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Abstract : Tobacco smoking is the main cause of human urothelial cancer. It has been sug-
gested that genetic susceptibility may contribute to the risk, because only a
small portion of smokers develops urothelial cancer. Tobacco smoke contains
many carcinogens which are activated or detoxified by phase-I or phase-1I en-
zymes. The concentration of the ultimate carcinogen, which will react with
DNA, is determined by the rate of activation and detoxification. Individuals
with an increased rate of activation or a decreased rate of detoxification have a
slightly higher level of bulky carcinogen-DNA adduct in the urothelial mucosa.
Thus metabolic polymorphisms have been recognized as important determinants
of carcinogen susceptibility, and recent efforts have shown that inter-individual
differences in specific cytochrome P450 enzymes (CYPs), N-acetyltransferases
(NAT), glutathione S-transferases (GST) and sulfotransferases (SULT) are often
disproportionately represented in epidemiological studies between urothelial
cancer cases and controls. It has been revealed that GSTMI1 null genotype or
NAT?2 slow acetylator genotype may be associated with a small increase in
urothelial cancer risk. Associations between other polymorphisms of metabolic
enzymes and urothelial cancer are not well-known or are inconsistent. To reveal
these associations, further well-designed and large-scale studies are needed.
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Introduction

Many diseases are affected by both host factors and the external environment. In the case
of urothelial cancer, the process of urothelial carcinogenesis is characterized by a diversity of
risk factors. However, transitional cell urothelial cancer is the malignancy most causally
linked to the process of chemical carcinogenesis. Extensive epidemiological studies have re-
ported that 60—70% of bladder cancer cases can be attributed to exposure to certain chemical
carcinogens [1, 2], the main sources of which are smoking and hazardous occupational expo-
sure [2]. Tobacco smoke in particular is estimated to be responsible for 40—50% and 30% of
all bladder cancer cases among males and females, respectively [1, 3, 4], whereas occupational
exposure to chemicals, the oldest known causal factor in the development of bladder cancer,
is now considered to be responsible for 19% of male and 6% of female cases [1, 3, 5]. There are
55 carcinogens in cigarette smoke that have been evaluated by the International Agency for
Research on Cancer (IARC) and for which there is "sufficient evidence for carcinogenicity” in
either laboratory animals or humans [6]. Polycyclic aromatic hydrocarbons (PAHs), aro-
matic amines, heterocyclic aromatic amines and N-nitroso compounds in tobacco smoke are
thought to be urothelial carcinogens. However, many such compounds are not themselves
carcinogenic but require activation by xenobiotic metabolizing enzymes. Many compounds
are converted to reactive electrophilic metabolites by the oxidative (phase-1 ) enzymes, which
are mainly cytochrome P450 enzymes (CYPs). Phase-II conjugating enzymes, such as
glutathione S-transferases (GST), UDP-glucuronosyltransferases, sulfotransferases (SULT)
and N-acetyltransferases (NAT), usually act as inactivation enzymes. Thus, the concerted
action of these enzymes may be crucial in determining the final biological effects of a
xenobiotic chemical. A number of genes that encode carcinogen-metabolizing enzymes are
presently known. Individual variation in enzymes activating or detoxifying carcinogens and
other xenobiotics have subsequently been related to discovered genetic polymorphisms in
these genes. Epidemiological studies may contribute to our understanding of and may quan-
tify the impact of xenobiotic metabolism on carcinogenesis in humans. This type of analysis
is especially suitable for those enzymes that are polymorphically expressed on a heritable
basis, enabling a comparison of cancer incidence among subjects with genetically deficient or
extremely active metabolism to incidence among those with normal activity. Many molecu-
lar epidemiological studies showing an association between enzymatic polymorphisms and
urothelial cancer susceptibility have been reported. Some enzymatic polymorphisms were as-
sociated with urothelial cancer susceptibility, but others were not associated with urothelial
cancer susceptibility. There are reports with some significant association between enzymatic
polymorphisms and urothelial cancer susceptibility related to cigarette smoking.

CYPs polymorphisms

1. CYPIAI
CYPI1AL is expressed in the lung, larynx, kidney, placenta, lymphocytes and fetal liver
[7—9]. Substrates for and inducers of CYP1A] include PAHs such as benzo[a]pyrene. PAHs
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have been known as urothelial carcinogens from epidemiological and animal studies [10].
The CYP1Al-dependent phenotype has been determined through assay of the aryl hydrocar-
bon hydroxylase (AHH) metabolism of benzo[alpyrene in human-derived tissues, usually pe-
ripheral blood lymphocytes [11]. Korsggard et al. [12] reported an association between AHH
inducibility and urothelial cancer, and suggested that the role of AHH in urothelial
carcinogenesis seemed to be less explicit (Table 1). Two genetic polymorphisms of the
CYPIAI gene are thought to be associated with the large inter-individual differences in AHH
enzyme activity. The CYPIAI Ile462Val polymorphism is a result of A (CYPIAI*1A) to G (
CYPIATI*2C) substitution in exon 7, causing an amino acid change in the heme-binding re-
gion [13]. It has been reported that the Val/Val genotype resulted in a reduced catalytic en-
zyme activity [14]. The frequency of CYPIAI Val/Val genotype was reported to be 4.7 —
5.0% in Japanese populations and very rare in European populations [15]. The other CYPIAI
polymorphismis a T (CYPIAI*1A) to C (CYPIAI*2A) transition 1197 bp downstream of exon
7, the Mspl variant allele [16]. The Mspl polymorphism can be classified into 3 genotypes:
predominant homozygous alleles (genotype A), heterozygote (genotype B) and homozygous
rare alleles (genotype C) [17]. The genotype C is closely related to high inducible CYP1A1
phenotypic activity [14]. Individuals with genotype C are most common among Chinese and
Japanese (10%), and least common among Caucasians (0—4%), with African-Americans and
Koreans (5—6%) [18]. The Mspl polymorphism is closely linked to the CYPIAI Ile462Val
polymorphism not only in a Japanese population but also in Northern Europeans.

There are two reports that showed a negative association between CYP1Al genetic
polymorphisms and urothelial cancer (Table 1) [19, 20]. Katoh et al. [19] reported that the
frequency distribution of the CYPIAI Ile462Val genotypes in urothelial cancer patients
showed no significant difference from that in healthy controls among Japanese populations.
Brockmoller et al. [20] reported that polymorphisms in CYPIAI Ile462Val or Mspl had no
statistically significant impact in a German population. As the CYPIAI Val/Val genotype
and genotype C are common among Asian populations but very rare among Europeans, the
association between CYPIAI polymorphisms and urothelial cancer is interesting in Asian
populations [21].

2. CYPIAZ2

CYP1A2 is involved in the metabolism of arylamines including 4-aminobiphenyl (ABP),
nitrosamines and aromatic hydrocarbons, and the dehalogenation of chlorinated hydrocar-
bons. In humans, CYP1A2 has been detected only in the liver. A wide variation across ra-
cial/ethnic groups is one factor that may influence the results on the phenotypic distribution
of slow, intermediate and rapid metabolizers of CYP1A2, as well as on the inducibility of this
gene. Overall, slow CYP1A2 metabolizers are represented in about 10% of Caucasians, while
their frequency in Japanese people seems to be much lower [22]. Evidence linking elevated
CYP1A2 activity to increased bladder cancer risk has been reported [23, 24]. Lee et al. [24] re-
ported the capacity for 3-demethylation of theophylline, as a reflection of CYP1A2 activity,
was significantly associated with increased risk of non-occupational urinary bladder cancer
(P=0.006). Moreover, molecular dosimetry studies indicate that the slow NAT2/rapid

NI | -El ectronic Library Service



sjuRned J8DUED [BIOY}OIN PUR [BUSL ddom Sose)), ‘sjuslyed 1eoued Sutdde[seao g] pue Ja3ean 9T ‘siafed [BUal [ IopPEIq GG 810M SOSEY), ‘SURIIed

J1eoued orafed [eust atem sese]), ‘sjusned Je0UED JOJOIN g PUB J90UEd S1AdId [BULI 7]'100UE) I9PPEI] GY eIoM Sese)), ‘spusired 1e0ued siafed [eUsd (g PUE 1e0UEd LOPPE[] OF 0Jom $asE)), ‘s)ueryed Jeoued 1oppe|q eIom ses')),

NI | -El ectronic Library Service

The UCEH Associ ation of Health Sciences

(MM/INA+INA) (SOT—€5°0) L9°0 (9. 1784 XD)3urdk30uen 6 sLET esouedep (¥)200g ‘10 92 ounnsy,
sjusTjed [0I3U0D PUE 9SBD JUOWE d[O[[B JUBLIBA ON (G IHEdAD) SutdLjousny 0Cer 4881 uBwaar) (29)0007 ‘10 22 J03aB]
(MM/INN+INM 98, THEdAD) (84'6—59°0) S€'T
(MM/ININ+INM VS THZAZD) (€8 T—T12°0) ¥T'1 (d'V§.178d40) Swdsjouan 862 98L3 uBULISD (19)8661 ‘70 92 103184
(MM/INN+INM 8. THEAAD) (80'T—L8°0) ¥§°0
(MM/ININ+INM VS, THEIRO) (B8'T—€L0) 9T'T
(MM/ININ+INM GT.THed A0) (B0 T—%50) 9L°0 G'VS.qI . IAZIAD) SwdAjouay €LE Ve UBULISY) (02)9661 ‘v 72 J[TOUIHP0I
(soseo
Buowe 2dfjoued WM 10 NN 0)(8) 0=d)Iuedyiusis joN g.188dX0) 3wdLjouss 1z 44 uerd43y (G5)9661 ‘17 32 TeMUY Tded A0
(26°0=d)sIexjowsuou 0} paredurod
soyows ur Kouanbouy 9gagdAD TUSIRIP A[uedyusis oN (Vr.9q2dA0) uid&ousy 0 921 usg  (LG)966T 7P 32 qopunm3suryy
(6.902d X0 V7 .90ed X0
N/ M+ M) (06'6-89°0) 9872 ‘V€.9q3dAD) Surdhjousn 1% 44 uend43y (S8)9661 10 32 Jemuy
NN+ INM /M M) (TET—7L°0) 860
(NIN/INM+ MM) (G6'T—L8°0) SO'T (V2.9a8dX0) 3ud&ousy €LE vLE UEuLIay (02)9661 ‘10 72 Foj0WND0IY
(NIN/TNM + M M) (89 T—22°0) T9°0 (V79034 X0) Burd4jouap aeT 981 ysug (rS)g661 70 30 Jands
([o104d0jow £x0IpAY- D
(Nd/ING) (0$°9—S0°0) 65°0 /10101d0ge]y) BwidLjoueyq 8 00T UEa.L03] (velvesl ‘10 20 807
(NI + N/ M) (€8°0—€7°0) 090
- (NIN/TNM + M) (BT2—SF°0) 660 (V7.903dX0) Suid&rousn 06L 81 ysnug (99)3661 ‘10 22 JloM
m Nd/IND (0L'8—08°0) 97 (eumbostige(q) Swid&yousyq 96s Ga1 ystuedg (T19)066T ‘10 72 s991U0g
M (Nd/NE) epe.d douwny 1o ‘a8
= ‘Japuad Aq Aouenbaiy 9zJAD TUSISJIIP A[UBIIIUSIS ON
@) (0" T=4)4e0UBd pUB SNEIS M A\ JO UOIIBIDOSSE JUBIIJTUSIS ON (Joroadogepy) SutdKjousyq €02 18 ossuedep (0S)6861 ‘v 22 TRIOY
W sosed sAlssaddde-uou ur jou g (900 0=
m J)s9sed 9a1880438e ur N Jo Aouenbeuj aeylry jueoyyusig (eumbostige(]) Sutd£jousyg 011 36 ysnug (F7)L86T D 22 Axestey
(Nd/Nd) e1ns
-odxs outpizuaq jsed yim ses8d SUOWER ()" (=4 ‘TATA 10 TNM 0
(INd/INE) (82'8T—60°0) 0€'T (pumbostige(y) Surd&jousyg v6 6e1 ysnug (67)7861 17 92 YuSumie) 9qBdAD
(NIN/ MM +IAM) (L°L—6°0) L7 (V2.6108dX0) Surdkoudy €LE vLE uEULISy (02)9661 ‘10 30 F8[OULDOIY
(70°0=d)A31A1398 610Zd KD YSIY Pue 160UED ASPPRI] SAISSAL
-38e-Uou UeM]O( UOIIBIDOSSE YBOM ®B INq ‘“JUBIIUSIS J0N (uto3Ausydery) SurdKjousyd 011 86 ysnug (FP)L86T ‘7P 22 Axestey] 6102dAD
(MM +IAM/IWAD (FT'€—92°0) 060 (wopp 9V2dX0) SuidLjousy 6 <LET osouedep (2¥)2002 ‘10 32 ounynsy, 9VEdAD
(900°0=d)3Is14 20UBD J0PpEIq
pue AJ1AT0R 7T AD USIY Us0MI9( UOTRID0SSE UBDIIIUSIS i (euriydoay) Surd£jousyq 8 001 uBadoy] (ve)r66T ‘77 72 9971 ¢VIdAD
$0s8D Jeourd Suowe wstyd
~1owk[od [TYTJAD pus uorjeInw god Ueomioq UOTIRIDOSSE ON O¢.IVIdAD) Surdfjousn 0 »S0T uBleIIsny (12)8661 ‘70 22 JemBurig
(MM/ININ+IAM 2. TVTdAD) (68 T—€80) L0
(MM/ININ+INM V2. IVIdAD) (P 1-19°0) 360 08.'Ve.IVIdAD) Suidfiouan €LE vLe uBliIag (02)9661 ‘72 92 JelownspOIg
(MM +TNM/ININ) (TTE—-LT°0) 240
(MM/INN+HIM) (FST—LF0) 98°0 02, IVIdA0) Surd&jousn 10T €8 esouedep (61)566T 10 22 Yorey
(01981 HHV #3eIpouiia|ul + mo1/ys1y)
(1eppela) (ST'y—9¥°0) 88T
(1070.m pue stafed (euad) (667 —070) &F'T (eusayjueroyO[AyIeUL-¢) Surd£joueyq 26 29L ysIpamg (ZD)¥86T 710 32 paeedsioy IVIdAD
(ID%S6) HO (eto[Te 3uesnw Jo urdLjousyd 103 pesn Snap) (oquinu sousI9JeL)
J80Ued [BI[OY10IN-3[NSad 10 YO opnid Surd£joussd pue Suldfiousyd  S[OIJUOD JO JOQUINN  SOSBY JO JOqUUIN uoryendog uoryedtgnd Jo Jeek ‘Ioyny swAzuy
2 J90UBd [eIfayjoan pue mEmMQQ.MOE%—OQ SdAD Uvomjeq UOoI}BIdOSSE Jo sja0daa SNolAeId ' 9[qel
g el .



The UCEH Associ ation of Health Sciences

Molecular Epidemiology and Urothelial Cancer 269

CYP1A2 individual has the highest level of ABP-hemoglobin adducts and, conversely, the
lowest level of ABP-hemoglobin adducts, as observed in individuals who are rapid
NAT?2/slow CYP1A2 [23, 25]. Thus, those individuals who are rapid for CYP1 A2 and slow
for hepatic NAT2 might be at a higher risk for arylamine-induced urothelial cancer, com-
pared with those who are slow for CYP1A2 and rapid for NAT2 [26]. Recently, several
polymorphisms of CYPIAZ have been reported [27—30], and two variant alleles which affect
CYP1A2 activity were reported. One variant allele was a point mutation from guanine
(CYPIA2¥1A) to adenine (CYPIA2*IC) at position —2964 in the gene, which caused a signifi-
cant decrease in CYP1A2 activity [28]. Another variant allele, a C to A transversion
(CYP1AZ2*IF) in intron 1 at position 734 downstream of the first transcribed nucleotide, has
recently been associated with increased CYP1A2 inducibility [29]. The outcome of these
polymorphisms on susceptibility to urothelial cancer is not known.

3. CYP2A6

CYP2A6 is a constitutive cytochrome P450 which is expressed in human liver at variable
levels [31]. This enzyme may also be expressed in other tissues, including nasal tissue, but
not in the kidney, duodenum, lung, alveolar macrophages, peripheral lymphocytes, placenta
or uterine endometrium [32]. CYP2A6 catalyzes the metabolic activation of several pre-
carcinogens, including several nitrosamines, aflatoxin Bl and 1,3-butadiene. In addition,
CYP2AS6 is involved in the metabolism of nicotine, the primary compound in tobacco that es-
tablishes and maintains tobacco dependence [33, 34]. Individual variation in the activity of
this enzyme has been suggested to be linked to differential smoking behaviours [35]. A large
inter-individual difference in CYP2A6-mediated coumarin 7-hydroxylase activity [36, 37]
suggested the existence of a genetic polymorphism of this enzyme. Several variants of the
CYP2A6 gene have been identified, and recently, several deletion-type alleles of the CYP2A6
(CYP2A6*4) have been identified [38-41]. The homozygous deletion CYP2A6 frequency of
3.2—4.0% was found only in Oriental populations [42]. The homozygous deletion CYP2A6
genotype causes complete lack of enzymatic activity. Seventy to eighty percent of nicotine is
converted to cotinine, mainly by CYP2A6, and the proportion of urinary cotinine excretion
in the individuals with the homozygous deletion of CYP2A6 was about one-seventh compared
to the CYP2A6 wild types [41]. It has been hypothesized that a lack of CYP2A6 activity
might decrease the production of genotoxic metabolites of these nitrosamines and potentially
reduces the risk of tobacco-smoking related cancer by this mechanism. Our study revealed
the frequency of the homozygous deletion of CYP2A6 genotype was 2.9% (4/137) in the
urothelial patients, compared with 3.2% (7/210) in the controls (OR=0.84, 95% CI=0.24—2.96)
[42]. However, the sample size of our study was small, and future research is needed to estab-
lish a significant relationship.

4. CYP2C19

The human CYP2Cs metabolizes approximately 20% of clinically used drugs, and there are
four members in the subfamily: CYP2C8, CYP2C9, CYP2C19 and CYP2C18. The most well-
known of CYP2Cs' polymorphism is in CYP2C19. Several defective CYP2C19 alleles are the

NI | -El ectronic Library Service



The UCEH Associ ation of Health Sciences

270 H Tsuxkvo et al

basis for the (S)-mephenytoin 4-hydroxylase polymorphism in human populations. Poor
metabolizers (PMs) of CYP2C19 represent approximately 3—5% of Caucasians, a similar per-
centage of African-Americans and 18—23% of Asians [43]. Kaisary et al. [44] reported an as-
sociation between bladder cancer and CYP2C19 phenotype by using measurement of S-
mephenytoin hydroxylation. CYP2C19 phenotype was not associated with increased risk of
bladder cancer, but a weak association was found between non-aggressive bladder cancer and
high CYP2C19 activity. The most common variant allele, CYP2C19*2A, has an aberrant
splice site in exon 5 [45]. There is one report about a negative association between
CYP2C19*2A polymorphism and bladder cancer risk [20]. Despite the wide range of sub-
strate specificity and abundance in the liver, the CYP2C enzymes do not seem to have a sig-
nificant role in carcinogen metabolism. The possibility should not, however, be ruled out.

5. CYP2D6

CYP2D6 is expressed in the liver, gut and brain neurons [46]. CYP2D6 metabolizes several
important clinically used drugs [47], but there is little evidence of it having a role in carcino-
gen activation. CYP2D6 is suspected to be involved in the activation of tobacco-specific
nitrosamines, such as 4-(metylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) [48]. With
debrisoquine as a substrate, a high inter-individual variability in CYP2D6 activity has been
observed in vivo. Inter-individual differences in the metabolic capacity of the CYP2D6 may
be expected to be a key factor in susceptibility to developing urothelial cancer where environ-
mental chemicals are implicated. A genetic polymorphism at CYP2D6 debrisoquine
hydroxylase gene locus affects 5—10% of the Caucasian population and < 1% of the Chinese
or Japanese population, and is responsible for the compromised metabolism (poor
metabolizer phenotype). There are some reports that investigated the association between
CYP2D6 phenotype and urothelial cancer (Table 1). Three papers reported that there was no
difference in the distribution of oxidative polymorphism of debrisoquine [24, 49, 50]. Kaisary
et al. [44] detected a higher oxidative rate of debrisoquine in patients with aggressive
urothelioma than in those with a less undifferentiated disease. Benitez et al. [51] reported
that the distribution of frequencies of metabolic ratio values tend to have lower values in the
patients (P<0.05), and patients with a high occupational risk for urothelioma had lower
metabolic ratio values (P=0.03).

The CYP2D6 gene is located on chromosome 22q13.1. A number of alleles have now been
characterized at the CYP2D6 locus. Inactivating mutations at the CYP2D6 gene are
CYP2D6*3 (deletion of A2549 in exon 5), CYP2D6*4 (G1864A at splicing site), CYP2D6*5 (com-
plete deletion of the wild-type allele CYP2D6*1), CYP2D6*6A (deletion of T1707 in exon 3) and
CYP2D6*11, *12, *13, *14, *15, *16. The CYP2D6*3, CYP2D6*4 and CYP2D6*5 alleles account
for the majority (greater than 90%) of the poor metabolizer phenotype [52]. The phenotype-
genotype concordance, which predicts the metabolic phenotype by genetic analysis, was
found to be between 93.4% and 100% [53]. Three reports showed a negative association be-
tween CYP2D6 genetic polymorphism and urothelial cancer [20, 54, 55], but one reported that
a significant increase in the proportion of poor metabolizers or heterozygotes was seen in
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urothelial cancer patients [56]. Chinegwundoh et al. [57] found that there was a trend for
those heterozygous at the CYP2D6 locus and with a history of smoking to develop more ag-
gressive diseases, but this trend did not reach statistical significance.

Among control groups, the frequency of the CYP2D6 poor metabolizers has been assumed
in some ethnic groups (Table 1). The frequency of the CYP2D6 poor metabolizers are 0.5—
1.2% in Asian populations and 2.1 —6.1% in European populations. The meta-analysis of two
studies in Asian populations (151 cases, 287 controls) and six studies in European populations
(1057 cases, 1875 controls) was conducted [20, 24, 49—51, 54, 56, 57]. The summary odds
ratio(OR) for the CYP2D6 poor metabolizers was 1.91 (95%Confidence interval(Cl)=0.28 —
13.30) in Asians and 1.06 (95%CI=0.76—1.49) in Europeans. To reveal these associations relat-
ing to tobacco smoking, future research is needed.

6. CYP2EI

CYP2E1 is an ethanol inducible enzyme, known to be involved in the metabolic activation
of several organic compounds with low molecular weight, including N-nitrosamines found in
tobacco smoke. The CYP2E] is expressed at high levels in the liver and at lower levels in sev-
eral extra-hepatic tissues. Wide inter-individual variation in the expression of the CYP2EI
gene has been reported in humans, which is possibly attributable to gene-environment inter-
action. Significant inter-ethnic differences exist in CYP2EI polymorphism, but there is no
clear evidence that any of these polymorphisms are related to altered function in vivo. All
polymorphisms reported in the literature are located in the non-coding regions of CYP2E],
while the coding regions of CYP2EI seem to be well conserved among different ethnic groups
and species [58]. Restricton fragment length polymorphisms (RFLPs) have been detected for
Taql (intron 7; CYP2EI*IB)[58], Rsal (intron 5)[60], Dral (intron 6; CYP2EI*6) [59].
Interestingly, Pstl and Rsal RFLPs identify two further variant sequences in the 5'
untranslated region (CYP2EI*5A and CYP2E1*5B), and, furthermore, the Rsal RFLP has
been associated with the alteration in the transcriptional activation of the gene. There are
some reports that investigated the association between CYP2EI polymorphisms and
urothelial cancer risk, but none of them reported significant associations (Table 1) [20, 42, 55,
61, 62].

GSTs polymorphism

The GSTs are a family of enzymes, which catalyze the conjugation of a wide variety of
xenobiotics, including environmental carcinogens, with glutathione. Although the vast ma-
jority of GST conjugates represents detoxification products, several instances exist where
GST activity does not result in the detoxification, but rather activation. In humans, there
are four main classes of @ (glutathione S-transferase- o), 1 (glutathione S-transferase- 1),
7 (glutathione S-transferase- ), @ (glutathione S-transferase- 0 ), each of which contains 1
or more of the homodimeric or heterodimeric isoforms, glutathione S-transferase- ¢ 1-1
(GSTAI1-1), GSTA1-2 and so forth [63, 64]. Genetic polymorphisms have been reported for
GSTM1, GSTTI and GSTPI, resulting in either decreased or altered enzyme activity. Because
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of their detoxification role, these polymorphisms may play an important role in urothelial

cancer susceptibility.

1. GSTM1

Five 1 class genes (M1—M5) situated in tandem on chromosome 1p13 have been identified.
GSTM1 is expressed in human liver, stomach, brain and other tissues, while GSTM2—Mb5
subunits have been detected in extrahepatic tissues. GSTMI enzyme has received consider-
able attention in relation to urothelial cancer because of its role in the detoxification of
benzo[a]pyrene and other polycyclic aromatic hydrocarbons found in tobacco smoke. Three
polymorphisms of the GSTMI gene, namely GSTM1*0, GSTMI*A and GSTMI*B, have been
identified. GSTMI1%*0 is a deleted allele, and the homozygotes allele (GSTMI null genotype)
express no GSTMI protein [65]. GSTM1*A and GSTM1*B differ by only a single base in exon
7, however, there is no evidence of a functional difference between GSTMI*A and GSTMI*B,
and the two are typically categorized together as a single functional phenotype. Most
studies of GSTMI polymorphism and cancer have compared the homozygous deletion geno-
type with the genotypes containing at least one functional allele. The genotype with the
homozygous deletion of the GSTMI gene is called "GSTMI-null", whereas the genotype hav-
ing at least one copy of the gene is called "GSTMI-positive". GSTMI null genotype was
shown to occur in approximately 50% of the population of various ethnic origins among con-
trols (Table 2).

Many studies investigated the association between GSTMI polymorphism and urothelial
cancer (Table 2) [20, 21, 55, 66 —88]. Most studies recognized an increased risk associated with
a lack of GSTMI activity. Recently, two meta-analyses of published studies have been re-
ported [89, 90]. Johns et al. [89] reported that a meta-analysis of 15 case-control studies had
been carried out using a random effects model, and the OR for risk of bladder cancer risk as-
sociated with GSTMI deficiency was 1.53 (95%CI=1.28 —1.84). Engel et al. [90] performed
meta- and pooled analyses of published and unpublished, case-control, genotype-based stud-
ies that examined associations between GSTM1I polymorphism and bladder cancer (17 studies,
2149 cases, 3646 controls). They excluded studies conducted in populations with a high preva-
lence of exposure to known bladder cancer risk factors other than tobacco smoke. Using a
random effects model in the meta-analysis, they obtained a summary OR of 1.44 (95%CI=
1.23—1.68) for GSTMI null status with all studies included. Studies conducted in Asia gener-
ated a summary OR of 1.73 (95% CI=1.66—1.81); in Europe, a summary OR of 1.39 (95% CI=
1.09—1.77); and in the USA, a summary OR of 1.44 (95% CI=1.38—1.50). Pooled analyses
using original data sets from 10 studies (1496 cases, 1444 controls) and adjusted for age, sex
and race produced similar results. There was no evidence of multiplicative interaction be-
tween the GSTMI null genotype and ever smoking in relation to bladder cancer, although
there was a suggestion of addictive interaction (addictive interaction=0.45, 95%CI=0.03 —
0.93).

2. GSTTI
To our knowledge, there are 14 reports investigating the associations between GSTTI

NI | -El ectronic Library Service



The UCEH Associ ation of Health Sciences

Molecular Epidemiology and Urothelial Cancer 273

polymorphism and urothelial cancer (Table 2) [20, 21, 75—81, 83—85, 87, 88]. Among control
groups, the frequency of the null genotype has been assumed in some ethnic groups. The fre-
quency of null genotype is highest among Asian populations (46 —52%) (Table 2). Among
European populations, the frequency was measured to range from 11 to 22% (Table 2).

We reviewed 12 case-control studies that investigated associations between GSTTI
polymorphisms and urothelial cancer (Table 2) [20, 75—80, 83—85, 87, 88]. Ten case-control
studies reported no associations between GSTTI null genotype and urothelial cancer risks
(20, 75, 77, 79, 80, 83—85, 87, 838]. However, two of those reported that the risk of bladder can-
cer with GSTTI null genotype was significantly higher among non-smokers [20, 75]. Two
studies reported significant associations between GSTTI null genotype and urothelial cancer
risk [76, 78]. Furthermore, individuals with the null genotype for both GSTMI and GSTTI
were at a significantly higher risk for developing bladder cancer than individuals with both
genes present.

A meta-analysis of three studies in Asian populations (489 cases, 530 controls) and seven
studies in European populations (1034 cases, 1094 controls) was conducted (20, 75, 77, 79, 80,
81, 83—85, 88). The summary OR for the GSTTI null type was 1.06 (95%CI=0.83—1.35) in
Asians and 0.82 (95%CI=0.65—1.03) in Europeans. These results suggested that GSTTI null
type might be a reduced risk for urothelial cancer in Europeans, but not in Asians.

3. GSTPI

There are five case-control studies that investigated the association between GSTPI
polymorphisms and urothelial cancer [83, 85, 87, 91, 92]. Three of these [83, 87, 91] reported
that GSTPla/b or b/b genotypes might be associated with an increase in bladder cancer risk
among British, Italian and Turkish populations. Furthermore, the risk for GSTPIa/b or
b/b genotypes with bladder cancer was elevated in individuals with the combination of ciga-
rette smoking and GSTM!I null genotype [87]. Two papers reported that no significant in-
crease in the frequency of the GSTPIb allele was found in tumor patients among Japanese
and Germans [85, 92].

NATSs polymorphism

Although N-hydroxy arylamines can react with DNA at acidic urinary pH, further acti-
vation by NAT1 in the urothelial has been suggested as a final activation step leading to
DNA adducts, mutations and neoplasia [93]. This metabolic pathway led the hypothesis that
the NAT2 slow activity type and NAT1 high activity type were risk factors for urothelial
cancer among smoking groups. A number of reports supported this hypothesis, but some
did not support it.

1. NATI

A significant association between urothelial cancer and smokers possessing the NAT1*10
allele was reported in two studies [94, 95], but not in two others (Table 3) [96, 97]. In the two
former studies, the association was highest among smokers who possessed both NATI1*10
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allele and were slow NATZ2 acetylators. In the two latter studies, significant differences were
found by a combination of NATI*10 allele and slow NAT2 acetylator and smoking. They
suggested that higher levels of NATI-catalyzed activation (O-acetylation) within the
urothelial increase risk. On the other hand, Cascorbi et al. [98] reported that genotypes in-
cluding NATI*10 were significantly less frequent among the cases (P=0.013). Furthermore,
the bladder cancer risk for NAT2 slow acetylators combined with NATI*4 was increased 2.3
times compared with NATZ2 rapid acetylators with NAT*10 genotypes (P=0.0001). Perhaps
NATI*10 allele might affect urothelial cancer development, but few studies and small sample
size might cause the discrepancy in the results.

2. NAT2

Slow NAT?2 acetylator status as a risk factor for urothelial cancer was first proposed in
the late 1970s and early 1980s [99, 100]. Since then, a large number of studies have appeared
in the literature confirming or refuting an association between NAT2 status and urothelial
cancer risk (Table 4) [20, 24, 80, 81, 83, 84, 92, 97, 99—126]. Recently, some meta-analyses of
published studies have been reported. Green et al. [127] (21 studies, 2700 cases, 3426 controls)
and Johns et al. [128] (21 studies, 2462 cases, 3450 controls) suggested that NAT2 slow
acetylator may be associated with a small increase in bladder cancer risk, and these effects
may be greater in smokers than in non-smokers. Marcus et al. [129] (22 studies, 2496 cases,
3340 controls) reported that slow acetylators had an approximately 40% increase in risk com-
pared with rapid acetylators (OR=1.4, 95% CI=1.2—1.6). However, studies conducted in Asia
generated a summary OR of 2.1 (95% CI=1.2—3.8); in Europe, a summary OR of 1.4 (95% CI=
1.2—1.6); and in the USA, a summary OR of 0.9 (95% CI=0.7—1.3). In addition, a case series
meta-analysis using data from 16 bladder cancer studies conducted in the general population
(n=1999 cases) has been published [130]. The case-series design can be used to assess
multiplicative gene-environment interaction without inclusion of control subjects. There
was a weak interaction between smoking and NAT2 slow acetylation (OR=1.3, 95% CI=1.0—
1.6) that, again, was stronger when analyses were restricted to studies conducted in Europe
(OR=1.5, 95% CI=1.1—1.9). The meta-analyses mentioned above were based on both pheno-
type and genotype. Vineis et al. [131] reported a pooled analysis of NAT2 genotype-based
studies in Caucasian populations (6 studies, 1530 cases, 731 controls), and a significant asso-
ciation between NATZ2 and bladder cancer (OR=1.42, 95% CI=1.14—1.77). The risk of cancer
was elevated in smokers and occupationally exposed subjects, with the highest risk among
slow acetylators. They suggested that NAT2 was not a risk factor but modulated the effect
of carcinogens contained in tobacco smoke (probably arylamines) or associated with occupa-
tional exposures.

Sulfotransferases (SULT)

SULT catalyze both the bioactivation and detoxification of a wide range of promutagens
and procarcinogens. SULT1A1 appears to be an important phenol SULT because of its abun-
dance and distribution in many tissues and wide substrate specificity. The SULTIAI gene
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possesses G to A polymorphism that results in an Arg213 to His amino acid substitution, and
the His213 allele has been shown to have low activity and low thermal stability. Studies by
Hung et al. [132] in a north Italian population have reported a marginal protective effect of
SULTIAI Arg213His polymorphism. However, Tsukino et al. reported there is no signifi-
cant association between urothelial cancer and SULTIAI Arg213His polymorphism in
Japanese [133].

Conclusion

A number of independent studies have now demonstrated the importance of poly-
morphisms in xenobiotic metabolism as risk factors in the development of urothelial cancer
associated with chemical exposure. It has been revealed that GSTMI null genotype or NAT2
slow acetylator genotype may be associated with a small increase in urothelial cancer risk.
Associations between other polymorphisms of metabolic enzymes and urothelial cancer were
not well-known or inconsistent. One of the reasons for these discrepancies may be insuffi-
cient study power or bad study design or a bias against publishing the absence of
correlations. International Agency for Research on Cancer (IARC) [15] and Bartsch et al.
[134] provided state-of-the art reviews of the application of biomarkers and the design and
analysis of molecular epidemiological studies. The prerequisites for proper study design and
conduct include: (a) clear definition of representative study populations and controls; (b) a
sample size adequate to provide enough statistical power; (c) proper documentation (or mea-
surement) of exposure; (d) avoidance of confounding because of use of study subjects of mixed
ethnic background; and (e) study only of gene polymorphisms that have been shown to lead
to altered phenotypic expression. The rigor and size of study designs will need to increase,
as multiple comparison and power issue dictate. In parallel with these studies, a clearer un-
derstanding of the genetic bias of the polymorphisms has emerged, together with more accu-
rate and less invasive methods for screening of populations.
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