real (ASPR) condi-
tions for both multi-input/multi-output (MIMO) and single-input/single-output
(SISO) plants are also derived. Finally, a basic algorithm of the SAC and stability
of the control system are given.

The SAC is a direct model reference adaptive control based on the CGT the-
ory. If the plant is known, then we can attain perfect model output tracking only
by using the ideal control input generated by the CGT. However, there are uncer-
tainties on practical plants in general. The SAC adaptively adjusts parameters in
the CGT to have the ideal control input for unknown plants. The SAC also is a
control strategy based on the almost strictly positive realness (ASPR-ness) of the
controlled plant. Under the ASPR condition, one can ensure the stability of the
closed-loop system with output feedback. In the SAC system, the feedback gain
to ensure the stability of the control system is also adaptively adjusted.

2.2 Command Generator Tracker Theory

The command generator tracker is an ideal control input which achieves per-
fect model output tracking. This idea was proposed by Broussard and O’Brien
(1980) with regard to a feedforward control problem.

Let consider the following continuous linear time-invariant (LTI) plant:

2(t) = Az(t) + Bu(t) (2.2.1a)
y(t)=Cx=(1) (2.2.1b)



where z is a vector of dimension n and « and y are m-dimensional vectors. The
constant matrices A, B and C are of appropriate size. It is assumed that the pair
(A, B) is controllable and the pare (A,C) is observable. Further, consider the
reference model which the plant is required to follow:

Em(t) = Am@m(t) + Bnttm(t) (2.2.2a)
Ym(t) =Cmm(t) (2.2.2b)

Now, we make the following assumptions.

Assumption 2.1:

(1)
det [ 2‘ ’g ] 40 (2.2.3)

2) Q; are solutions of the matriz equation:
q

FRE e

and no eigenvalue of )y is equal to the inverse of an eigenvalue of A,,.

Under this assumption we get the following theorem concerning the perfect
model output following.

Theorem 2.1: (Command Generator Tracker (CGT) Theory)
Assumption 2.1 holds. Then, assuming that y(0) = y,,(0), the optimal input u*(t)
and optimal state ®*(t), which attain the perfect model output following:

ey(t) =y(t) —yn(t)=0, Vt>0

are given by
B | e Y ) ECRCEE

Sn=MSnAm + Q0
Si2= lelle
521 =W3S11Am + QCn
S22 =351 Bm

where

(2.2.6)
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and

Proof: The detailed proof has been shown by Broussard and O’Brien (1980).
Here we derive the result directly.
From (2.2.4), we have

Ay + BQ3 =1,
AQ, + BQy =0
C =0
c, =1,

Using these facts, it follows from (2.2.5) - (2.2.7) that

(2.2.8)

&*(t) = Su@m(t) + S12%m(t) + Qa9 (t)
= S11AnZR(t) + S11Bnun(t) + v(i)
= A(Sn@n(t) + S12un(t)) + B(Sam(t) + Suun(t))
+(AQ; + BQ3)v(t)
= Az*(t) + Bu"(t) (2.2.9)

and

y'(t) = Ca™(t)
= C(Snuxm(t) + Si2un(t) + Qv(t))
= Cpn(t)
=y, (t) (2.2.10)

Thus the desired result is obtained. O

When one tries to apply CGT theory to practical plants, the signal v(¢) in
(2.2.5) has to be bounded. Noting that (2.2.7) for v(¢) has the so-called descriptor
form, we need some explanation with regard to the boundedness of v(¢).

Lemma 2.1: Suppose that the plant is strictly minimum phase, i.e. the zero
polynomial of the plant is a Hurwiz polynomial, and has the relative MacMillan
degree of (n — m)/n. Further suppose ul)(t), i = 0,1,---,m, denoting the i-
th derivative of un(t), ezists and is uniformly bounded, and v(0). Then v(t) is
bounded.



Proof: Consider the fact that the inverse of the eigenvalues of {); are equal to
the transmission zeros ((n — m) zeros) of the plant (Broussard and O’Brien 1980)
and they have negative real parts under the assumption of plant zeros. Then
the solution of the descriptor system (2.2.7) can be constructed from the stable

exponential function mode and a linear combination of u{)(¢), i = 0,1,---,m
(Rosenbrock 1976). Therefore, v(t) is bounded as far as the ul!)(¢) are bounded.
O

Remark 2.1: If u,,(t) is a step input vector function, v(¢) vanishes in (2.2.5).

2.3 Almost Strict Positive Realness

The almost strict positive realness of the plant is defined as follows.

Definition: The plant is said to be almost strictly positive real (ASPR) if there
erists a static output feedback such that the resulting closed-loop transfer function
is strictly positive real (SPR)

(concerning SPR, see Taylor 1974, Ioannou and Tao 1987, Wen 1988, Tao and
Ioannou 1988b, Lozano-Leal and Joshi 1990)

In the SAC, we require a particular plant to be SPR in the construction of the
Lyapnov function to ensure stability of the entire adaptive system. The ASPR-
ness of the plant is a suitable weaker requirefnent than SPR-ness. It is important
to note that the ASPR conditions do not require the plant to be stable.

The sufficient condition for an m-input/m-output n-dimensional plant to be
ASPR has been provided by Bar-Kana (1991) as follows:

ASPR condition:

(1) The plant is minimum phase

(2) The relative MacMillan degree of the plant is (n — m)/n

(3) Let the minimum realization of the plant be (A, B, C), then CB > 0 (positive
definite)

For SISO plants, the condition can be rewritten as follows:

ASPR condition: (for SISO plants)
(1) The plant transfer function is inversely stable

(2) The relative degree of the plant transfer function is 1

9



(8) The leading coefficient of the plant transfer function is positive

This condition for SISO plants has also been shown by Zeheb (1986) and
Steinberg (1988).

Remark 2.2: In practice, proper plants also are able to be ASPR. This is the
reason why the above conditions are the sufficient condition for a plant to be

ASPR.

2.4 Basic Simple Adaptve Control Algorithm
2.4.1 Problem Setup
Consider the controllable and observable LTI continuous system:

@(t) = Axz(t) + Bu(t) + g(t) (2.4.1a)
y(t) =Cz(1) (2.4.1b)

where A € R**", B € R™™™ and C € R™*" are constant matrices, z(t) € R",
y(t) € R™ and u(t) € R™ are vector functions denoting state vector, output
vector and control vector, respectively, and m < n. g(t) € R™ is an unknown but
bounded disturbance vector. Further consider the asymptotically stable reference
model that the plant output is required to follow:

Tm(t) = An2n(t) + Bnn(l) (2.4.2a)
Ym(t) = Crnm(?) (2.4.2b)

where A,, € R*»*" B, € R"*™ C,, € R™" @,(t) € R}, y,.(t) € R™ and
un(t) € R™.
Here we make the following assumptions on the plant and reference model.

Assumption 2.2:

(1) Plant (2.4.1) is ASPR, i.c. there exists a constant gain matriz K} such that
the following transfer matriz:

Gs(s)=C(sI — A)"'B (2.4.3)

is SPR. Where
A.=A+ BK;C (2.4.4)

10



(%)
A B

det[c 0

l #0 (2.4.5)

(3) Q; are solutions of the matriz equation:

[g g“&t 33]=f (2.4.6)

and no eigenvalue of )y is equal to the inverse of an eigenvalue of Ay,.

(4) uld(t), i = 0,1,---,m, denoting the i-th derivative of un,(t), evist and are
uniformly bounded.

The control objective is to find, without explicit knowledge of the plant pa-
rameters, the control input u(¢) such that the output y(¢) of (2.4.1b) tracks to
the output y,,(¢) of the reference model.

According to the CGT theory, if the plant parameters are known and g(t) = 0,
then the optimal input u*(¢) and optimal state @*(¢), which attain the perfect
model output following: e,(t) = y(t) — ¥,,(t) =0, Vt> 0 are given by

w*(t) = Suwm(t) + Slzum(t) + 513(t) (247&)
'U,*(t) = Szlwm(t) + Szgum(t) + Sz3(t) (247b)

where S;; (1,7 = 1,2) are appropriate dimensional matrices, which can be de-
termined from the solution of (2.4.6), and vector functions Si3(t) and S,3(t) can
be determined from the command input #n,(t) and are uniformly bounded from
Assumption 2.2.

In practice, it is not possible to realize the ideal control input (2.4.7b) because
we have assumed that plant parameters are generally unknown.

2.4.2 Control Algorithm

The control input is given as follows in the SAC.

u(t) = K(t)z(t) (2.4.8)
where
z(t) = [ey(t)T, @m(t)T, um(t)T]” (2.4.9)
i ey(t) = y(t) — y"(t) = y(t) — Y (t)
K(t) = [K.(t), Ki(t), Ku(2)] (2.4.10)

11



Here the gain matrix K(t) is adaptively adjusted by the following parameter
adjusting law:

K(t) = Ki(t) + Kp(t)
Ki(t) = —e,(1)z(8)TT — a1(t) K ((t)
Kp(t) = —e,(t)z(¢)TTp

e,t)Te,(t
o1(t) = o1 e gracty + o2

(2.4.11)

where
[;=T%>0,Tp=TT>0, 01,0, >0

The constructed SAC system is shown in figure 2.1. As shown in figure 2.1,
the SAC has a structure which ensures stability by an adaptive output feedback
with gain K,(¢), and attains the model output following using a feedforward with
adaptively adjusted gains K.(t) and K,(t) instead of CGT gains Sy and Sy,
respectively.

2.4.3 Stability of the Control System

Suppose that g(t) = 0 in (2.4.1) and further suppose that the perfect model
output following has been attained between the plant (2.4.1) and the reference
model (2.4.2). Then using (2.4.7), we have

%Ku(t)

Xm(t)
Kxt)

Un(t) ym(t) €y

(o YO
—>1 Plant

Model

Figure 2.1 Overall block-diagram of a SAC
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&*(t) = Az*(t) + Bu*(t) (2.4.12a)
y*(t)=Ca"(t) = yn(t) (2.4.12b)

From (2.4.1), (2.4.8) and (2.4.12), we can obtain the following error system:

é.(t) = Aces(t) + B(AK(t)z(t) — Sas(t)) + g(t) (2.4.13a)
ey(t) =Cey(t) (2.4.13b)

where
e,(t) = z(t) — z"(t), €,(t) = y(t) —y"(t) = y(t) — y(?)
AK(t) = K(t)— K*, K* =K}, Sn, S2)] (2.4.14)
and A, has been defined by (2.4.4). Furthermore, From Assumption 2.2 (1), there
exist positive matrices P and () satisfying the Kalman-Yakubovich Lemma:
AZP + PAc = —Q
BTp=C

Using these results, we have the following theorem concerning the bounded-

(2.4.15)

ness of all the signals in the control system.

Theorem 2.2: Suppose that Assumption 2.2 holds. Then the use of the control
input (2.4.8) guarantees the ultimate uniform boundedness of all the signals in the
control system.

Proof: Consider the positive definite function

V(t) = e.(t) Pe.(t) + tr {AK ()T AK(t)T } (2.4.16)
where AK(t) = K;(t) — K*. From (2.4.13)-(2.4.16), we have
%Et) = —e.(t)" Qes(t) + 2(AK(t)2(t) — Swa(t)) ey (t) + 29(t) ey (2)

+r {AK ()T AK ()T + AK (8T AR ()T} (2.4.17)
It follows from (2.4.11) that
tr {AK (T AK ()T + AK()TT AK ()T}
< —2e,(t)TAK(£)2(t) — 204(t)tr { AK ()T T AK(2)T }
—204(t)tr {AK()I7 KT} (2.4.18)

13



Then from (2.4.17) and (2.4.18) we have

) < r i@ 1l ea(t) 1P+, || ex(0) |

dt
—201(t))\mm[l",‘1] {i ” Akh(t) ”2}

=1

1201 (DAl {i &2 I Akn() ||} (2.4.19)

=1

where
ag = 2(maz || S2a(t) | +maz || g(@) ) I C |l (2.4.20)

and vectors Aky;(t) and k] are denoted as the ¢th row of matrices AK(¢) and
K™, respectively. Hence it is apparent from (2.4.19) that e,(t) and AK/(t) are
uniformly ultimately bounded (Corless and Leitmann 1981, Chen 1986). It can be
verified from this conclusion that e, (t), 2(t) and K(¢) are also uniformly ultimately

bounded and proof is complete.

2.5 Conclusions

In this chapter, the basic concept of SAC has been reviewed. The SAC is
a direct model reference adaptive control method based on the CGT theory and
has a simpler adaptive controller structure than conventional adaptive control

schemes. The boundedness of all the signals in the control system is ensured

under the ASPR condition.

14



3 Simple Adaptive Control for Plants not Sat-
isfying Almost Strictly Positive Real Condi-

tion

3.1 Introduction

The boundedness of all the signals in the SAC system is guaranteed under
the ASPR condition. However, most actual plants do not satisfy the ASPR con-
dition. Hence this condition imposes a severe restriction on the plant with respect
to the practical applicability of SAC. With this in mind Bar-Kana (1987a) first
suggested that the non-ASPR plant can be made ASPR by implementing a par-
allel feedforward compensator (PFC) H(s) on the plant. That is, if the plant can
be stabilized by a suitable dynamic output compensator H(s)~! and the gain of
H(s) can be chosen small enough, then the augmented plant with PFC becomes
ASPR and we can apply SAC for the thus obtained augmented plant. Recently,
Su and Sobel (1992) proposed a unified theory to apply the SAC method to non-
ASPR plants. However, their methods require e prior: knowledge of the dynamic
feedback compensator that stabilizes the plant, and it may be difficult to find such
a compensator for a plant that is unknown and of high order.

In this chapter the problem of designing a PFC is discussed. New PFC design
approaches which are concrete and systematic will be proposed.

3.2 Parallel Feedforward Compensator

Let us consider a non-ASPR plant G(s) and introduce a PFC F(s) as shown
in Figure 3.1. Then we have the following augmented plant:

Ga(s) = G(s)+ F(s) (3.2.1)

If the obtained augmented plant satisfies the ASPR condition, and, if, F(s) is
‘small’ enough compared with the plant G(s) (that is, the augmented plant output
Ya(t) is supposed to be approximately equal to the output y(¢) of the original
plant), then we can attain the control objective approximately by applying the
SAC method to the augmented plant G,(s) instead of the original plant G(s).

15



However the problem remains unsolved unless we can offer some concrete and
systematic approaches to realizing such an augmented plant with the PFC F(s).
The purpose of this section is to express a concrete method of realizing such a

PFC.

3.2.1 Parallel Feedforward Compensator Design for Single-Input Sin-
gle-Output Plants

The problem is to find a PFC F(s) satisfying the following conditions.
Condition 3.1:
(c1) Gu(s) is ASPR.
(c2) Ga(s) =~ G(s)
(c8) F(s) is physically realizable.

However, Condition (c2) raises the difficult question of whether it can be
realized over the whole frequency range or not. Hence we replace it with a more

realistic condition
(c2)’ There exists an wy > 0 such that, for given € > 0,
|Ga(Jw)| — |G(jw)l| < &

holds on 0 < w < wp.

u(s) ys) | y{s)

Figure 3.1 Augmented plant with PFC
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Now, we give the controlled plant transfer function as follows:

G@%:@gg% k, >0 (3.2.2)

where A(s) and B(s) are nth and mth order monic polynomials, respectively.
Further, the following assumptions are imposed on (3.2.2).

Assumption 3.1:
(1) The upper bound v* of the relative degree of the plant 4, = n —m is known.
(2) B(s)is a Hurwitz polynomial.

(3) The approzimate values of the leading coefficient k, and |G(30)| are known.

In preparation for investigating the design method of PFC, we give the fol-
lowing lemma.

Lemma 3.1: Consider the following augmented plant G4;(s) for the plant (3.2.2):

Gai(s) = G(s) + Fi(s) (3.2.3)
Fi(s) = fi/ Di(s), kp> f1 >0 (3.2.4)

Di(s): mth order monic stable polynomial.

Then, subject to Assumption 3.1, It follows that

(a) if 11 > 7, then G,y(8) is inversely stable, i.e. the numerator polynomial of
Ga1(s) is a stable polynomial, and its relative degree is .

(b) if 1 = vp—1, then Gay(s) is inversely stable and its relative degree is v, —1.

Proof: From (3.2.2)-(3.2.4), we have

Ga = {k,B(s)D1(s) + fLA(s)} /A(s) D1 (s)
= Bai(s)/Aai(s) (3.2.5)

Part (a): Let v1 = 7, + &, & > 0. Then degA,;(s) =n + v, + o and degB,;(s) =
n+ a. Hence, the relative degree of G,1(s) is 7,. From (3.2.5), the zeros of Gy (s)
are determined from the equation

B(s)D1(s) + fiA(s) =0, fi=hfi/k (3.2.6)
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Since degB(s)D;(s) > degA(s), every solution of the algebraic equation (3.2.6)
approaches the solution of B(s)D;(s) = 0 as f] tends to zero. Taking into account
that B(s) and D,(s) are stable polynomials, we may conclude that all solutions of
(3.2.6) are located in the left half-plane for sufficiently small f;. That is, Ba;(s)
is a stable polynomial for f, such that £, > f; > 0.

Part (b): If v = 7,—1, then degAs1(s) = n++v,—1 and degB,1(s) = n. Therefore,
the relative degree of G,1(s) is v, — 1. Further, the zeros of G,;(s) are given to
be the solution of (3.2.6). Rewriting (3.2.6) leads to

L+ [ {B(s)Di(s)/A(s)} = 0, fi' = kp/ fr (3.2.7)

Equation (3.2.7) means that zeros of G,;(s) coincide with the characteristic roots
of the closed-loop system whose loop transfer function is

Gar(s) = fi' {B(s)D1(s)/A(s)} (3.2.8)

Hence, as in the root locus method, the loci of (n —1) characteristic roots of (3.2.7)
on the s-plane move from the poles of G,1(s)’ (roots of A(s) = 0) to (n —1) zeros
of G41(s) (roots of B(s)D;(s) = 0) and the remaining characteristic root moves
along the real axis to minus infinity as the gain f’ increases from zero to infinity.
Since B(s)D(s) is a stable polynomial, it is apparent that all the characteristic
roots are located in the left half-plane for sufficiently large gain f}'. That is, G41(s)
is inversely stable for f; satisfying k, > f; > 0. m]

We now establish the following extension of Lemma 3.1 concerning the design

method of the PFC.

Theorem 3.1: Consider the following augmented system for the plant (3.2.2):

Ga(s) = G(s) + F(s) (3.2.9)
where
¥*-1
F(s)= )_ Fy(s), v>2 (3.2.10)
i=1
F(s) = fi/Di(s), i=1,...,v -1 (3.2.11)
D;(s) : (v* —t)th order stable polynomial.
and

(k> fi > - > freo1 > 05 (2)|G(50)| > [F(50)]
Then G,(s) is ASPR and satisfies Condition (c2)’.
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Proof: According to Zeheb (1986), Steinberg and Corless (1985) and Steinberg
(1988), an SISO plant is ASPR if (i) the plant transfer function is inversely stable,
(i1) its leading coefficient is positive, and (iii) its relative degree is one. Define

Gai(8) = Gai-1(8) + Fi(s), i=1,...,4" -1
Gao = G(3), fo=k,

Then the leading coefficient of G,;(s) is fo for y = 1,...,7* — 7,, and f; for
J=7Y" =1 +1,...,9 — 1. Thus, from the assumption, the leading coefficient of

(3.2.12)

Go(8) = Gaye—1($) is positive. Further, regarding G,;(s) as a new plant generated
successively from G,i—1(s) with Fi(s), we can conclude from Lemma 3.1 that
Go(s) = Ggyr—1(8) is inversely stable and its relative degree is equal to one.
Hence, G,(s) is ASPR according to Zeheb’s ASPR conditions stated above.

In the following, we will show that the condition (c2)’ will be satisfied under
the above stated assumptions. From the definition, the D;(s) are stable polyno-
mials. Hence |F;(70)| always takes a finite value. Further (Li_ral) |G(jw)| = 0 does
not hold since G(s) is inversely stable. First, let us consider the case where G(j0)
has a finite value. Then, from the assumption, there exist some positive integers
€ and ¢; such that '

|G(j0)| > &1 2 € > |F(50)|

Taking into account the continuity of |G(jw)| with respect to w, there always
exists a frequency range: 0 < w <w; (w1 > 0), satisfying |G(jw)| > €;. Similarly,
there exists a frequency range: 0 < w < w, (wy > 0), satisfying |F(jw)| < €. Since
parameters included in F(s) are design parameters, we can construct F(s) so as
to satisfy the relation F(jw) < ¢ for sufficiently small €. In other words, we can
assume w; > w, without loss of generality. Thus, by choosing wy = w,, we can
conclude that there exists an wy such that |G(jw)| > |F(jw)| on 0 S w < wp. It
follows that

|Ga(jw)l = |G(w)| £ |IG(3w) + F(jw)| = |G(jw)l|
< |F(jw)l
<e¢ (3.2.13)
holds on 0 < w < wp. In the case where lirr(1)|G(jw)| = 00, recognizing G(s) has
low-pass filter characteristics, we can easily see that there exists a frequency range

0 < w < wy, satisfying |G(jw)| < € for given € > 0. Hence a consideration similar
to that stated above holds. a

Remark 3.1: In the case where v* = 4, = 1, G(s) is ASPR under Assumption
3.1.
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Remark 3.2: It is possible to design PFCs which cover the condition (¢2)’ taking
the frequency gain of the expected responses into consideration.

Remark 3.3: In the case of actual implementation of PFCs, it is convenient to
reduce the order of the compensators. For example, if we choose D;(s) such that

D.s_i(s) = (s + i) D, -i+1()

2.
Dy(s)=1,0>0,¢e=1,...,v -1 (32.14)

then the compensators are constructed by using (y* — 1) integrators as shown
in Figure 3.2. it should be noted that these compensators are implemented in
the control algorithm only. That is, there is no need to construct any kind of
hardware.

u(s) ¥y®

> G >0—>
® + A
+
> L 1 R o 1 fi )
S+ S+ o2 S + Olys-1 + A
+
> fye-2 50
+ A
+
> fye-1—

Fe)

Figure 3.2 A practical realization of a PFC
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3.2.2 Parallel Feedforward Compensator Design for Multi-Input Mul-
ti-Output Plants

The design method of the PFC proposed for a SISO plant is extended for
MIMO systems.

Let G(s) be
G(s) = lgij(s)] = C(sI - A)T'B
1
= 52 (3.2.15)
where
p(s) = det(sI — A) (3.2.16)
®(s) = Cadj(sI — A)B = [¢;;(s)] (3.2.17)

Here G(s) is the transfer function matrix of the plant with a minimal realization
{A, B,C} and p(s) corresponds to the pole polynomial of the plant (Kouvaritakis
and MacFarlane 1976, MacFarlane and Karcanias 1976). Further, we introduce
a parallel feedforward compensator (PFC) matrix F(s) as shown in Figure 3.1.
Then we have the following augmented plant transfer function matrix:

Ga(s) = [9aij(3)] = G(s) + F(s) (3.2.18)

As stated in the SISO case, the problem is to find a PFC F(s) satisfying
Condition 3.1. In MIMO case, it is also uncertain whether or not we can find
F(s) that satisfies Condition (c2) over the whole frequency range. Hence, we
replace this condition with a more realistic one as follows:

(c2)* There exists an wo > 0 such that, for given € > 0, the following relation
holds on 0 < w < wy:

222 gair(jw)l = lgir(w)ll < € (3.2.19)
i=1 k=1
where gix(Jw) and guix(jw) are elements of transfer function matrices G(jw)
and G,(jw), respectively.

Now, we impose the following assumptions on the plant (3.2.15).

Assumption 3.2:

(1) Plant (3.2.15) is strictly minimum phase, i.e. the zero polynomial denoted
as z(s) (monic) is a Hurwitz polynomial.
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(2) The leading coefficient of ®[iy,19,...,0) (1 <4y <ty < - <t <m, h=
1,2,...,m) is positive, where ®[iq,12,...,14) denotes the principal minor of
order h formed from ®(s) by deleting all rows except rows iy,1,...,1; and

all columns except columns 11,1z,...,1;.
(3) The relative degree of gi;(s) denoted as 7;; is known and v;;;2; > 2.

(4) The following relation is satisfied between the relative order of pole and zero
polynomials and the relative degree of ¢;;(s), the diagonal elements of G(s).

degp(s) —degz(s) =d <D yi=do (3.2.20)

i=1

(5) The approzimate values of the leading coefficient of gi;(s) and |gii(j0)| are
known.

In preparation for investigating the design method of PFC, we give the fol-
lowing lemma which gives the basic procedure of the design scheme.

Lemma 3.2: Suppose that the plant (3.2.15) satisfies Assumption 3.2(1), (2) and
(4). Further, consider the following augmented plant Goy(s):

Gas(s) = lgasis()] = Gs) + G (s) (3.2.21)
Gy(s) = pfts) diaglpr f1(5), p2fa(S)s- -+ P fou(S)] (3.2.22)

where
ps(s): Hurwitz polynomial of order ny (pole polynomial of G4(s))
fi(s): monic polynomial of order (ny — v;; + 1)

and p;, 1 € M = {1,...,m} are positive and satisfy the following relation

5=5m>5m_1>--->51>50=2pi (3223)

i=1

where by is a leading coefficient of the polynomial

> ﬁ pifi(s) | ®lir, .., in] (3.2.24)

lsi1<...<ihsm 3 .
J#i .y
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here, Z denotes the sum of all combinations of index 1 < 1, < ... <
. lSi](...(ihSm
1, < m.

Then, on condition that no pole and zero cancellations occur on the augmented
plant G,4(s) defined by (3.2.21), Guy(s) satisfies Assumption 3.2(1), 3.2(2) and
3.2(4) and the relative degree of its ith diagonal elements g,z::(s) becomes v;; — 1.

Proof: The augmented plant G,;(s) is given as follows:

1

Pas(s)
Pes(s) = p(s)ps(s) :  pole polynomial of augmented plant  (3.2.26)

Gas(s) = B,(s) (3.2.25)

where
Das(s) = [Basii(s)] (3.2.27a)
(s) = | Bils)ps(s) + pifils)p(s), =
$asii(s) { £15(5)p5(), oy (3.2.27b)

From (3.2.26) and (3.2.27), it is clear that the relative degree of the ith diagonal
element of G,4(s) becomes v; — 1. Next, we have the following equation (see

Appendix 3.A).

det @, (s)
= (ﬁl ijj(S)) p(s)™
+.Zi:1 ﬁpjfj(s) ®[i1] ¢ ps(s)p(s)™ !

+ Z ﬁ ijj(s) (I)[i1,i2] }pf(s)zp(s)m—2

1<i1<i2<m =1 J
J# 2
+ e
m )

+ > I pifi(s) | @, . im1] p Pr(s)™"p(s)

1<) <..<ip-1<m L= /

J# yeeyim—1

+ det ®(s)pys(s)™ (3.2.28)

Since p(s) and ps(s) are the pole polynomials of G(s) and G/(s), respectively,
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there exists monic polynomial ¢;(s) satisfying the following equation:

> H pifi(s) | @lir,- . inl p = Baga(s)ps(s)™ "' p(s)* !
1<) <..<ip<m
;én ..... in
(3.2.29)
Further, we have (MacFarlane and Karcanias 1976)
I1 fi(s) = zg(s)ps(s)™" (3.2.30)
i=1
zg(s):  zero polynomial of Gy(s)
det ®(s) = bz(s)p(s)™ ! = b z(s)p(s)™? (3.2.31)

It follows from (3.2.29), (3.2.30) and (3.2.31) that det ®,4(s) can be rewritten as

follows:

m—1.
des yts) =| (T 1) 26106152 Bun(6)+Ee(6Dp ) o)™ oty
i=1 h=1
(3.2.32)
Hence, taking into account the fact that ps(s)p(s) = pas(s) is the pole polynomial
of Gyy(s), we get

Bazas(s (H p,) 2(s mg_j Brgn(s) + b2(s)p;(s) (3.2.33)

i=1

where

za(s): zero polynomial of Gyy(s)
ba: leading coefficient of det ®,4(s)

Using the fact that
deg ®[iy,...,15] > deg @iy, ... 25158541+ -5 2] + 7 — Visi, (3.2.34)
and the definition of G(s), we have (see Appendix 3.B)

deggnt1(s) +1 > deggn(s), h=1,....m—1 (3.2.35a)
gm(s) = 2(s)ps(s) (3.2.35b)

Further, we obtain

degzs(s)p(s) =n+ny—do+m (3.2.36)
degqi(s)=n+ny—do+m—1 (3.2.37)
deg z(s)ps(s) =n+n;—d (3.2.38)
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Now let us define the functions Rx(s), h € M = {1,...,m}, such that

Ra(s) = Ra-1(5) + bmorgm-n(s), h€ M = {1,...,m}  (3.2.39%)
Ro(s) = bz(s)ps(s) (3.2.39b)

boao(s) = I] izs(s)p(s) (3.2.39¢)

=1

It is also apparent that Ry (s) = Bszas(s) holds in (3.2.39a). From Assumption
3.2(4) and (3.2.34)-(3.2.39), it follows that

deg Rp—1(s) — deggm-n(s) > -1, he M (3.2.40)

Since relation (3.2.40) holds for all A € M, if we put 7,_; as a leading coefficient of
Ry_1(s), then the roots of Rr(s) = 0 tend to the roots of Rs—1(s) = 0 and minus
infinity (in the case where the equality holds in (3.2.40)) as 4_1/bm—s tends to
infinity. Thus if the roots of Rj_1(s) = 0 are located in the left half-plane and
Tho1 > T)m_h holds, then it follows that the roots of Ry(s) = 0 are also located in
the left half-plane. By applying the above results for h = 1,..., m successively, we
therefore reach the important conclusion that the roots of R,,(s) = 0 are located
in the left half-plane if the all roots of Ry(s) = 0 are located in the left half-plane

and relations _ _
Fho1 > by To = b= by, (3.2.41)

hold for all A € M. Taking into account that the zeros of plant (3.2.15) are asymp-
totically stable from Assumption 3.2(1) and ps(s) was given as an asymptotically
stable polynomial, we can easily see that Ro(s) = 0 is also an asymptotically sta-
ble polynomial. Further, from (3.2.23) and the definition of R(s), we can obtain
the following relations:

o> b h=0,....m—1 (3.2.42)
and N N
gh—l 2 bm—h+1 >> bm—h: h E M (3243)

Therefore we can conclude that every root of R, (s) = b.zos(s) = 0 is located
in the left half-plane. That is, the augmented plant G,;(s) satisfies Assumption
3.2(1).

Next, using the same operation to get (3.2.28) (see Appendix 3.B) the prin-
cipal minor of ®(s) of order r can be expanded as
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det q)af[i], I

( IT »ifi(s )P(S)’

J=H ey ir

k —'1 g ylr

+ X IT rifi(s)| @[kl g psls)p(s) ™"
ik

k1<’=2
kl o=ty

J=i .0y

J#k1,k2

( H ijj(s) (I)[kl,kz] pf(s)zp(s)'r-—’z

+ X I rifi(s)| k1, .. keea] § s(s) " "P(s)

kl (-w(k,._l Jzi],...,ir
By pokyy =it seie U \G#ERL ke
4061, ..., i]py(s) (3.2.44)

where

2

ky < <hp
k1o hp=11 000ty

denotes the sum of all combinations of indices {k;, k2, ..., kx} Cfi1, 22, .., 4} and
ky < k; < +-- < ky. Then, from Assumption 3.2(2) and p; > 0,7 =1,...,m, it is
apparent that the leading coefficient of @[z, .. .,1,] is positive, i.e. @q¢[tq,...,%,)
generated from the augmented plant ®,;(s) satisfies Assumption 3.2(2). Further,
using (3.2.34)-(3.2.39), we get

n+ny—do+m < deg Ri(s) = deg zag(s) (3.2.45)

Therefore, we have
deg pos(s) — degzo4(s) <do—m (3.2.46)
Thus, Assumption 3.2(4) is also satisfied. ]

Further, the following Lemma is given.

Lemma 3.3: In Lemma 3.2, let p;, 1 € L, p; =0,¢ € N, where L+ N = M.
Then the augmented plant G,s(s) satisfies Assumption 3.2(1), 3.2(2) and 3.2(4),
and the relative degree of its diagonal element g,4:i(s), ¢ € L, becomes v;; — 1.

Proof: The proof is given in the same manner used in the proof of Lemma 3.2
only by setting p; = 0, 7 € N in the proof of Lemma 3.2 and Appendix 3.B. O
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The above-mentioned Lemmas are summarized as follows. The augmented
plant G,(s) satisfies Assumption 3.2(1), (2) and (4) by adding G(s) in parallel
to the plant satisfying Assumption 3.2(1), (2) and (4). Moreover, the relative
degrees of the diagonal elements of G,s(s) become v; — 1. From these results,
by considering the obtained augmented plant as a new controlled plant, we are
able to compose the new minimum phase augmented plant of which the rela-
tive the degrees of diagonal elements are successively reduced while keeping the
characteristics given by Assumption 3.2(1), (2) and (4).

We can now obtain the following theorem for establishing the design method
for the parallel feedforward compensator.

Theorem 3.2: Suppose that plant (3.2.15) is non-ASPR and satisfies Assumption
3.2. Consider the following augmented plant (Figure 3.3) for the plant (3.2.15):

Ga(s) = G(s) + F(s) (3.2.47)
F(s) = 3 Fils) = maz () (3.2.48)

where
F(s) = diag{pi1/dia(s), - - - , pim/dim (5)] (3.2.49)

di;(s): monic stable polynomial of order (v;; — 1)
1= L.oooym — 1, .7 eM

pi; >0, ify;—i>0
{ b =0, if 75— <0 (3.2.50)
and p;; holds relation (3.2.23) which is defined from G,;_,(s) and Fi(s) for all
i € My, My = {1,...,vm — 1} by replacing G(s) with G.i—1(s) and Gy(s) with
Fi(s) in (3.2.21), where

Gai(8) = Gai-1(s) + Fi(s) (3.2.51a)
Gao(s) = G(s) (3.2.51b)

Further, we assume that Fi(s) are chosen so as to satisfy

TM-1

lgxx(70) > > loin/din(30)), k € M (3.2.52)

i=1

Then, the augmented plant G,(s) = Gaqy,-1(8) satisfies Condition 3.1 (cl), (c2)*
and (c3).
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20

Figure 3.3 Augmented plant including multi-parallel feedforward compensator

3.2.3 Augmented Control System

As shown in the preceding subsections, we can make non-ASPR plants vir-
tually ASPR using a parallel feedforward compensator. That is, the SAC can be
applied to the ASPR augmented plant with the PFC instead of the non-ASPR
original plant. This is summarized as follows:

Let the minimum realizations of the plant and the PFC be (A, B,C) and
(Ay, By, Cy), respectively. The augmented plant with PFC, which is made ASPR,
is expressed as follows:

Z,(t) = Aszo(t) + Bau(t) (3.2.53a)

Yo (t) = Cams(t) (3.2.53b)
where

z,(t) = [&(t)T, z,(t)T)T (3.2.54)
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A 0 B
A“'[o Afl’B“'[Bf]

C.=[C,Cy] (3.2.55)

Here, z(t) and ;(t) are state vectors of the plant and the PFC and y,(t) is the
output of the augmented plant.
Denoting the augmented error signal e,(t) as

€ay(t) = ¥a(t) — ¥n(?) (3.2.56)
we have the following control input according to (2.3.8)-(2.3.11).

u(t) = K,(t)z,.(2) (3.2.57)
za(t) = [eay(t)", 2m(t), um(t)"]"
.I{a(t) = K.(t) + I(pa(i)
K[a(t) = —eay(t)za(t)Tl‘I,, - O']a(t)KIc(t)
Kpo(t) = —eay(t)za(t)TTp,

€Caylt Tea t
o1a(t) = om 1+€ay(t)T€qy(t) + Oaz

Ire=T%2 >0, Tp, =T%, >0, 041,002 >0

(3.2.58)

Figure 3.4 illustrates the overall block-diagram of the augmented SAC system.

%Ku ®
Xm(t)
Kx(®)
um(t) ym(®) €ay(t) y(©
Model [—— Plant
+
Fs) |

Figure 3.4 The overall block-diagram of the augmented SAC system
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3.2.4 Numerical Simulations
The effectiveness of the proposed methods in this section (the design methods

of the PFCs) will be confirmed through numerical simulations.

i) Simulation results for SISO plants
Case 1: Rohrs’ example

In this simulation, the effectiveness of the PFC for the SISO plant with par-
asitics is shown by using Rohrs’ example (Rohrs et al. 1982). The simulations
were executed using a nominally first-order plant Go(s) = 2/(s+ 1) with a pair of
complex unmodelled poles, described by

G(s) = Go(s)G1(s), Gi(s) = 229/(s% + 30s + 229) (3.2.59)

and a reference model

Gnl(s) = 3/(s +3) (3.2.60)

According to the literature (Rohrs et al. 1982), the command input and the sensor
noise are chosen such that

Um(t) = 0.3 + 1.85sin 16.1¢, d(t) = 5.59 x 10~®sin 16.1¢

In the plant (3.2.59), the relative degree «, is three. But in this simulation an
overestimated value v* = 5 is used. Then, from Theorem 3.1, the PFC F(s) is
chosen such that

Flo)= ; £ile), File) = fif (s + o™ (3.2.61)
fi=100/10""1, @ =20, i =1,...,4

Adaptation parameters in (3.2.58) are given as follows:
', = diag[2 x 108,10, 10), ['p, = diag[3 x 107,1,1]

Oq1 = ]., Oa2 = 03, I(Q(O) =0
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The simulation result is shown in Figure 3.5. Compared with the simulation
result shown in Figure 3.6 which was obtained using the o-modification method
(Ioannou and Tsakalis 1986), it is apparent that the former gives a better tracking

performance.

Case 2: Stress test ezample

The proposed method is applied to the stress testing example given as a
showcase example by Masten and Cohen (1990). The fundamental statements of
the example are as follows:

Nominal and model plant:
Go(s) = Gm(s) = 1/(s* + 14s + 1)
Unmodelled dynamics:
u(s)/u;(s) =1/(0.33s + 1)

Unmodelled zeros:
03s+1

Sensor noise n(t):
Zero-mean with a 10 Hz band-limited gaussian distribution and a spec-
ified RMS value (RMS=0.2)

Command input and disturbance:
These are defined in Figure 3.7 and specified for 20 seconds in duration.

Here u(s) is the actual control signal and u;(s) is the ideal signal generated by
the adaptive controller. Note that the above-stated conditions correspond to the
most severe level-3 case in the showcase example. In this simulation, we assumed
that the actual plant had the following form:

G(s) = 3/(s* — 0.6s — 1)

The upper bound of relative degree v* was assumed to be three and, based on
Theorem 3.1, PFCs were given as

Fi(s) = 0.8/(s + 10)%, Fy(s) = 0.016/(s + 10)
The design parameters in the adjusting laws (3.2.58) are as follows:

1o = I'p, = diag[10%,10° k], 001 = 0.01, 04, = 0.001, K,(0) = 0
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+ + 4 0 4 + ¢ 4
10 20 (sec) 10 20(sec)

-2= disturbance -2+ cossand inpul

Figure 3.7 Command input and disturbance waveforms.

The typical output and control input responses without unmodelled zeros and
sensor noise are shown in Figure 3.8. Figure 3.9 shows the results when we take
all the constraints into consideration. In Figure 3.10, the simulation result is given
for case where Gp,(s) = 1/(s + 1). These results suggest the practical efficiency
of the proposed method.

1. 51

¥ pis)
¥y gls)
0 + 4
10 20 (scc)
-1. 61 reference output and plant output
20
0 A
20 (sec)
-20 control inpul

Figure 3.8 Stress test example: time response without unmodelled zeros and
Sensor noise.
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v plis)
\10 2:) (sec)
-1. 6 J{ reference output and plant output
501'
° {scc)
-504 control input

Figure 3.9 Stress test example: the case where all the constraints are taken into

consideration.
1. 6+
¥ pls)
Y g(s)
L] + 4
10 20 (sec)
-1. 64 reference output and plant output
650+

“sol

control input

Figure 3.10 Stress test example: first-order reference model.
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ii) Simulation results for MIMO plants

The effectiveness of the proposed method for MIMO plants is confirmed by
using 2-input and 2-output non-ASPR but minimum-phase plant models.

The plants to be controlled are given as follows.

Case 1:
[0 1 0 0 00
. -23 1 0 2 2
t)= 2.
(1) 0 0 0 1 :c(t)'+ 0 0 u(t) + g(?) (3.2.62a)
10 -2 3 13
(1 000
t)= 2.
y(2) 0010 x(t) (3.2.62b)
[ 2sin(27t/5)
cos(27t/7)
t)= 2.
() sin(27t/10) (3:2.62)
| 2cos(27t/5)
Case 2:
(1 0 0 0 0] 1 1
02000 -1 0
et)=[00 3 0 0|z@®+| -1 0 |ult)+gt) (3.263)
0 0040 0 1
[0 000 5] -1 -15
12 -1 -1 0
t)= ( t 3.2.63b
y(t) 01 0 -15 -1 (1) ( )
[ 2sin(27t/5) ]
cos(27t/7)
g(t)=| sin(27t/10) (3.2.63c)
2 cos(2nt/7)
| 2sin(27/3) |

The transfer function matrices of these plants are given as

Case 1:

1 252 —6s+5 25> —6s+7
(2 —35+3)(s2—3s+1)| s2—3s+4 3s2—9s5+38

G(s) = (3.2.64)
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Case 2:

2 -3
G(s) = (s=1)(s 3 2)(s—-3) (s-— 1&3 —4) (3.2.65)
(s —2)(s—5) (s —4)(s—5)
In Case 1, the relative degree d between pole and zero polynomials is 4 and the
sum of the relative degrees of diagonal elements dy is 4 (711 = 722 = 2), and, in
Case 2, d =4 and dy =5 (711 = 3,922 = 2).
The reference model that the above plants are required to follow is chosen to
be:

Gn(s)=diag[l/(s+1),1/(s + 1) (3.2.66a)
U (1) = [t (), Uma(t)]T (3.2.66b)

um1(t) : a rectangular wave of amplitude 1
Um2(t) : a rectangular wave of amplitude 2

Both the plants are non-ASPR. So, according to the design method proposed
in previous sections, we have to construct the parallel feedforward compensators

as follows.
Case 1:
F(s) = diag[0.08/(s + 5),0.08/(s + 5)] (3.2.67)
Case 2:
F(s)=F(s) + F(s) (3.2.68a)
Fi(s)=diag[0.1/(s + 20)%,0.01/(s + 20)] (3.2.68b)
F,(s) =diag[0.01/(s + 20),0] (3.2.68c)

The design parameters of the adaptive law (3.2.58) are given as
F[a = diag[lOSIQ, 10314], Fpa = diag[lOefg, 10214]

0a1 = 0.01, 042 =0.05, K(0) =0

Simulation results are shown in Figures 3.11-3.14. Figures 3.11 and 3.13 are
the simulation results for Cases 1 and 2, respectively, when disturbance g(t) is set
to zero, and Figures 3.12 and 3.14 are the results under the effect of disturbances.
In both cases, good tracking performances have been obtained.
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Next, we assume that the relative degrees +;; of diagonal elements of plants are
unknown but the upper bounds +}; (y§; = 73, = 3 for Case 1 and 7; = 4,73, =3
for Case 2) are known. In this case, the parallel feedforward compensators are
chosen as follows.

Case I:
F(s)=F(s)+ F(s) (3.2.69a)
Fi(s)=diag[0.8/(s + 5)%,0.8/(s + 5)?] (3.2.69b)
F>(s)=diag[0.08/(s + 5),0.08/(s + 5)] (3.2.69c¢)
Case 2:
F(s)=Fi(s)+ Fz(s) + F5(s) (3.2.70a)
Fy(s) =diag[1/(s +20)3,0.1/(s + 20)?] (3.2.70b)
Fy(s) =diag[0.1/(s + 20)?,0.01/(s + 20)] (3.2.70¢)
F3(s) =diag[0.01/(s + 20),0] (3.2.70d)

Figures 3.15 and 3.16 show the simulation results for Cases 1 and 2 without
disturbances, respectively. As compared with the results given in Figures 3.11 and
3.13, off-sets of tracking errors are made to appear by use of an extra compensator,
which must be added because the true values of 4;; are unknown.
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2.54

y,(t)
T ymz(t)
T 'Y1(t)
4 ym1(t)
4
0 + 4 y |

20(s)

(a) plant outputs and model outputs

(b) control inputs

Figure 3.11 Simulation results for Case 1 without disturbance (relative degree +;;
is exactly known)
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yz(t)

Yo (t)
Y, (t)
Y (®)
20(s)
-2.5
(a) plant outputs and model outputs
3ooTt
0 — ..  — -
20(s)
u,(t)
e 3
-300+

(b) control inputs

Figure 3.12 Simulation results for Case 2 without disturbance (relative degree 7;;
is exactly known)
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(a) plant outputs and model outputs

(b) control inputs

Figure 3.13 Simulation results for Case 1 with disturbance (relative degree v;; is
exactly known)
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(a) plant outputs and model outputs

300 -

v

‘. \ 20/(s)

-300 1
(b) control inputs

Figure 3.14 Simulation results for Case 2 with disturbance (relative degree ;; is
exactly known)
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(a) plant outputs and model outputs

(b) control inputs

Figure 3.15 Simulation results for Case 1 without disturbance (upper bound 7;;
of relative degree +;; is known)
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y,(t)
Yma(t)
y,(t)
ym1(t)
0 ' ————t ' y

{ 20(s)

i

4

-2.51
(a) plant outputs and model outputs
300

uz(t)

20(s)

u,(t)

-30041

(b) control inputs

Figure 3.16 Simulation results for Case 2 without disturbance (upper bound ~;;
of relative degree «;; is known)
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3.3 Compensation for Plants with Unmodelled Dynam-
ics

As shown in the preceding section, if the plant is minimum phase then we can
systematically design the PFC which makes non-ASPR plants ASPR. However,
there are many plants for which it is not clear whether they are minimum phase
or not. In fact, the plant may be non-minimum phase even if the modelled plant
is minimum phase because of the existence of unmodelled dynamics.

In this section, we deal with the following SISO plants with unmodelled dy-

namics.

y(t) = G(s)[u(t)] (3.3.1a)
G(s) = Go(s)(1 + A(s)) (3.3.1b)

where Go(s) denotes the modelled part (dominant plant) of the plant and A(s)
denotes the multiplicative uncertainty (unmodelled dynamics) of the plant. The
notation G(s)[u(t)] denotes the output of a system at time ¢ with transfer function
G(s) and input u(t). New design schemes of compensators, which make non-ASPR
plants with unmodelled dynamics to be virtually ASPR, are suggested.

3.3.1 Almost Strictly Positive Real Condition for Plants with Unmod-
elled Dynamics

In preparation for investigating the design scheme of compensators, we first
discuss the ASPR. condition for plants with unmodelled dynamics.

With regard to the ASPR-ness of the plant with unmodelled dynamics, we
give the following lemma.

Lemma 3.4: Suppose that A(s) € RHy, and ||A(S)||leo < 1. Then, the system
(1 + A(s)) is SPR and proper. :

Proof: From the assumptions on A(s), it is apparent that (1 + A(s)) is stable
and proper.
Let us denote

A(jw) = a(w) + jb(w) (3.3.2)
Since || A(s) ||o< 1, for all w, we have

a(w)? + b(w)? < 1 (3.3.3)
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It follows from (3.3.3) that | a(w) |< 1 for all w. Thus, we have

Re[l + A(jw)] =1+ a(w) >0 (3.3.4)

and the desired result is obtained. O

From the above-mentioned lemma, it is clear that the overall plant G(s) is
ASPR under the following assumptions.

Assumption 3.3 :

(1) The modelled plant Go(s) a) is minimum phase, b) has relative degree of 1
and c) the sign of the high frequency gain is positive

(2) A(s) € RHy, and || A(s) ||o< 1

Assumption 3.3 is a sufficient condition for the plant to be ASPR. That is, in
practice there exist ASPR plants even if Assumption 3.3, especially Assumption
3.3(2), does not hold. However, it may be difficult to judge whether the plant
with uncertainty || A(s) ||c= 1 is ASPR or not.

3.3.2 Basic Design Strategy of Parallel Feedforward Compensator

Let us consider the introduction of the PFC F(s) to the plant (3.3.1). The
resulting augmented plant is expressed as follows:

Ga(s) = G(s) + F(s)

= (Go(s) + F(s))(1 + HLI;)(S)) (3.3.5)
H(s) = Go(s)"'F(s) (3.3.6)

Now, consider
Gao(8) = Go(s) + F(s) (3.3.7)

to be the augmented modelled plant (modelled plant for the augmented plant),
and consider A

- A6
1+ H(s)

to be the new unmodelled dynamics. From Assumption 3.3, a guiding principle

Aq(s) (3.3.8)

of the PFC design is given as follows:
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Guiding principle of designing F(s):
(1) F(s) is stable.
(2) the augmented modelled plant G,o(s) is ASPR

(8) Au(s) € RHy and || Ag(s) ||o< 1

If we can design the PFC so as to satisfy the above-mentioned conditions, then
the augmented plant becomes ASPR even if the original plant with unmodelled
dynamics is non-minimum phase.

3.3.3 Practical Design of Parallel Feedforward Compensator

In practice, we cannot utilize A(s) to design the PFC because A(s) is un-
known. With this in mind, here we show a practical design scheme of the PFC.
Now we impose the following assumptions on the plant (3.3.1).

Assumption 3.4:
(1) Assumption 3.3(1) holds (Go(s) is ASPR).

(2) A(s) € RH., and there exists a known rational function r(s) € RHy such
that
| AGw) [S]r(jw) |, Yw (3.3.9)

Under this assumption, we have the following theorem with regard to the
PFC design.

Theorem 3.3 : Under Assumption 3.4, the augmented plant G,(s) with the
PFC:F(s) designed according to the following design condition satisfies Assump-
tion 3.3.

Design condition of F(s):
(1) F(s) is stable and strictly proper

(2) i)(1+ H(s)) is proper, inversely stable and its high'frequency gain is positive.

i)
| gy s 2 (3.3.10)

where

H(s) = Go(s)"F(s) (3.3.11)
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Proof : Implementing F(s) on the plant, the augmented plant G,(s) can be
expressed as

Ga(s) = G(s) + F(s)

= (Guls) + FN(+ T ppy)
= Gols)(1 + H(s))(1 + Tf%‘)) (3.3.12)
Here
Gio(s) = Go(s)(1 + H(s)) (3.3.13)
is the augmented modelled plant and
Au(s) = ———A(s) (3.3.14)

1+ H(s)

is the augmented unmodelled dynamics. From the design condition (2)i) of F(s)
and Assumption 3.4(1), it is apparent that the augmented modelled plant G,o(s)
satisfies Assumption 3.3(1). Next, since | A(jw) |< | r(jw) |, it follows that

| Aa(jw) |€] ra(jw) |, Yw (3.3.15)
where
ra(s) = ler(s) (3.3.16)

Further, from the design condition (2)ii), we have

| 7a(s) |lo< 1 (3.3.17)
Thus, Assumption 3.3(2) is also satisfied. m]

3.3.4 Use of a Pre-compensator

Assumption 3.4 is also not necessarily satisfied on many practical plants. We
therefore show that Assumption 3.4 can be relaxed by using a pre-compensator.
Let us introduce the pre-compensator Q(s) as shown in Figure 3.17. Defining

_ 01(s)
=06

the augmented plant G,(s) can be represented as follows.
Ga(s)=G(s)Q(s)
_ 1 (s
= GO(S)QI(S)(q2(s) + Q2(3 )
=Gao(s)(1 + Aq(s)) (3.3.18)

B>

—
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u(s) y(s)
> Q) > 66)

Gy(s)

Figure 3.17 Augmented plant with pre-compensator

where

Gao(8) = Go(s)q1(s) (3.3.19a)
A,

_ 1 Al
6=t i) ! (3.3.19b)

Then we have the following theorem.
Theorem 3.4 : We impose the following assumptions on the plant (3.3.1).

Assumption 3.5:

(1) The modelled plant Go(s) is minimum phase and its relative degree is v
=2)

(2) A(s) is stable and there exists known rational function r(s) satisfying the
following relations

1
Qo(S)r(s) € R’
and | A(jw) |<| r(jw) |

for any Hurwitz polynomial go(s) of order n,.

Under Assumption 3.5, we give the pre-compensator as follows.

) = q1(s)
Qs) = g2(s)
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q1(s): (v —1)th order stable polynomial
g2(s) 1 maz{(y — 1) , ny}th order stable polynomial

Then the augmented plant

Ga(s) = G(5)Q(s) = Gao(s)(1 + Au(s))

satisfies Assumption 3.4.

Proof : From(3.3.19a), G.o(s) = Go(s)qi(s). Since Go(s) is minimum phase and
has relative degree v and ¢;(s) is a (4 —1)th order stable polynomial, it is apparent
that G,o(s) satisfies Assumption 3.4(1). Next, using (3.3.19b), we have

~ . 1 A(jw)
IAa(]w)|SIW—1| Iq(]w)l
1 r(jw)
Slage M aGey! (3320)

Since ga(s) is max{(y—1),n,}th order stable polynomial, it follows from Assump-
tion 3.5(2) that there exists 7,(s) € RH,, such that

1 r( ]
—_ 1]+ <| Fa(jw 3.3.21
for all w. Hence, Assumption 3.4(2) also holds. 0

The above theorem shows a possibility that we can construct the augménted
plant for plants with minimum phase modelled part by implementing the pre-
compensator. If || 7,(s) ||co< 1 holds for 7,(s), satisfying relation (3.3.21), then
we can directly apply the SAC method to the augmented plant G,(s) with pre-
compensator. In this case, we have no need to implement the augmented reference
model which will be discussed in the following subsection. On the other hand,
in the case of || 7,(s) ||o=> 1, we have to introduce the PFC in addition to pre-
compensator.

3.3.5 Improvement of Tracking Performance

As derived in Theorem 3.4, if the plant has minimum phase modelled part
and stable unmodelled dynamics, then we can design a new controlled plant which
satisfies Assumption 3.4 by using a pre-compensator. Further, implementing the
PFC to the plant which satisfies Assumption 3.4, we have the augmented plant
satisfying Assumption 3.3 as shown in Theorem 3.3. As discussed in Bar-Kana
(1987), Bar-Kana and Kaufman (1988) and in the preceding sections however, if
the influence of the PFC F(s) is large, then the exact output tracking between
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the original plant and the original reference model is not attained even if it is
attained for the augmented plant with the PFC. This is summarized as follows.
Let us consider the reference model represented by

Ym(t) = Gm(s)[um(?)] (3.3.22)

The actual control objective is to achieve

ey(t) = G(s)[u(?)] — Gm(s)[um(é)] >0 (3.3.23)

However, denoting the output error signal between the augmented plant and the

reference model as

eay(t) = ya(t) - ym(t) ) ya(t) = Ga(s)[u(t)] (3324)

the actual tracking error is expressed from (3.2.1) and (3.3.22) as

ey(t) = —F(s)[u(t)] + eqy(?) (3.3.25)

Thus, when e,,(t) ~ 0 is achieved, the actual tracking error substantially depends
on the “order” of the signal F(s)[u(t)]. That is, if the influence of F(s) is large,
then the actual control objective is not attained even if e,,(t) ~ 0 is achieved.

From this point of view, in the following, we propose a new construction of
the SAC system with the PFC.

Recall that we can construct an augmented plant with the PFC which satisfies
Assumption 3.3 by considering Guo(s) = Go(s)(1 + H(s)) as the new modelled
plant. Thus, the modelled plant of the augmented plant with PFC is expressed by
Go(s)(1 + H(s)). Taking this into account, we now introduce the following new
reference model which the augmented plant is required to follow:

Yam(t) = Gm(s)(1 + H(s))[um(?)] (3.3.26)

In this case, denoting the output tracking error signal between the augmented
plant output and the output of the augmented reference model as

€ay(t) = Ya(t) = Yam(?) (3.3.27)
we have from (3.3.12),(3.3.26) and (3.3.27) that

Gole)1 + H()1 + [ Al u(t)

= Gu(s)(1 + H(s))[tm(t)] + &ay(2) (3.3.28)
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Thus, we get

Go(s)(1 + ﬁH()A(s»[uun
= Gm(e)um ()] + T Bes (V) (3-3:29)
Considering that
ey(t) = Go(s)(1 + A(s))[u(t)] — Gm(s)[um(?)] (3.3.30)

it follows that the actual plant can be expressed as

ey(t) = F(s>%ﬂ(s)ms)[u(t)l + I—Jr—lg(—s—)[eaya)] (3.3.31)

Thus, if €44(t) ~ 0 is achieved for the augmented system, then the actual tracking
error depends on the “order” of the signal —-CL- T H(s) A(s) [u(?)] .

From the above-mentioned fact, taking into account that we give the PFC so
as to satisfy

1

| 1+ H(jw)

AQw) <1, Yw

we can conclude that the use of the augmented reference model on the augmented
plant makes the influence of the parallel feedforward compensator smaller than
the use of the original reference model. Further, if

| TG AU <

holds for any frequency range wy < w < wj, then the influence of the parallel
feedforward compensator may be neglected on the frequency range wp < w < wy.

As discussed above, introducing the augmented reference model, we can con-
struct a new control system which is less influenced from the PFC. However, in
the SAC system, increase in the order of the reference model leads increase in the
order of the adaptive controller. Therefore, in practice, instead of introducing the
augmented reference model, we give the augmented reference input:

tam(t) = (1 + H(s))[um(t)] (3.3.32)

Thus the new reference model is given by

Yam () = Gm(8)[tam (1)) (3.3.33)
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with the original reference model transfer function and the augmented reference

input u,m(t) as new reference input.

Remark 3.4: It should be noted that the augmented reference input uy., (1)
has to satisfy Assumption 2.2(4) in order to construct the above-mentioned SAC
system. It is clear that u,,,(t) satisfies Assumption 2.2(4) if (1 + H(s)) is stable
and proper and Assumption 2.2(4) holds on the original reference input u,(2).

Remark 3.5: In the case where the augmented reference modelis used, the SAC
controller has the same form as given in (3.2.57) and (3.2.58), only replacing z,(t)
with Z,(t) = [€ay(), Zm(t)T, tam (t)]7-

3.3.6 Numerical Simulations

In this subsection, the effectiveness of the SAC design method for plants with
unmodelled dynamics is confirmed through numerical simulations for two types of
plants; case 1: non-minimum phase plant with non-ASPR modelled plant and case
2: time delay system with unmodelled dynamics. We use the following reference
model in all simulations.

1
Gn(s) = pory) (3.3.34)
U (t):  rectangular wave with amplitude 1

It 1s noted that the main simulation results shown below are the results
implementing the augmented reference model.

Case 1:(Application to the non-minimum phase plant with non-ASPR modelled
plant)

In this simulation, we use the simulation example based on Tao and Ioannou
(1991). The plant to be controlled is given as follows.

G(s) = Go(s)(1 + A(s)) (3.3.35)
where
1 _ —0.1s?—4s+2
Go(s) = Tos—3) A(s)=p s (3.3.36)

The total plant is therefore expressed as

_ —0.1ps® +(1—4p)s+3+2u
Gls) = (s2=—s-3)(s+3)

(3.3.37)
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Thus, this plant is non-minimum phase for all 4 > 0. We give g = 0.03 here. It
is assumed that Go(s) is known and A(s) is unknown but a rational function r(s)
such that | A(jw) |<| r(jw) | is known. r(s) is set to be

r(s) = 0.02s% + 0.1s + 0.04
s+1.8
as illustrated in Figure 3.18. Since the modelled plant Go(s) is non-ASPR and its
relative degree is two, we give the pre-compensator as :

(3.3.38)

s+2
)= s+ -
d
and we set (e = 0.28s +0.023 (3.3.40)
ST 0254+ 0.8 N

so as to satisfy (3.3.21)(Figure 3.19). Further, since || 74(s) ||oo> 1, we design the
PFC as follows.

s+3
s2+5s+15
The design parameters in (3.2.58) are given as

F(s) = (3.3.41)

', = diag[107,10,10], T'p, = diag[10°,10,10], 0, = 0, 042 = 0.03

Figures 3.20 and 3.21 show simulation results. In spite of the fact that the plant
was non-minimum phase, good tracking performance was obtained. On the con-
trary, in the case where the augmented reference model was not used, as shown
in Figure 3.22, the control performance became worse.

53



Magnitude response
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Figure 3.18 Gain diagram of r(s); Case 1.
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Figure 3.19 Gain diagram of 7,(s); Case 1.
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Figure 3.20 Simulation results for Case 1.
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Figure 3.21 Estimated parameters of Case 1.
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Figure 3.22 Simulation results for Case 1; no use of augmented reference model.
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Case 2:(Application to time delay system)
Consider the following plant with time delay 7,.

G(s) = Go(s)(1 + A(s))e™™*, 14=0.1 (3.3.42)
s+2
Golo) = 3318, 6
—s+0.2
Al ==

We suppose that Go(s) is known but A(s) and the time delay 74 is unknown.
Further, suppose that the rational function:

1.12s + 0.11
= 3.4
r(s) s +0.5 (3:343)
such that
| &= 4+ A(jw)e ™ — 1 |<| r(jw) | (3.3.44)
is known (Figure 3.23). From ||7(s)||e > 1, the PFC is set to be
Fs)= — T2 (3.3.45)

s? +100s + 150
The design parameters in (3.2.58) are given as

I';, = diag[10%,10,10], T'p, = diag[10%,10,10], 043 = 0, 0,2 = 0.3

Figures 3.24 and 3.25 show the simulation results. We can obtain good track-
ing performance in spite of the presence of time delay by using a reasonable PFC.
In this simulation, Considering that the time delay part can be approximated with
a stable rational transfer function, for that approximated system, we can guar-
antee the stability. In fact, for example, using the Padé approximation, we can
approximate the time delay part with a stable proper rational transfer function.
However, as shown in this simulation, in practice, it is not so important and not
necessary to find out the rational function with which the plant uncertainties can
be exactly approximated. We are required to have only the information about
r(s) which satisfies relation (4.13).
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Figure 3.23 Gain diagram of r(s); Case 2.
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Figure 3.24 Simulation results for Case 2.
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Figure 3.25 Estimated parameters of Case 2.
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3.4 Conclusions

The SAC method is based on the ASPR-ness of the controlled plant. This is
a weak point of the method in the practical application because most real plants
do not satisfy this ASPR condition. In this chapter, it was proved that the in-
troduction of compensators makes it possible to apply SAC algorithms to general
non-ASPR plants subject to assumptions which are necessary for the construction
of regular robust adaptive control systems and/or robust control systems. First
of all, the use of the PFC was considered as a practical SAC design option. A sys-
tematic and concrete design approach of the PFC which makes non-ASPR plants
virtually ASPR was proposed under the assumption that the plant is minimum
phase. Secondly, the ASPR condition for the plant with unmodelled dynamics
was derived and, using this condition, the design scheme of the PFC was shown.
Furthermore, it was shown that the use of a pre-compensator expanded the appli-
cable class of the SAC. The effectiveness of the proposed methods was confirmed
through several types of numerical simulations.

3.5 Appendix

Appendix 3.A
Let ¢,(s), @5(s), ..., P,(s) be the columns of ®(s). Then, using the unit

vectors ey, €y, ..., €,, from (3.2.27), we have
@u(s) = [prfi(s)p(s)er + @1(s)ps(s), pafa(s)p(s)es + Py(s)ps(s),
w5 Pmfm(8)p(s)em + @ (s)ps(s)] (3.A.1)

It follows that the determinant of ®,(s) can be expressed as follows by using the
basic transformation of a determinant:

det®,(s) = det[p1 f1(s)p(s)er, p2fo(s)p(s)es + dy(s)ps(s),
<oy P S (5)P(8)em + @ (3)ps(3)]
det[p,(s)ps(s), p2fa(s)P(s)er + D5(s)ps(s),
oo o1 Pmfm(8)P(8)em + B (s)ps(s)] (3.A.2)

Repeating this transformation 2™ times for all columns, we can obtain (3.2.28).

Appendix 3.B
From (3.2.29), we get

1<) <..<ip<m

degqn(s) = deg > II pifi(s) | Ly - - »in)
=1
JF# el

h
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—degpy(s)™ "1 — degp(s)"*™! (3.B.) -

It follows that

deggn(s) — deggn—1(s)

— deg Z ﬁ pjfj(s) (1)[7:17 SRR zh]

1S£1<---<ih5m j=1

JF# L yeenstp
m
—deg > [T pifi(s)| ®lia, ... in)
1<i1<..<ip1€m | | i=1
J#il:"'vih—]
+ny—n : (3.B.2)

Since

(

deg ) II »rifi(s) ]| ®s,---,in)
1<i1<...<tp<m =t
F£ 2y enth
- 1<% g.zf’éghsm deg ;].=I1 pJfJ(s) q)[zla ey 7'h,] (3B.3)
L FFEU ety

([ m

deg 2 [T rifi(s)| @liv,-- - inai]
1< <. Lip—1<m \ i=1
J#H,...,th_l
- 1Si1<1.’?gi:f-1§m deg H ijj(S) q’[ili cee aih—I]
j#ill"',ih—’
(3.B.4)
and relation (3.2.34) holds for all indices {é1,...,2,} C M, we have
m
1Si12nl..{1<a;:hSm deg ]11 p]fJ(s) @[211 ceey Zh]
FF yeenin
Z maz deg H pJfJ(s) (D[il)""is—l’i3+la"-)ih] +n—7,-s‘-,

;éz!:.l..,zh

(3.B.5)
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If we set

m
1 JPOE  |dee ,I;I, pifi(s) | ®lirs- .. in-]
j#il:'":ih—l
m
= deg ]_-_[ p]f](‘s) (D[kli"',kr—lak'r-l-l’-",kh]
j#’fly---,kr]-:ll,kru ----- kn

(3.B.6)

then we obtain from (3.B.5) and (3.B.6)

(3.B.3) — (3.B.4)

> maz |deg I pifi(s) | e, -- - tsm18s41y-- -2 00] § + 10— Vi,

—deg pjfj(S) @[kl,...,kr_l,kr+1,....,kh]

irs

J#k1 ke =1 krg1,eikn

2 deg H pJfJ(s) Q[kla‘")kr—lakr-{-la-'-)kh.] +n""7k,-kr

3=1
1£K1 yeekn
—deg II pifi(s) | ®lk1,. .. kroay krgr, - oo, Ka
I1#k1 ,...,kr1..=11,kr+1,...,k;,

Therefore, from (3.B.2), it follows that

deggn(s) — deggn_1(s) > -1 (3.B.8)

and the desired result is obtained.
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4 Robust Simple Adaptive Control

4.1 Introduction

As shown in the preceding chapter, SAC is robust with regard to disturbances,
parasitics and so on. Such properties have also been confirmed through several
types of numerical simulations and practical experiments by many researchers
(Bar-Kana 1987b, Bar-Kana and Kaufman 1988, Th et al. 1987, Bar-Kana et al.
1983, Meldrum and Balas 1986, Kaufman et al. 1984 and Kawasaki et al. 1994).
This robust performance of the SAC controller is due to the SAC’s ability to make
a high gain adaptive feedback control system subject to the ASPR-ness of the
controlled plant. However, in the case where large external disturbances and/or
state-dependent disturbances are present, of course, the control performance might
become worse.

In this chapter, the suppression of disturbances in the SAC system is discussed
and it will be shown that the use of an additional robust adaptive controller in the
SAC algorithm significantly imposes the robustness of the control system when
external disturbances exist.

4.2 Robust Simple Adaptive Control for Single-Input
Single-Output Plants

In this section, we will discuss the design problem of the SAC system with
an additional adaptive controller for reducing the influence of disturbances.

4.2.1 Problem Setup

Consider the following SISO plant with external disturbance.

x(t) = Az(t) + bu(t) + big(t, 2(t)) (4.2.1a)
y(t) = cTx(t) (4.2.1b)
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where g(t,(t)) is an unknown disturbance which depends on a measurable state
vector. The asymptotically stable reference model which the plant output is re-
quired to follow is given as follows:

T (t) = Ap@m(t) + brun(t) (4.2.2a)
Ym(t) = cp@m(?) (4.2.2b)

Here we impose the following assumptions on the plant (4.2.1) and reference model
(4.2.2).

Assumption 4.1:

(1) The linear part of the plant (4.2.1) and the reference model (4.2.2) satisfy
Assumption 2.2.

(2) There exist positive but unknown constants py and p; and measurable state
vector Y(t) such that

lg(t, z(t))] < po + pl|FR)]| (4.2.3)
7(t) = Ha(t) (4.2.4)

The objective is to design a controller so as to be able to adaptively reduce
the influence of disturbances.

4.2.2 Control Algorithm

The SAC controller with the robust adaptive control term is given as follows:

u(t) = k(t)Tz(t) + u.(t) (4.2.5)

where the first term of the right hand side is a regular SAC input and the second
term u,(t) is a robust adaptive control term.
The parameter vector k(t) is adjusted by

K(t) = ilt) + kp(1)
ki(t) = =Trz(t)ey(t) — or(t)ki(t)

kp(t) = -FPz(ﬁ)ey(t) (4.2.6)
al(t) = Ulﬁ_yg()t)—z 4+ o2

66



where
T;=TT>0,Tp=T%>0, 61,0, >0

The above parameter adjusting law has been defined by (2.3.11) as the form
given in the MIMO case. Further, we give the robust adaptive control input u,(t)
as follows:

w(t) = { ~PO za(t)sgne,(t), HB z6(t)ey(t)] > €
o {—{ﬂ(t)Tza(t)}zey(t)/e, if|B(¢)T 25(t)e, (1) < € (4.2.7)

where
B(t) = [Bo(®), /)T, 2z6(2) = [L,IIF@INT, €>0

and the parameter vector B(t) is adjusted by the following parameter adjusting
law.

B(t) = B,(t) + Bp(1)

Bi1(t) = Tp1zs(t)ley(t)] — a5()B,(2)
B2() = Tonzs()le (0

op(t) = UBI% + op2

(4 .8)

where
Pﬁ[ = Pg} > 0, Fpp = P};p >0, op1,082 >0

4.2.3 Stability of the Control System

The stability analysis of the SAC system with the robust adaptive controller
follows the stability analysis of the regular SAC system discussed in subsection
2.3.3.

We have the following error system between the ideal system (2.3.12) with
g(t,2(t)) = 0 and the plant (4.2.1) with control input (4.2.5).

é-(t) = Ace(t) + bu(t) + big(t, z(t)) (4.2.9a)

e (t)=cTe,(t) (4.2.9b)
where

A, = A+ Ek*bcT

uc(t) = (k(t) — k")72(t) — Sa(t) + un(2)
According to Assumption 4.1(1), the linear part of (4.2.9) is SPR. It follows from
Kalman-Yakubovich lemma that there exist positive symmetric matrices P and
Q satisfying:

67



ATP + PA. = —-Q
¢ 4.2.10
Pb=c ( )

Set a positive definite function as

2
V(t) = ex(t)" Peo(t) + ) C(t) T ¢(1) (4.2.11)
=1
where
Ci(t) = ki1(t) — K7, Go(2) = B,(2) — B
ﬁ‘ = [PO + S;sv pl]Ta S;S = m:m: |Sz3(t)|
iy = Ty, Tar=Tpr
Differentiating (4.2.11) along the trajectory (4.2.9) and taking into account rela-
tion (4.2.10) yields

%ﬁt) = —ex(t)TQex(t) + 2u(t)ey(t) + 2g(t, 2(t))ey(t)

+2g(t, 2(8))(bs — b)” Pe,(t) + 222: GAOTHGE)  (42.12)

=1

From the parameter adjusting laws (4.2.6) and (4.2.8), we have

Z: ¢:(t) T Ci(2)
< - ; oi(1)Ci(t) Ti G(t) — o1 (8)C, (1) T1 k"
06t B~ k(D) — K20y (1)
+B(t) = BT zp(t)ley (2] (4.2.13)

where 04(t) = o1(t) and o2(t) = op(t). From (4.2.12) and (4.2.13), we obtain

ﬂg—tl < —e.(t)Qex(t) - 2 Ej: ai(t)C:(1) T () + 2u,(t)ey (2)
~201 ()€, (¢) T7 k™ — 205(2)¢,(t) T7 B°
+28" 25(t)le, ()] + 2(B(8) — B 25(t) e, (2)]
+2g(t, x(t))(b; — b)T Pe,(t) (4.2.14)

From (4.2.7), if |B(t)T25(t)ey ()| > ¢, then, u,(t) = —B(t)Tz4(t)sgne, (t). Substi-
tuting this into (4.2.14) leads to
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—“”;ﬁt) < —e.(t)TQe.(t) — Zsza,-(t)c,-(t)TI‘;,Ig,.(t)

i=1

—20:(t)¢, (t)TPl_Ilkt - 202(t)C2(t)TP;IIﬁ‘
+29(t, 2(1))(b1 — b)T Pe(t)
= Vi(2) (4.2.15)
If |B(¢)Tz5(t)ey(t)| < €, then

2 < V() + 2 (4.2.16)

holds. Moreover, from (4.2.4) we have

TN < 12 |llle=(l + | H2* (@)l < pslle=()] + o4 (4.2.17)
where p3 = ||H|| and py = maz | He*(2)||. It follows from Assumption 4.1(b) and
(4.2.17) that

g(t, (1)) (b1 — b)" Pe(t) < lg(t, ())ll|b1 — bl| Az P]lle<(t)]]
< Amaz[Pll|b1 — Bl(po + pr[[T(2) IDlle= ()]
< palles()II* + palle=(t)l (4.2.18)

where p4 = Apoz[P)]|b1 — bl|p1p3 and pp = Amaz[P]l|b1 — b|(0 + p1p4). Hence,
from (4.2.16) and (4.2.18) we can obtain

0 < —Orninl@] = 20O + 205D
23 5O AmilLalIGOI + 201 e PG 0
$203(0 Tl NG00 + 26 (4219)

Since o;(t) > 0, if Apin[@] — 2p4 > 0 holds, then dV/(t)/dt becomes negative
definite for large values of e,(t) and {;(t),7 = 1,2. That is, e,(t) and ¢;(¢),7 = 1,2
are uniformly ultimately bounded (Corless and Leitman 1981 and Chen 1989). It
can easily be verified from this conclusion that all the signals in the closed-loop
system are also uniformly ultimately bounded.

From the above-mentioned fact, we have the following theorem with regard
to the stability of the robust SAC system.

Theorem 4.1: Suppose that Assumption 4.1 is satisfied. Further suppose that
there exists a positive scalar €, such that ||b; —b|| <&1 <A min[@)/ (201 || H || Amaz [ P))-
Then, all the signals in the control system (4.2.1) with the control input (4.2.5)
are uniformly ultimately bounded.
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4.3 Robust Simple Adaptive Control for Multi-Input
Multi-Output Plants

In the preceding section, we have shown the design scheme of a robust SAC
system for SISO plants with a sort of state-dependent disturbance. In this section,
the method will be expanded to the one for MIMO plants.

4.3.1 Problem Setup

Consider the following MIMO plant with a state-dependent disturbance.

&(t) = Az(t) + Bu(t) + Big(t,7) (4.3.1a)
y(t)=Cz(i) (4.3.1b)
y(t) = Ha(t) (4.3.1c)

where € R", y € R™ and u € R™ denote state vector, output vector and
control input vector, respectively. g(¢,7) € R™ is an unknown disturbance which
depends on the measurable state vector (t).

Further consider the following asymptotically stable reference model.

@ (t) = Am@m(t) + Bt (1) (4.3.2a)
Ym(t) =Cnzm(t) (4.3.2b)

The control objective is to have the plant output y(¢) track the reference
model output y,,(t).

Here we make the following assumptions on the plant (4.3.1) and reference
model (4.3.2).
Assumption 4.2:

(1) The linear part of the plant (4.3.1) and the reference model (4.3.2) satisfy
Assumption 2.2.

(2) Denoting
g(tv g) = [gl(tay)s e agm(ta y)]

there exist positive unknown constants po; and py; such that

|gi(ta y)l < poi + Pli”?(t)”, t=1,...,m (4'3°3)
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4.3.2 Control Algorithm
The SAC controller with the robust adaptive control term for MIMO plants
is given as follows:
u(t) = K(t)z(t) + ug(t) (4.3.4)

The parameter matrix K(t) is adjusted by the following parameter adjusting
law which was given in (2.3.11).

K(t) = Ki(t) + Kp(t)
Ki(t) = —e,()2(t)"T1 = o1(8) K1 ()

i I(p(t) = —ey(t)z( )TI‘P (4.3.5)
o1(t) = vty + o

where
[;=TT>0,Tp=T%>0, 01,0, >0

Further, denoting wr(t) = [upi(t), -, urm(?)]T and e,(t) = y(t) — y,.(t) =
[ey1(2), -+, ey2()]T, the robust adaptive control input ug(t) is given as

une(t) = —Bi(t)Tzp(t)sgney(t), iflB;(8)Tzp(t)ey(t)] > e
ri(t) = { (BT za(t) Pl es, B zpDe(t) <& D)
where

Bi(t) = [Bui(t), But)]", z6(t) = [L, W, & >0

The parameter vectors B;(t),: = 1,...,m are adaptively adjusted by the following
parameter adjusting laws.

(t) = It(t) + ﬁP;(t)

Bri(t) = Tonzp(t)leyi(t)| — opi(t)Br(t)

Bri) = Tarizs D)) (437)
opi(t) = opui 1:.3' {07 + 0pai

where
Fp[,’ = th- >0, Fpp,' = PgPi >0, 0p1i, 0p2i > 0

4.3.3 Stability of the Control System

The stability of the control system can be verified in the same manner as
in the SISO case. From (2.3.12) and (4.3.1), we have the following error system
between the ideal system with g(¢,%) = 0 and the controlled plant with control
input (4.3.4).
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é;(t) = Aces(t) + Buc(t) + Big(t,7) (4.3.8a)
e,(t)=Ce,(t) (4.3.8b)

where
A. = A+ BK*C

uc(t) = (AK(t) — K*)Tz(t) — Saa(t) + ur(?)
AK(t) = K(t) - K*
According to Assumption 4.1(1), the linear part of (4.3.7) is SPR. It follows from
Kalman- Yakubovich lemma that there exist positive symmetric matrices P and

@ satisfying:

AZ‘P‘I‘PAc:—Q

pp_ T (4.3.9)

Set a positive definite function

V(t) = e(t)" Pea(t) + r{AK (T AKLT} + Y Con!) ThCon(t) (43.10)

=1
where

AKy(t) = Ki(t) — K*, Cpri(t) = Br(t) — B;
B; = [poi + s}, puil, s} = maz [si(t)]
Saa(t) = [s1(2), -+, sm ()T

From (4.3.8)~(4.3.10), we have

W) _ e (1) Qeat) + 2ua(t)ey () + 29(t ) ey (2)

dt
+29(t,7)7(B1 — B)T Pe,(t)
+tr {AK (T AK ()T + AK ()07 AK (1))

+2 ) Cor(8) T ani(t) (4.3.11)
=1
It follows from (4.3.5) that
tr {AK (DT AK (1) + AK (DT AK(2)T }

< —2e,(t)T MK (t)2(2) — 201(t)tr { AK ()T T AK ()7}
—20;(t)tr {AK ()07 KT} (4.3.12)
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and from (4.3.7) that

Z: Cﬁ!i(t)TPE}iéﬁ!i(t)

< =Y opi(t)ar(t) Takarn(t) — Y 0pi(t)a:(t) ' T51:8t

i=1 =1

+308:(0) - BT za(t)lexi(t)] (43.13)

=1

Then we have from (4.3.11)~(4.3.13) that

av(t)

— S —ex(t)TQex(t) + 2un(t)ey(t) — 201(t)tr {AKH(OTT AK ()" }

—201(t)tr {AK(t)[ T KT}
—2 i o5i(t)Cpr:(t) T 516 i(t)

-2 il aﬁi(t)Cmi(t)TPE}iﬁ:
+23° B 2g(0) e (1) + 2§;[ﬂ,~(t) B z(0)len 1)
+29(t,)7(B: - BT Pe,(1 (43.14)

From (4.3.7), if |B;(t)Tz5(t)e,i(t)| > ¢; for all ¢, then we obtain

D) < et Qeult) - 2t)ts {AKA(OTF AK (07}

—20,(t)tr { AK(t)TT KT}

-2 i 0i(8)Cpri(t) T51:€ (1)

i=1

—2 i opi(t)¢ari(t) T 5187

i=1

+29(t,9)7(B1 — B)T Pe,(t) = Vi(t) (4.3.15)

and if |8;(t)Tzp(t)eyi(t)] > € for i € L and |B;(t)T zgeyi(t)| < €; for s € N, where
L+NCM=/{1,2,...,m}, then we have

4V] <V +2) e (4.3.16)
dt iEN

Further, if |3;(t)Tz5(t)e,i(t)] < €; for all ¢, then
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—— <W()+ 225,- (4.3.17)

holds. Moreover, from (4.3.1c) we have

IFON < 1Hlle=()I] + | H2" )| < psllez(t)]] + pa (4.3.18)
where p3 = ||H|| and p4 = mag |Hz*()||. It follows from Assumption 4.2(b) and
(4.3.18) that

9(t,9)7 (B — B)" Pe(t)
< g 7@ Br = BllAmaz[Pllle= ()l

< AnaslPlI1B1 - B {i(po,- ; pl,-nw)u)} les(®)]

i=1

< palle(OI + palles (1)l (4.3.19)

where

pa = A'm.a:l:[-P]“Bl - B“p3 Zpli

i=1

PB = Amasg|P)||B1 — B|| (Z poi + pa Z Pli)
=1 i=1

Finally, from (4.3.17) and (4.3.19) we can obtain

av(y) < —(Amin[Q] — 2p4)ll€=(D)I|? + 2p8]|e=(t)]]

di
—201(t)Amin[TTY] {i llAin(t)||2}

i=1

+201 ()] {f; IIkE‘llllAkn(t)“}

i=1

—2 Z aﬁi(t))‘min [PEIIi]||Cﬁn(t)||2Cﬁi(t)
i=1
+2 ; Amaz[Ca1losi(IBI NI @)

+ i € (4.3.20)

i=1

where vectors Aky;(t) and k] denote the :th row of matrices AK/(t) and K*,
respectively. Thus, if Ain[@] — 2p4 > 0 holds, then all the signals in the control
system are uniformly ultimately bounded.
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From the above conclusion, we have the following theorem with regard to the

stability of the MIMO robust SAC system.

‘Theorem 4.2: Suppose that Assumption 4.2 holds. Further suppose that the
following relation is satisfied.

’\min[Q]
Domasl ] (z ,,) 1A

Then, all the signals in the control system (4.3.1) with the control input (4.3.4)
are uniformly ultimately bounded.

> ||B: — B||

4.4 Numerical Simulations

In this section the effectiveness of the proposed methods with robust adaptive
control term is confirmed through numerical simulations.
4.4.1 Simulation Results for Single-Input Single-Output Plants

The simulations were generated using a second-order non-ASPR plant with

a state dependent disturbance, described by

y(t) =G(s)[u(t) + g(t,y)), G(s)= 323+050 (4.4.1a)

9(t,y) =20y(t) sin 107t + 10sin{5y(¢)} + 5sin 207t + 1 (4.4.1b)

and a first-order model:

m(t) = Gn(s)lum(®)), Gmls) = —

In (4.4.1a), G(s) is non-ASPR with relative degree of 2. Therefore we used
the following PFC.

(4.4.2)

0.01
s+10 }
Design parameters of adaptive control laws (4.2.6) ~ (4.2.8) were set to be

(4.4.3)

F(s) =

I'i=Tp=Tp1=Tp, = 10313, oy = op = 0.01
oy = 05, = 0.001, € =0.01,k(0)=0, B(0)=0
The simulation result using a regular SAC algorithm is shown in Figure 4.1. In

this case, as shown in Figure 4.2, the introduction of the robust adaptive control
term u,(t) significantly improved the tracking performance.
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Figure 4.1 Simulation results: the use of the SAC algorithm.

¥ pls)

y gls)

\

30+

01

=

-301

lok 20 (sec)

reference oulpul and plant output

e

M

control input

Figure 4.2 Simulation results: the use of the robust SAC algorithm.
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4.4.2 Simulation Results for Multi-Input Multi-Output plants

Let us consider the following 4th order 2 input-output ASPR plant.

1 000 —4 -1
&(t) = g 3 g g 2(t)+ }1 _g (w(t)+F(t)sinmt)  (4.4.4a)
0004 0 1
y(t) = 1 _03 (1’ 120]:c(t) (4.4.4b)
F(t) = 1 1 (1’ g]m(t) (4.4.4¢)

The reference model which the plant is required to follow was given by

Ym(t) = Gm(i)["fa(t)] 1 (4.4.5)
Gm(s) = diag [m s+ 1]

Um(t) = [um1(2), uma(?)]
um1(t) : a rectangular wave of amplitude 1
umz2(t) : a rectangular wave of amplitude 2

Further, the design parameters of the adaptive adjusting laws (4.3.5) ~ (4.3.7)
were set to be

T'; = diag[10°;, 103L;]), Tp = diag[l10%l;, 10%1,]
Tpr; = diag[450, 450], T'gp; = diag[20, 20}, : = 1,2
gy = 0.1, 09 = 005, 0p1i = 2.0, gp2i = 08, & = 0.1, 1= 1,2 )

Simulation results are shown in Figures 4.3 and 4.4. Figure 4.3 is the result
with the regular SAC algorithm and Figure 4.4 is the result with the robust SAC
algorithm. It is apparent that the use of robust SAC algorithm effectively reduced
the influence of the disturbance.
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Figure 4.3 Tracking errors with the SAC algorithm.

0.057
ey1(t)
0 S - 20(sec)
eyz(t)
-0.05+

Figure 4.4 Tracking errors with the robust SAC algorithm.
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4.5 Conclusions

The SAC has a great robustness with regard to disturbances and parasitics
as shown in the preceding section. However, in the case where large external
disturbances and/or state-dependent disturbances are present, the influence of
disturbances is evident.

In this chapter, a robust SAC algorithm with robust adaptive control term
which is aimed at positively eliminating the influence of disturbances was con-
sidered for both SISO and MIMO plants with state-dependent disturbances. If
the order of the disturbance can be evaluated by a measurable state vector, then
the influence of the disturbance can be reduced effectively by using the proposed
method with estimated values of the upper bounds of disturbances. The effec-

tiveness of the proposed method was confirmed through numerical simulations for
both SISO and MIMO plants.
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5 Decentralized Simple Adaptive Control

5.1 Introduction

As we have shown in the previous sections, the SAC scheme can easily be
applied to MIMO plants. However, controlling the large-scale system might be
difficult due to an interconnection of subsystems with unknown parameters, non-
linearities and disturbances. Decentralized control methods (Sandell et al. 1978,
Huseyin et al. 1982, Ikeda et al. 1983, Chen et al. 1988, 1991), especially decen-
tralized adaptive control methods, are an effective way to handle the large-scale
system.

The problem of designing decentralized adaptive control systems for large-
scale systems has been considered by many researchers in the last few years, includ-
ing Hmamed and Radouane (1983), Ioannou (1986) and Gavel and Siljak (1989).
Hmamed and Radouane have discussed adaptive feedback stabilization of large-
scale interconnected systems. loannou developed decentralized adaptive control
systems for a class of large-scale systems formed from arbitrary interconnections
of subsystems with unknown parameters, nonlinearities and bounded disturbances
and proved the stability of the control system by using the M-matriz condition.
Gavel and Siljak have proposed a decentralized adaptive control method provided
that certain structural constraints called the range condition are satisfied. The
satisfaction of either the M-matrix condition or the range condition seems to play
a fundamental role when we consider the stability of the decentralized adaptive
control system.

In this chapter, the decentralized SAC method will be considered. It is verified
* that if (i) each subsystem satisfies either the M-matrix condition or the range
condition and (ii) the fundamental linear part of each subsystem safisfies regular
design conditions of the SAC, then the design procedure of the SAC can be applied
to each subsystem. Further, it is shown that the implementation of the robust SAC
controller significantly improves the control performance of decentralized SAC
systems when the interconnection outputs among each subsystem are available as
measurement signals.

Yousef et al. (1989) discussed a similar decentralized adaptive control method
which will be presented in this section. However, their approach is valid only for
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ASPR plants.

5.2 Decentralized Simple Adaptive Control

We first consider the case where the large-scale system can be divided into
SISO subsystems with arbitrary interconnections from each subsystem.

5.2.1 Problem Setup

Consider an interconnected LTI system composed of N subsystems described
by

S;: :i},g(t) = A,-a:i(t) + biu,‘(t) + P,-'v;(t) + g,-(t) (5.2.1&)
w;(t) = Q,’(B,'(t), te€N, N= {1, ceey N} (5210)

where &; € R™, u; € R! and y; € R! are the state, the control input and the
output of the subsystem S;, respectively, and v; € R™, w; € R' are the intercon-
nection input and output vectors associated with S;, respectively. Furthermore,
g; € R™ is a bounded disturbance such that ||g;(t)|| < g7, where g} is an unknown
but positive constant. A;,b;,¢;, P; and @); are matrices and vectors which have
appropriate dimensions. It is assumed that the pair (A;,b;) is controllable and
the pair (A;, ¢;) is observable. Further, we assume that interconnection inputs v;
satisfy the following relations.

vi(t) = fi(t, w) (5.2.2a)
w(t) = [w:(t)7, -, wn(t)]
N
I1F:(¢,w)ll < ;fij”wj(t)" (5.2.2b)

where ¢;; are unknown but positive constants. The overall system S, which is
composed of subsystems S;, can then be expressed as

S &(t)=A=(t) + Bu(t) + Pv(t) +g(t) (5.2.3a)

y(t)=Ce(t) (5.2.3b)

w(t) = Qz(t) (5.2.3¢c)

wherez = [27,---,2%)7, y = [y1,-- - yn)T, v = [ug, - -, un)T, v = [oF,- -, 0])T

and g = [g7,---,g%]T and A = diag[A;], B = diag[b;], C = diag[cY], P = diag[P}]
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and Q = diag[Q;] are the constant block diagonal matrices with appropriate di-
mensions.
The stable reference models Sy, for each subsystem S; are given by

SMi : :bmi(t) = Amimmi(t) + bmiumi(t) (524&)
Ymi(t) = Chi®mi(?) (5.2.4b)

where @m; € R*™, um; € R! and yn; € R
The control objective is to have the output of each subsystem S; track the
output of each reference model Syy;.

5.2.2 Basic Design of Control System

Suppose that the subsystem S; and the reference model Syy; satisfy- the fol-
lowing assumptions:

Assumption 5.1:
(1) The linear part of each subsystem S;,+ € N is ASPR. That is, there exists
a constant gain k2; such that the transfer function:
Gei(s) = eT(s] — Au)™'b; (5.2.5)
is SPR, where A, = A; + kxbicT.

(2) The matriz P;,1 € L,L C N can be factored as

Pi=bp!l, i€l (5.2.6)

for some constant vector p; € R™. That s, subsystems S;,1 € L belong to a
stabilizable class in the decentralized system whose coupling parameters are
within the range of the control input.

(3) Each subsystem S; and its reference model Spy; satisfy Assumption 2.2 (3),
(4). That is, Broussard’s model output following condition is satisfied for
each subsystem.

Under the above assumptions, the local control laws for each subsystem are
given by the form of the SISO SAC as follows:

wit) = ki(t)T2:(t) (5.2.7)

82



zi(t) = [ey‘-(t),:cm,'(t)T, umi(t)]T
eyi(t) = yi(t) — ymi(t)
k,‘(t) = [kei(t),kzi(t)T1 kui(t)]T

The parameter vectors k;(t) are adjusted by

ki(t) = ki) + kpi(?)
kri(t) = —Trizi(t)eyi(t) — oi(t)kni(t)
kpi(t) = —PPiZi(f)eyi(t)

oi(t) = aliﬁy;iy;(%f + 0

(5.2.8)

where
Iy = I‘}; >0, I'p; = P;, >0, 015,02 >0

5.2.3 Stability of the Control System

Suppose that disturbances and the inter-connections do not exist in the plant
(5.2.1). Then, under Assumption 5.1 (3), the perfect output following is attained
for each subsystem. That is, we have

&2(1) = Azt (t) + biul(d) (5.2.9a)
Ui(t) = ymilt) = F(2) (5.2.9b)
u:(t) = Sliwmi(t) + S2iumi(t) + SSi(t)) t€N (5.2.90)

where 2], y’ and u] are the optimal state, the optimal output and the optimal
control input, respectively. Sji,j = 1,2 are the appropriate dimensional vector
and scalar, respectively, and S3;(t) is a bounded scalar function (See Section 2.2
or 2.3). Define error signals between the real states and the ideal states by

é5i(t) =ai(t) — =(t) (5.2.10a)
eyi(t) = 4i(t) — v (t) = i(t) — ymi(?) (5.2.10b)

From (5.2.1) and (5.2.9), we have the following error system:

éz,‘(t) = Aa-ez,-(t) + b,-C,-(t)z,-(t) — b;Sa; + P."U,'(t) + gi(t) (5.2.11&)
eyi(t) = cf esi(2) (5.2.11b)
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where

Ci(t) = ky(t) — K, = [k%;, S, Sai]T (5.2.12)

Here, from Assumption 5.1(1), there exist positive definite matrices H; and
G; satisfying the Kalman-Yakubovich Lemma:

ATH; + HiA; = G

Hib: = c; (5.2.13)
Let us consider the following positive definite function:
N
V(t) =) Vi) (5.2.14a)
i=1
Vi(t) = Vu(t) + Vai(t) (5.2.14b)
Vai(t) = eqi(t)T Hieni(t), 1€ N (5.2.14c¢)
Cri (t T L), ieK=N-1L
Vai(t) = ! tat 5.2.14d
’ ( ) { Clt + p‘Y)TFI:I(CIt( )+ P'Y), 1€ L ( )
Clx(t = - H 7_[1’0"”1017" p>0
From (5.2.11) and (5.2.13), we have
dVii(t
1) o —enlt) Gieai(t) + 26 2Dt
+2v;(t)PiTH;ex,-(t)
+2(=b;S3;(t) + 9,(t))T Hie(t) (5.2.15)

Furthermore, from the parameter adjusting law (5.2.8), if ¢ € K, then we
obtain

Vai(t -
zdi ) < —205i€(8) TR Crilt) — 205 (1T k7
—2¢;(1)T zi(t)e,i(t) (5.2.16)
and if : € L, we obtain
Vai(t -
50 < 20sh(OTTR A - 20 (OTF ]

—2¢;(t)" 2i(t)eyi(t) — 2p4i(t)?
—202:pY T Ci(t) — 200py T3k}
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< =2¢(8)" zi(t)eyi(t) — 2p4i(2)°
—02(Cr(t) + o) 5 (Cn(t) + o)
+oau(ki(t) — 1) v5 (Ki(8) — p7)

Here, it follows from (5.2.1c) that
llw; N < N1Q;llllex; (Nl + 1R N[l

and from (5.2.2) that

|vi(¢)T PT Hiei(t)|

N
< ;(IIPfIIIIH¢II€.-J'IIQJ'II||ezj(t)ll)llem~i|

N

+ 2 (P& Qs 5 (@)D el

i=1

Thus, for : € K, we have

. N
d‘cfit(t) < =il Gilllexi(t)]I* +2§&jllezj(t)llllexi(t)ll
N
+23 Rijll= (@)l llexi(t)]

i=1
+2]16:55i(¢) — g (Nl Hellllex: (D)
—202 Amin [C7 €1 (2) I
+20% Amax [T R NIC 5 ()]

where

Ri; = | P Hillé;1lQ:ll , i€k, jEN
Further, since it follows from (5.2.2) and (5.2.18) that

() p;pl vi(t)
< )‘max[pipg‘]”i(t)Tvi(t)'
< Amaz [Pipi’r]’\max [&f:r]

N
X Z; 1Qi11*(le=i()I1* + 2/l (D)llle=: (@)l + Il (2)1*)
]:
where &; = [€i1, &2, - .., &in]T, we obtain
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(5.2.18)

(5.2.19)

(5.2.20)

(5.2.21)

(5.2.22)



2v;(t) T pieyi(t) 2
= ~2(Vpeul®) = 5(/A) ilt)p) + 5o 0l pipTvilt)

]. - N * *
5P Apides X; 1Q; I*(le=i(II* + 2llz5 @) lllew (D)l + =5 (D)
J=

(5.2.23)

IA

where Ay = Anaz[P;pT) and Mg = Amaz|€:€7]. Thus, from Assumption 5.1(2) and
(5.2.23), for ¢ € L, we have

dVi(t 1 _ N
) < AmalGlles) + 55 dpides 1@ e
J=
+20b:S5(8) — g Hillew(2)]

N
+p7 i 2 1Qi 17125 () ez (2)l
=

1 _ N .
+op7 ke 2 11Q; Pl ()|
Jj=1

2
~02: A min LIS K () + oI
+02iAmac (LT I K7 = 2| (5.2.24)

From (5.2.20) and (5.2.24), we can obtain

avit) X avi(t)

dt

|
Ing

N
< = AminlGillle(t)I1?
=1

N
+23° 3 Rijllesi(tllles; ()l

€K j=1

N
+23 > Ryl (d)lllex )

ieK j=1

S |
+2_[1b:S5i(t) — gl Hillllez:(2) |

i=1

1 _ N
+5 207 Maides D 11Qillew ()12
=1

i€l

N
+ 207 Anide 2 11Q5 115 ()l e (2)l

i€l Jj=1
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+3 ZP"I)‘p:/\ezZIIQJII [EAG]

1€L
—2 Z 02i min[PIil]||€Ii(t)||2
€K
= o2 dmin[CEC 1 () + oI
i€l
+2) 02idmaa LIRS IS 1 (D)

ieK
+ z T2idmae( L' ) || K — P7”2 (5.2.25)

i€l

Let us define the matrix M = [m;;] as follows:
/\min[Gi] - 2R1]) i =.7 EN
mi; = C e 5.2.26
! { _(Rij + Rﬁ)’ i#7, ,J€EN ( )
where

Ri; = || BlI| H:ll€is 1 @51, 1€ K, jeN
R;; =0, t€L,j€N
Then, supposing that M > 0 and taking into account that there exist con-

stants such that ||z} (t)|| < zf, |S3| < S3; and ||g;(2)]| < g5, we have from (5.2.25)
that

(5.2.27)

W) < g alM]S Nl
dt pame
(Z Amxe,) maz | QiI° z: lew (I
JGL
+ Z Rpillex()||
j=1
23 oadmanlTICHOIP
ieK
— " oshminl LTI (E) + o
i€l
123 oadmael TR IO
€K
+g (5.2.28)

where
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j=1 JeEL
Ry = | _+20IbIS5 + g)lIH:ll, i€ K

S o e Qi
jEL ‘
" ho0balS, + o) IE, i€

and

g = + P 12’\1»)‘612”Q3”2 52

i€l

+ 2021' maz[PIil]”k: - P"Y"2
€L

Taking the parameter p in (5.2.28) as

P > Z AI’JAﬁJ max ”Q “ /)‘mm[M]
JEL

we can finally obtain

VO < X et

=1
+ Z Rpillex ()l
i=1

23 edminlTIC LI

€K

- Z O2i m'm[FI 1]||Ch(t) + P’7||2

€L

42 02 dmas[ T IR NI ()]

ieK
+9

where

Am = Amin[M] — (

JEL

2ZRuw + 3007 i 1Q:l* 25

> 2)‘11:’\&1) mar I1Q:ll* > 0

(5.2.29)

(5.2.30)

(5.2.31)

(5.2.32)

(5.2.33)

From the above inequality, we can conclude that dV/dt becomes negative
definite for large values of |le;;(t)|| and ||Cf;(2)||, © € N. Thus, it is apparent
that e;(f) and {j;(¢) are uniformly ultimately bounded, and it can easily be

verified from this result that all the signals in the control system are also uniformly

ultimately bounded.
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The above conclusion leads to the following theorem with regard to the basic
stability of the decentralized SAC system. ’

Theorem 5.1: Suppose that Assumption 5.1 holds and the matriz M = [m;;]
defined by (5.2.26) and (5.2.27) is positive definite. Then, the use of the local
inputs (5.2.7) guarantees the uniform ultimate boundedness of all the signals in
the control system.

Remark 5.1: A sufficient condition for the M-matrix defined by (5.2.26) and
(5.2.27) to be positive definite is given by

AminlGi] > Y Rij+ Y Ry, 1€ K

JEN jeK
Amin[Gi]) > D Rji, 1€L (5.2.34)
j€K

(Ioanou 1986).

5.2.4 Control System with the Parallel Feedforward Compensator

In Theorem 5.1, we assume that all the subsystems are ASPR. However, as
mentioned in the preceding section, the ASPR condition may be a severe restric-
tion. As a countermeasure to this problem, we will introduce PFCs for non-ASPR
subsystems.

Let the linear part G;i(s) of subsystem S;, ¢ € J, J C N be non-ASPR.
Consider the augmented transfer function with a PFC:

Gai(s) = Gi(s) + Fi(s) (5.2.35)

ui(s)

| Gi(s) )’i(;) Yai(:)

+

Fi(s)

Figure 5.1 Augmented plant with PFC
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as shown in Figure 5.1. Fj(s) is chosen so that the resulting augmented transfer
function G,;(s) is ASPR. Suppose that the above stated PFC F(s) is given in the

form of the state equation:

:'Bf,'(t) = Af,':l}f,'(t) + bﬁui(t) (5.2.36&)
ys(t) = ch@si(t) (5.2.36b)

Then the resulting augmented ASPR subsystem is expressed by

-{ALB','(t) = Z,;Ei(t) + Eu;(t) + P.;v,-(t) + gi(t) (5237&)
70 =w:(t) +yu(t) + =), i€J (5.2.37b)

N

where

zi(t) = [=:(0)7, 2", 3:(t) = [0:(6)7, 017,
Z,' = diag[A,-,Af,-], Ei = [b?,b:};]T,

c; = [6?1 c?i Tv ?i = [Pz'T)O]T'

It should be noted that the augmented subsystem S; does not satisfy the range
condition even if the original subsystem .S; satisfies the range condition because
P; is factored as follows:

P; = b;pf — [ 0‘ ] pr. (5.2.38)

Then, under Assumption 5.1 with non-ASPR subsystem 5;,7 € J, the char-
acteristics of the overall controlled plant with PFCs are as follows:

Subsystem S;,1 € L — LN J: ASPR and satisfying the range condition.

Subsystem S;,¢ € LN J: ASPR with PFC (original subsystem S; satisfies
the range condition).

Subsystem S;,1 € K — KN J: ASPR and not satisfying the range condition.

Subsystem S;,i € K NJ: ASPR with PFC (original subsystem S; does not
satisfy the range condition).

Further, for the augmented subsystem S;,7 € J, there exists a constant 75:
such that the transfer function:

G = E,'(SI - ZC,')‘IE (5239)
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is ASPR, where A; = A; = k;b;€7, and thus there exist positive definite matrices
H; and G; satisfying the Kalman-Yakubovich Lemma:

e (5.2.40)

Considering the above mentioned characteristics of the augmented plant with
the PFC, we have the following theorem with regard to stability of the control
system.

Theorem 5.2: Apply the control input (5.2.7) to the subsystem S; and apply the
control input replacing e,;(t) with €y (t) = ¥;(t) —ym(t) to the subsystem S;. Then,
defining a matriz M = [m;;] to be:

Amin[Gi] —2Rij, i=J€N-J
my; = /\min[éi] - 2Rij, 1 =j €J (5241)
—(Ri; + Rjs), i#j, i,jEN

where
Ri; = ||BlIIH:NG Qi i€ K—-KNnJ, jeN
Ri; = |BIH:E51Qsll, eeKNnJ, jeN (5.2.42)
Ri; = |lbgpl IIH:NEs11Q5ll, i€Lnd, jeN
R;; =0, teL-LNJ jeN

the uniform ultimate boundedness of all the signals in the overall control system
s guaranteed provided that the matriz M is positive definite.

Proof: Taking into account that the matrix M given by (5.2.41) is positive def-
inite, the proof is executed in the same manner used in the proof of Theorem
5.1.

Remark 5.2: In the case where all the subsystems satisfy the range condition
for input part, if non-ASPR subsystems satisfy the range condition @; = g;c;
for output part, then M-matrix condition defined in Theorem 5.2 (matrix M is
positive definite) is necessarily satisfied by choosing by; sufficiently small. As
shown in section 3, if the plant is minimum phase, then we can easily design a
PFC with small by.

5.2.5 Use of the Robust Simple Adaptive Control

In the preceding subsection, the stability of the decentralized SAC scheme for
plants with interconnection inputs satisfying inequality (5.2.2b) has been shown
under that M-matrix condition. Further, from Theorem 5.1, it is apparent that
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the decentralized SAC system is stable provided that all the subsystems satisfy
the range condition given by (5.2.6) even if the controlled plant does not satisfy
M-matrix condition. However, the influence of interconnections between each
subsystem must remain. Here, we introduce a robust SAC scheme given in chapter
4 to alleviate the influence of interconnections for the case where interconnection

inputs are available for measurement signal.
Make the following assumptions:

Assumption 5.2:

(1) The plant (5.2.1) and the reference model (5.2.2) satisfy Assumption 5.1 (1)
and (3).

(2) matrices P;,i € N in (5.2.1) can be factored as

Pi=bpl, ieN (5.2.43)

for some constant vector p; € R™. That is, all subsystems S;,1 € N satisfy
the range condition.

(3) All interconnection outputs w;(t),: € N is measurable.

Then, for each subsystem S;,: € N, we give the control input with a robust
adaptive control term as follows:
u,(t) = u,i(t) + u,.,'(t) (5244)

where u,;(t) is the original SAC input given in (5.2.7) and u,;(¢) is the robust
adaptive control term. By considering interconnections to be disturbances and
w;(t) to be measurable signals with regard to disturbances, the robust control
term u,;(t) is given as follows:

upi(t) = —B:(8)7 zpi(t)sgneyi(), if]Bi(t)T zgi(t)eni(t)] > i, € >0
" { ~{B:() za(t) Pesi(D) er, HIBDT zi(t)e(t)] < e (5.2.45)

where

ﬂ(t) = [ﬂiO(t)’ Bil(t)7 Tt )ﬂiN(t)]T7 zﬁi(t) = [1': ”wl(t)”7 B "wN(t)”]T

and the parameter vectors 3;(t) are adjusted by the following parameter adjusting
law:
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Bi(t) = Br(®) + Bri(?) _
Bri(t) = Torizpi(t)|eyi(t)] — 0piBr(t) (5.2.46)
Bpi(t) = Tapizpi(t)|eyi(?)|

where
Tgri = P;Ii >0, Ippi = ngi >0, 05 >0

Then we have the following theorem concerning stability.

Theorem 5.3: Under Assumption 5.2, all the signals in the control system with
the control input (5.2.44) are uniformly ultimately bounded.

Proof: Considering the robust adaptive control term wu,;(t) in the error system
derived in (5.2.11), we obtain the error system

€4i(t) = Acieai(t) + bi€i(t)zi(t) + biuni(?)
—b;S53; + Pvi(t) + g,-(t) (5.2.47a)
eyi(t) = ¢ eai(?) (5.2.47b)

Now, let us consider the following positive definite function:

V(t) = ﬁvj Vi(t) (5.2.482)
Vi(t) = eui(t)T Hieni(t) + Cn(t) TR Cr(t) + Cor(t) Tp1:€ri(t)
(5.2.48b)

Con(t) = Br(t) — Biy Bt =S5 pias- -5 oinl", pii = Pl
Taking into account that it follows from (5.2.2) that

N N
li®)pil < Y- llpillésllw; @Il = 3 pisllw; (DIl (5.2.49)

i=1 =1

from (5.2.8), (5.2.13), (5.2.43) and (5.2.46), we have

% = —exi(t)TG;ex,-(t) + 2ur;(t)eyi(t)
+2877 2pi(t) eyi(2))|
—202:¢ (1) TR € (t) — 202 ()T K]
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~208:Ca1(t) T51:Cp1:(t) — 208:€p1: () 51:87

+2[8:(t) — Bi1 Cpi(®)leyi(t)]

+2g,(t)T HieLi(t). (5.2.50)
Finally, using the same manner shown in Chapter 4 (stability analysis of the
robust SAC), we obtain

av()

N N
7 = Y Amin[Gilllez @ + 2 g7l Hillllexi (D)l
i=1

i=1

N
=23 oA min[ TR IC (D)1

i=1

N
-2) oo minlTaLl 1€ pri(2) i

=1

+2) 0o dmae T RN

=1

+2 3" 0 A ma T2 1B IS ars (D]

i=1

N
+23 e (5.2.51)

i=1
Then, it can be concluded that all the signals in the control system are uniformly
ultimately bounded.

Remark 5.3: If some subsystems are not ASPR in Theorem 5.3, then we have
to introduce the PFCs to non-ASPR subsystems. In addition, the satisfaction
of M-matrix condition as in Theorem 5.2 is necessary to guarantee the stability.
However, as mentioned in Remark 5.2, M-matrix condition holds with small by;,
and as shown in Section 4, the influence of interconnections can be alleviated if
byi is small.

5.3 Multivariable Decentralized Simple Adaptive Con-
trol

5.3.1 Problem Setup

In the case where the large-scale system is divided into MIMO subsystems,
each subsystem S; will be expressed as:

S,' : (B,(t) = A,-a:,-(t) + B,-u,-(t) + P;'vi(t) (531&)
yi(t) = ng;(t) (531b)
v = fi(t,w), wi(t) = Qui(t), i€ N, N={1,...,N} (5.3.1¢)
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Subsystem §; is an m;-output/m;-input system. Where &; € R™, u; € R™ and
y; € R™ are the state, the control input and the output of the subsystem S;,
respectively, and v; € R%, w; € R" are the interconnection input and output
vectors associated with S;, respectively. Further, we define w = [w?,- .-, w%]7.

The reference models Sps; which the outputs of each subsystem S; are required
to follow are given as follows:

Sumi e i'cm,‘(t) = Am,-:cm,-(t) + Bm,'um,'(t) (5.3.2&)
ymi(t) = Cmimmi(t) (532b)

where &,,; € B*™, Um; € R™ and Y. € R™.
The following assumptions are made on the overall system with subsystems
S; and each reference model Syy;.

Assumption 5.3:
(1) The linear part of each subsystem S;,i € N is ASPR.

(2) The matriz P;,i € L,L C N can be factored as

P,=BiPy, i€l (5.3.3)

for some constant matriz Py; € R™*%, That is, subsystems S;,1 € L belong
to a stabilizable class in the decentralized system whose coupling parameters
are within the range of the control input.

(8) Each subsystem S; and its reference model Sy; satisfy Assumption 2.2 (3),
(4). That is, Broussard’s model output following condition is satisfied for
each subsystem.

(4) Denoting the j-th derivative of um;(t) as u9)(t), ull(t),7 = 0,...,m; is
uniformly bounded.

(5) There exists a constant &;; > 0 such that

£t w)ll < > &illw;ll. (5.3.4)

JEN

In the following subsection, applications of SAC methods to each subsystem
are considered and we analyze the stability of the overall control system.
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5.3.2 Design of Control System and Its Stability

First of all, let’s consider the use of general SAC algorithms. Thus, the
controller for each subsystem is given by

'u.,-(t) = K;(t)z.-(t) (535)

zi(t) = [eyi(t)T, Zmi(t)T, wmi(t) ]
eyi(t) = ¥i(t) — Ymi(t)
I(,‘(t) = [I(e,’(t), I{xi(t)T, I{ug(t)]
I(,‘(t) = I{Ig(t) 4+ I{p,‘(t)
f([,'(t) = —eyiz,-(t)Tl"I,- — o K1i(t) (5.3.6)
I{pg(t) = —engg(t)TPp;
;= F:Il; >0, I'p; = F;‘ >0, o;

The following theorem gives the stability result.

Theorem 5.3:Under Assumption 5.3, all the signals in the overall control system
with inputs (5.3.5) are uniformly ultimately bounded provided that the matriz M =
[my;] defined by
Ami'n[G!i] - 2Rijv t =] € N
ij = AP 5.3.7
i { _(Rij'*'Rﬁ)i 7'#.71 Z,]EN ( )
Ri; = |IPIH:llé;0Qi0, i€ K-N—-L, jeN
Rij =0, teL,jEN

is positive definite matriz. Where, H; and G; are positive definite matrices which

(5.3.8)

satisfy the Kalman-Yakubovich Lemma:

ALH; + H/A. = -G,

BTH < C (53.9)

where
Aci = Ai + Bil{;‘cia
K, : A gain matriz for making the plant SPR

Proof: Denote the ideal state vector and control input in the case where the
perfect output following is achieved for each subsystem without interconnections
from other subsystems as }(t) and w}(t), respectively. Since the ideal input u}(t)
is given by

u’{(t) = Sl,-:c,m-(t) + Sg,"um,'(t) + Ssg(t) (5.3.10)

S3i(t) : a bounded vector function of ¢

96



under Assumption 5.3(3) and (4), we have the following error system:

ém'(t) = Ac,-ex,-(t) + B,-(AK,-(t)z,-(t) - S3i(t)) + P,"v,'(t) (53118.)

ey;(t) = C,'em'(t) (5.3.11b)

where
e.i(t) = 2;(t) — 2] (t) (5.3.12)
AKi(t) = Ki(t) — K!, K} =[KZ, 5,57 (5.3.13)

Then, choosing the positive definite function as

V(t) = ivj Vi(t) (5.3.14a)
Vilt) = Vault) + V1) (5.3.14b)
Vli(t) = ex,-(t)TH,-eri(t), teN (53140)

tr{ AK(t)[7}AKF(t)}, ie K=N-1L
tr{(AKp(t) + pToi) T (AK i(2) + pT0i)T}, i€ L
(5.3.14d)

V() = {
AK(t) = Kp(t) — KF, Toi = [Ini,0,---,0]F, p> 0.

the boundedness of all the signals in the overall control system can be easily shown
using the same manner as in the case where each subsystem is expressed to be an
SISO system (Subsection 5.2.3).

As shown in Subsection 5.2.5, we can introduce the robust SAC scheme to
alleviate the influence of interconnections for plants with subsystems satisfying
the range condition if interconnection inputs are available.

Assumption 5.4:

(1) All subsystems S;,1 € N satisfy the range condition. That is, matrices
P;,i € N can be factored as

P,=B;P;, 1€ N (5315)
for some constant matriz Po; € R™*%.

(2) All interconnection inputs w;i(t),i € N, are measurable.
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(3) Let be

Poifi(t,w) = [fa, fizs s fi mil” (5.3.16)

Then, there exist constants &;jx such that
fitw)] < 3 Eellwsll- (5.3.17)

keN

Under the above assumption, the control input with a robust adaptive control

term is given as follows:

’l_l,,'(t) = u,-(t) + 'll.R,'(t) (5318)
where the robust control input ug;(2) is given by
’U,R,'(t) = [uR,-l(t),uR,-g(t), v ,UR,'mi(t)]T (5319)

—B:; ()T zp(t)sgneyi;(t), if]B.;(t)T2p(t)eyi;(t)] > iy €15 >0

umilt) = { —{B3;(t) z6(t)ewis (1) €35, i1B:;(1) " 2p(t)euis (1)) < e
(5.3.20)

where
eyi(t) = [eil(t)v ei2(t)’ Tty Gimy (t)]T’ zﬁ(t) = [17 ”wl(t)"7 ) ”wN(t)”]T

and the parameter vectors 8;;(t) € RN*! are adjusted by the following parameter
adjusting law.

Bii(t) = Br;(t) + Bpi;(2)
ﬁm(t) Larijzp(t)leyii(t)| — 0piB1:;(t) (5.3.21)
Bpi;(t) = Tapijzp(t)leyi;(2)]
where
Tarij =T > 0, Tppij = Tgp;; > 0, 055 >0
The stability in this case can also be shown in the same manner as the proof
of Theorem 5.3.

5.4 Numerical Simulations

Here, the effectiveness of proposed decentralized SAC method is confirmed
through numerical simulations for the example given by Gavel and Siljak (1989).
The problem statement in this simulation is as follows:

Consider two inverted pendulums which are connected to each other by a
spring (see Figure 5.2). Denoting

1(t) = [41(t), 1(1)], @a(t) = [$a(2), ba(2)],
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Figure 5.2 Inverted pendulums

we have the following state space representation for the inverted pendulum.

0 1 0 0 o0
l mi? T mi2 0
=
+| ka2 z,(t) (5.4.1a)
~ % 0
01 0 0 0
@y(t) = [ CA ] () + [ 1 } u(t) + [ ka? ] z(t)
I - "z !
=
+ | ka2 x,(t) (5.4.1b)
— 0
mi?

Here, we set g/l =1, 1/mi? = 1 and k/m = 2. The uncertainty of the intercon-
nections appears from the position of the spring as a(t)/l € [0,1]. In this case,

the corresponding system parameters to (5.2.1) are

|

01

1 0:|a b,=P,=[Ol,C‘T=Q,=[1,0],Z=1,2



and the interconnection input is

o) = b =222 [ 7]} |wio

The reference models which the outputs of each subsystem should folllow are given

as follows:
1 0
(bmi(t) = [ (l) ] a:m,-(t) + [ 1 ] ’U,m;(i) (542&)
Ymi(t) = [1,0)2i(t), ¢=1,2 (5.4.2b)
Upm1(t) = sin20¢ + sin 5¢ 4 sint (5.4.2c)
Uma(t) = sin 10t + sin 2t + sin 0.5¢ (5.4.2d)

Because each subsystem S;(4;,b;,¢;),i = 1,2, of the plant (5.4.1) is not
ASPR, we implement PFCs to each subsystem. PFCs were designed according to
the design scheme given in Section 3.2. as follows:

b;
Iy a;’
Further, we set the design parameters in (5.2.8) as

T = diag[10°10%10%10%), T'p; = diag[10101010],
oy = 0.1, 02 = 0.05, i=1,2

F(s) a; =2.0,b; =0.05, : =1,2. (5.4.3)

and the design parameters in (5.2.46) as
Loni = 10313, Tgpi = 102[3
g1 = 0.]., 0p2; — 005, E= 001, 1= 1,2

Figures 5.3 ~ 5.6 illustrate simulation results. Figure 5.3 is a result which
shows the comparison between the proposed method (decentralized SAC) and the
method given by Gavel and Siljak (1989). The tracking error amplitude with
decentralized SAC is reduced by 10 percent compared with Gavel’s method. Fig-
ure 5.4 shows the original tracking error between the original plant and reference
model outputs and the augmented tracking error between the augmented plant
with PFCs (5.4.3) and the reference model outputs. In addition, the results with
the robust decentralized SAC are shown in Figure 5.5. We can see from these two
figures that although the robust decentralized SAC significantly affects augmented
systems, there is no improvement for the original system due to bias affects from
PFCs. As a countermeasure to this problem, we redesigned parameters for PFCs
by b; = 0.005,2z = 1,2. That is, we employed the PFC with lower gain. The result
with robust decentralized SAC is shown in Figure 5.6. It is seen that the tracking
performance was sigificantly improved.
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5.5 Conclusions

In this chapter, we considered the applications of SAC method and robust
SAC method to decentralized control systems. The stability of the obtained de-
centralized SAC system is guaranteed by the satisfaction of M-matrix condition or
the range condition for each subsystem. The effectiveness of the proposed meth-
ods were confirmed through a numerical simulation following the example given
by Gavel and Siljak (1989). The proposed decentralized SAC scheme has signif-
icant robustness with regard to uncertain interconnections in large-scale systems
similar to the results obtained for disturbances in the preceding sections.
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6 Simple Adaptive Control with Derivative
Control Term

6.1 Introduction

We can apply the SAC method to the ASPR augmented plant with a PFC
even if the original plant is not ASPR. In this case, if we design a PFC which
has a much smaller gain than that of the original plant, the control objective for
the original plant can be approximately attained by applying the SAC method
to the augmented plant instead of the original plant. However, as shown by Bar-
Kana (1991), choosing a smaller gain PFC leads to the increase of the feedback
gain which is adaptively adjusted in the augmented control system because the
leading coefficient of the augmented plant depends on the leading coefficient of
the PFC. In this situation, the amplitude of the control input often increases at
the transient state. In this chapter, it is shown that the above mentioned problem
is improved by adding a derivative action term to the original SAC input.

6.2 Simple Adaptive Control with Derivative Control

Term
6.2.1 Control Algorithm

Consider the following n order m-input/output plant:

z(t) = Az(t) + Bu(t) (6.2.1a)
y(t)=Cw(t) (6.2.1b)

and n,, order m-input/output reference model:

T (t) = An@m(t) + Bnitm(t) (6.2.2a)
Ym(t) = Cren(t) (6.2.2b)

Suppose that the plant (6.2.1) and the reference model (6.2.2) satisfy As-
sumption 2.2. That is, for these plant and reference model, we can design a SAC
system. Under this condition, the modified SAC input with derivative term is
given as follows:

u(t) = K(8)z(t) + Koe, (1) (6.2.3)
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where

2(t) = [e,(t)7, &m ()T, um ()]
ey(t) = y() —¥™ () = y(t) — v (t)
K(t) = [K.(t), K(t), K.(t)], K, = KT < 0

and the gain matrix K(¢) is adaptively adjusted by the following parameter ad-
justing law:

K(t) = K;(t) + Kp(t)
Ki(t) = —e,(t)2(t)TT; — o7(8) K (t)
Kp(t) = —ey(t)z(t)TI‘p

e.)Te,(t
o1(t) = o1 B yracty + o

Ly =T7>0,Tp=T%>0, 01,0, >0

(6.2.4)

6.2.2 Stability of the Control System

The stability is analyzed only for the case where the reference input is con-
stant. It will similarly be shown for the case where the reference input is any
~ function of ¢ satisfying Assumption 2.2(4).

Suppose that the perfect model output following: e,(¢t) = 0 is attained.
Denoting the ideal state, input and output as «*(¢), w*(t) and y*(t), respectively,
we have

*(t) = Az*(t) + Bu*(?) (6.2.5a)
y*(t)=Cz*(t) = y,.(1) (6.2.5b)
'll,*(t) = Sglwm(t) + ngum(t) (6250)

Now, defining e;(t) = @(t) — 2*(t) and e,(t) = y(t) — y"(t) = y(t) — yn (1),
we have from (6.2.1), (6.2.3) and (6.2.5) that

(I — BK,C)é,(t)=A.e.(t) + BAu(t) (6.2.6a)
ey (t)=Ce,l(t) (6.2.6b)
Au(t) = AK(t)z(t) (6.2.6¢)

where

A, = A+ BK:C (K} : a gain which makes the closed loop ASPR)
AK(t) = K(t) = K*, K* = [K}, Sz, S2a]"
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Here, from the ASPR-ness of the plant (6.2.1), there exist positive definite
matrices P and @ such that

ATP 4+ PA.=-Q, BTP=C (6.2.7)
Since K, < 0, it follows from (6.2.7) that

det(I — BK,C) = det K, det(K;' — CB)
= det K,det(K;' — BTCB) #0 (6.2.8)

Thus, we obtain the following error system from (6.2.6) and(6.2.8).

é-(t) = A.e(t) + BAu(t) (6.2.9a)
ey(t) =Ce(t) (6.2.9b)

where
A.=(I - BK,C)™'A,, B=(I - BK,C)™'B
Further setting P, = P(I — BK,C), since K, = KT < 0 and from (6.2.7), it
follows that P, = Pl > 0. From this result and (6.2.7), we have

AZPI + P]fic - —Q, BTPI = C (6210)

This implies that the Kalman-Yakubovich Lemma holds in error system (6.2.9).
Now, consider the following positive definite function:

V(t) = e.(t)T Pres(t) + tr{ AK ()T AK ()T (6.2.11)

where

AK(t) = Ki(t) — K*

The ultimate uniform boundedness of all the signals in the control system
can easily be proved by using the same manner shown in Section 2.3. Finally, we
have the following theorem concerning the stability of the control system.

Theorem 6.1: All the signals in the control system with control input (6.2.3) are
ultimately uniformly bounded under Assumption 2.2.

6.3 Numerical Simulations

We set the following 2-input/output non-ASPR plant as a controlled plant.
2 2

Gis)=| ¢ & (6.3.1)

s s



The reference model is given by

. 3 3
Gn(s) = diag [(s eyt 4)] (6.3.2)

um(t) = [0.3 + 1.855in10¢,0.3 + 1.85 cos 10¢]7
Since the plant (6.3.1) is not ASPR, we design the PFC as follows:

B8 B
F“)_m%[@+lfw+l)

For any § > 0, the augmented plant G,(s) = G(s) + F(s) is ASPR.

Figure 6.1 shows the relation between 8 and the upper bound wy of w such
that 20|log |g11(jw)/ga11(jw)|| < 3 for (1, 1) elements of G(s) and G.(s). It is
seen that a smaller f makes the upper bound wp bigger. This means that the
smaller 8 expands an applicable range of the SAC method in the sense that the
frequency range which satisfies |g1;(jw)| 2 |ga11(jw)| becomes wider. Contrarily,
as shown in Table 6.1, the adaptively adjusted gain K.(t) strikingly increases for
a smaller 8. However, as shown in Figure 6.2, the maximum value of K.(t) is
suppressed and reduced by adding a derivative control term to the original SAC
input. Figure 6.3 and 6.4 show simulation result with X, = 0 and K, = 5.0/,
respectively, for 4 = 0.005 in (6.3.3). It is apparent that we can obtain better
control performance by using the modified SAC input with derivative term than
using the original SAC input.

,B>0 (6.3.3)
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Table 6.1 Adaptive gain K.(t) for feedforward compensator gain

3 0.1] 0.05] 0.01] 0.005
|1 K.(t = 200)| | 58.9 | 137.5 | 262.5 | 592.8
max || K.(¢)|| | 88.5 | 637.9 | 833.3 | 2139.1

(el

Max[Ke

Figure 6.2 Maximum adaptive gain K,(t) for derivative feedback gain K, and
feedforward compensator gain 3
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6.4 Conclusions

In this chapter, a modified SAC algorithm with derivative control term was
proposed. The SAC is generally applied to an augmented plant with PFC in
the case where the original plant is not ASPR. In this case, to obtain a better
tracking performance for the original plant output, we have to design a PFC with
smaller gain. Contrarily, setting the PFC gain small leads to an increase in the
adaptive feedback gain so that the tracking performance in the transient state
might become worse. The proposed modified SAC method significantly affects
this situation.
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7 Conclusions

Adaptive control is a direct aggregation of a control methodology with some
form recursive system identification. It adjusts controller parameters automati-
cally so as to obtain good control performance during the whole operation in the
presence of uncertainties and parameter changes. However, in general, assump-
tions on the adaptive controls to guarantee the stability of the control system
are seldom valied on practical plants. With this point in mind, the robustness of
the adaptive control system was discussed during the late 1980’s. Many modified
adaptive control schemes aimed at improving the robustness of the control systems
were proposed. Unfortunately, most of these modifications caused complications
of the adaptive controller structure. For practicing engineers, the simplicity of
controller structure is extremely fascinating because they can easily implement
the control methods. With these points as background, a new strategy to di-
rect model reference adaptive control, so-called Simple Adaptive Control (SAC),
was proposed. The method makes it possible to construct the adaptive control
system regardless of the plant order. The basic idea of this adaptive method is
to ensure the stability of the control system by using the output feedback under
the almost strictly positive real (ASPR) condition on the plant and to attain the
model output following by forward compensation based on the Command Gene-
tator Tracker (CGT) theory. The SAC is robust with regard to disturbances,
unmodelled dynamics, and non-linearities. These robust performances have been
confirmed through several numerical simulations and practical experiments. How-
ever, there were some severe constraints to implement the method, such as the
requirement of the ASPR-ness of the plant. Thus, somewhat serious problems
have remained with regard to the applicability of the SAC to the wider class of
the controlled plant.

In this research, problems for design of SAC systems were considered to ex-
pand the applicable class of the controlled plant of the SAC schemes.

In Chapter 2, a basic concept of SAC for ASPR plants was reviewed for the
sake of brevity of discussions in the following chapters. The CGT theory and
the ASPR-ness of the plant were discussed. A basic algorithm of the SAC and
stability of the control system were also given in this chapter.

To expand the applicability of the SAC to plants not satisfying ASPR con-
dition, design schemes of compensator (which make non-ASPR plants ASPR in
the sense that the resulting augmented plant with compensators is ASPR) were
presented in Chapter 3. Systematic design schemes for a parallel feedforward
compensator (PFC) were given in this chapter for both single-input /single-output
and multi-input/multi-output minimum phase plants with unknown orders but
known relative degrees. Robust design schemes of compensators (PFC and pre-

112



compensator) using frequency domain analysis were also presented for plants with
multiplicative plant uncertainties which might be non-minimum phase in this
chapter.

Chapter 4 presented a robust SAC algorithm for plants with state-dependent
disturbances. SAC is generally robust with regard to disturbances. This ro-
bustness of the SAC is due to the SAC’s ability to make a high gain adaptive
output feedback control system subject to the ASPR-ness of the controlled plant.
However, in the case where large external disturbances and/or state-dependent
disturbances are present, of course, the control performance might become worse.
By adding a robust adaptive control term to the original SAC algorithm, the
control performance of the SAC system can be significantly improved.

Controlling the large-scale system is difficult due to unknown interconnection
of each subsystem. The decentralized adaptive control methods are an effective
way to handle the large-scale system. In Chapter 5, decentralized SAC schemes for
large-scale systems with unknown interconnections were presented. The stability
conditions of the control system corresponding to M-matriz condition and renge
condition were clarified.. It was also shown that the use of robust SAC scheme
given in Chapter 4 in decentralized SAC algorithm was effective in eliminating
the affects of interconnections.

In Chapter 6, a modified SAC algorithm with a derivative control term aimed
at robust performance in transient state was presented. The SAC is generally
applied to an augmented plant with PFCs. In the case, to obtain a better tracking
performance for the original plant output, we have to design a PFC with smaller
gain. Contrarily, setting the PFC gain small leads to an increase in the adaptive
feedback gain so that the tracking performance in the transient state sometimes
becomes worse. The proposed method significantly affected this situation.

In each chapter, the effectiveness of proposals were confirmed through several
types of numerical simulations.

The proposals in this thesis expand the applicability of the SAC scheme to a
wider class of controlled plants including both minimum and non-minimum phase
non-ASPR plants with unmodelled dynamics, large-scale systems, plants with
unknown disturbances, and so on. The obtained schemes for SAC system design
will be very useful and powerful for practical plants with several uncertainties.
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