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Abstract

We consider the problem of maximum likelihood estimation of some

diffusion processes commonly used in studies on stock price and

interest rate movements. We distinguish between the exact continuous

process and its discretized approximation. Closed form solutions for

the maximum likelihood estimators of some processes are obtained,

which should facilitate the estimation of these processes. Our analy-

sis of the asymptotic distribution of the estimates of some processes,

as well as the small sample findings of a Monte Carlo experiment,

suggest that the errors due to discretization are not serious.

Although we are not claiming this finding can be generalized, the

result is reassuring, as frequently researchers have to work with the

discretized approximation. Empirical estimates of some stock price

and interest rate processes are reported in the final part of the

paper.



Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/onestimatingcont1547tsey



1 . Introduction

The construction of many financial models is based on assumptions

concerning the stochastic movements of some security prices. An

important example is the celebrated Black-Scholes (1973) option

pricing formula, which assumes that the price of the underlying asset,

usually a stock, follows a geometric Brownian motion. Alternative

option pricing formulae are obtained if the stock price is assumed to

follow a jump process (Merton (1976)) or a constant elasticity of

variance diffusion process (Cox and Ross (1976)). In studies of the

term structure of interest rates, various versions of diffusion proc-

esses describing the movements of instantaneous interest rates have

been proposed. The works of Vasicek (1977), Brennan and Schwartz

(1979, 1980, 1982) and Cox, Ingersoll and Ross (1985) are of par-

ticular interest.

To evaluate the price of a derivative security, the parameters

driving the stochastic process of the underlying asset have to be

estimated. When the underlying stochastic process is believed to

undergo volatile changes, some researchers prefer to use "implied

estimates", which make use of current data only. While this approach

has the appeals of requiring a small amount of input data and, in some

empirical applications, achieving good results, it lacks a firm sta-

tistical basis. Furthermore, the "implied estimates" presume the

validity of the option pricing model, and hence cannot be used as

diagnostics or selection criteria for competing models. A more tradi-

tional solution is to use statistical estimates based on historical
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data. In particular, the estimates derived from Che maximum likeli-

hood principle have well-known optimal large sample properties (see,

e.g., Ameraiya (1985, chapter 4)). An added advantage of this approach

is that a large battery of diagnostics (such as the likelihood ratio

test, Wald test and Lagrange multiplier test) and model selection cri-

teria (such as the Akaike information criterion) can be used for

discriminating competing models if so desired. In this paper, we

shall be concerned with the problem of estimation of financial models

described by diffusion processes in the maximum likelihood framework.

Lo (1988) studied the theory of maximum likelihood estimation of

Ito processes. He established a characterization theorem of the exact

likelihood function of data that are sampled only at discrete time

points. However, instead of using the exact maximum likelihood esti-

mates (MLE), most empirical works in the finance literature involving

the estimation of diffusion processes either use some ad hoc proce-

dures or an approximate MLE obtained by discretizing the diffusion

process. As pointed out by Lo, the discretized MLE is in general

inconsistent. The magnitude of the inconsistency depends on the

sampling interval and typically decreases as the sampling interval is

shortened.

While it is possible to characterize the exact likelihood func-

tion, the existence and the derivation of it are by no means

guaranteed. Hence in many models of application, we have to rely on a

discretized approximation of the likelihood function. It is thus

important to know the consequences of the approximation, especially

its effects on the size of the inconsistency. In this paper we obtain
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closed form solutions for the MLE of some diffusion processes commonly

used in the finance literature. We conduct a Monte Carlo experiment

to compare the performances of the discretized and exact MLE for the

cases when both can be calculated analytically. This limited study

suggests that the discretized MLE gives results comparable to Che

exact MLE, provided the data are based on a judicious choice of

sampling interval supported by appropriate sample size. It is also

found that the rates of convergence of the estimated parameters within

the same model to their asymptotic distribution can be dramatically

different. If estimating volatility is the main concern, our findings

favor choosing data with a short sampling interval.

In Section 2, we discuss the exact and the discretized MLE.

Section 3 summarizes the diffusion processes we are considering and

derives the closed form solutions of the MLE of some of these proc-

esses. Section 4 reports the findings of a Monte Carlo experiment.

In Section 5, we present some empirical estimates of the stochastic

processes describing the S&P 500 index and the yield of the U.S.

three-month Treasury bill. Some conclusions and discussions are

given in Section 6.

2. Exact and Discretized MLE of Diffusion Processes

Consider a variable X that is generated by the following dif-

fusion process

dX
t

= a(X
t
,8)dt + b(X ,9)dW

, (1)
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whe re W is a Wiener process. The coefficients a(») and b(») are

assumed to be known functions of X and 9, which is a p x 1 vector of

unknown parameters. Suppose X is sampled at n + 1 discrete time

points t~ , t. , ..., t , separated by equal sampling interval h such

2
that t. = t_ + jh for i =0, .... n. Denoting X. as X observed at

t = t. and X = (X~,...,X ), the joint density function of X is given

by

f(X;8) = f
n
(X

n ;9) n f (X ; 9 JX ), (2)

where f_(X *,9) is the unconditional density of X„ and f.(X.;9|X. .) is
J J j-i

the conditional density of X. given X. ,. The exact MLE is the value

of 9, say 9, that maximizes f(X;8) (or equivalently £nf(X;9)).

Thus, the solution of Che MLE requires Che funcCional form of

f.(*) for j = 0, ..., n. Lo (1988) provided a Cheorera ChaC charac-

terizes the densities f.(«) in terras of the solution of a partial dif-

3
ferential equation. Although this theorem can be used to check

educated guesses for the solutions of Che densicies, solving Chese

densities are still quite intractable in many cases. A useful result

that greaCly simplifies Che soluCion applies Co Che case when X can be

transformed into a variable Y such thac Che coefficients a(») and b(»)

of Che diffusion process generaCing Y do noc depend on Y. The reduci-

bility conditions for the exisCence of such a Cransf orraaCion is given

by Schuss (1980).

For models Che exact likelihood function of which cannot be

obtained, an alternative is to consider a discretized approximation.
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Thus, we consider the following process as an approximation to

4
equation (1)

X
t

- X
t_ 1

= a(X
t_ 1

,9)h + b(X
t_ 1

,e)e
t

t=l,...,n, (3)

where e are independently and identically distributed (IID) normal

variables with mean zero and variance h. The discretized log-

likelihood function can be written as

n

4nf*(X;0) = - j Jln(2TTh) - E Jin (b(X ,6))

t=l

n (X -X - a(X ,9)h)
2

-jr Z
t

I
1 —

. (4)
Zh

t-1 1> (X^.8)

We define the discretized MLE as the value of 0, say 9, that maximizes

£nf*(X;9). Equation (3) can be easily recognized as a non-linear

dynamic single equation model with heteroscedastic errors.

Note that the discretized approximation implies that, conditional

on X , X is normally distributed. This result is of course not

true in general. However, for sufficiently small h we would expect

f*(*) to be a good approximation to f(*)« Attempting to improve the

approximation and examine the performance of the discretized MLE

,

Dietrich-Campbell and Schwartz (1986) transformed the process (3) in

such a way that b(») does not depend on X. Then they considered

three estimation procedures by evaluating a(») at X , X as well as

the average of X , and X . However, as X is correlated with e the

latter two procedures inadvertently introduce a regressor which is not

orthogonal to the error. Thus their finding that the discretized MLE
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are not stable is actually a consequence of the inappropriate use of

X as an input to the regressor.

3. Some Asset Price Models and Their Estimation

3 . 1 Examples

We now consider some examples of diffusion processes. Two types

of models will be considered: stock price model and interest rate

model. In the rest of the paper, we denote X as the stock price and

r as the interest rate. For stock price movement, we consider the

following models:

(1) Geometric Brownian (GB) Motion

dX = uX dt + aX dW (5)

(2) Constant Elasticity of Variance (CEV) Process

dX - uX dt + aX^dW . (6)

The GB process has been extensively used in the literature. The

CEV process was first suggested by Cox and Ross (1976). It has the

property that the elasticity of the instantaneous variance is equal to

the constant 2B for all X . MacBeth and Merville (1980) estimated the

CEV model using an ad hoc search method, in which the parameters were

not estimated simultaneously (see the discussion by Manaster (1980)).

Other attempts were made by Christie (1982) and Marsh and Rosenfeld

(1983). In Section 5, we shall report some results on the discretized

MLE of the CEV process.
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For interest rate movement, we consider the following models:

(1) Ornstein-Uhlenbeck (OU) Process

dr = a(u-r )dt + adW (7)

(2) Cox-Ingersoll-Ross (CIR) Process

dr = a(u-r )dt + a/r^dW (8)

(3) Brennan-Schwartz (BS) Process

dr = a(u-r )dt + ar dW . (9)

These processes have the property of reverting to the mean, where

u represents the steady-state mean level and a is the speed of adjust-

ment coefficient. The OU process was proposed by Merton (1971) and

studied by Vasicek (1977). Sanders and Unal (1988) estimated this

model and tested for its stability. The CIR process was proposed by

Cox, Ingersoll and Ross (1985). Like the OU process, its exact like-

lihood function is known. The BS process has been extensively applied

in the literature (see, e.g., Brennan and Schwartz (1979, 1980, 1982),

Courtadon (1982) and Ogden (1987)). However, its exact likelihood

function is unknown and has to be approximated by its discretized

version.

Here we make a note about the interpretation of r . The OU andK
t

CIR processes were originally suggested as models to describe the

instantaneous rate of interest, which is an unobservable state

variable. Using arbitrage-free arguments, the yields of discount

bonds of various time to maturity can be obtained so that these models
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have their observable counterparts. However, the processes generating

the yields depend on an extra parameter: the market price of risk.

Empirical works on the BS process do not make fine distinction whether

r is observable or is just a state variable. In this and the next
t

J

section, we assume either r is observable or a good proxy for it

(such as the yield on treasury bill with short time to maturity) is

available. This will enable us to focus on the issue of estimation of

these processes. In Section 5, we shall discuss the problem of esti-

mating the processes based on observed yields.

3.2 Maximum Likelihood Estimation

MLE can be obtained by maximizing the log-likelihood function with

respect to 0. For some of the examples described above, closed form

solutions can be derived. The availability of such solutions is sum-

marized in Table 1. When a model does not have a closed form solu-

tion, numerical optimization methods can be used. We now consider

each of the examples given in Section 3.1. We denote £(9) and l*(Q)

as the exact and discretized log-likelihood functions, respectively.

Insert Table 1 Here

It is well-known that for the GB process £n(X /X ) are IID

2 2
N((y-(a /2))h,a h) . Thus, the exact log-likelihood function is given

by (for convenience we drop the irrelevant constant from all log-

likelihoods)

9 1

n X
<- r,

2

U9) = - ± lno
Z ±- I Un(—-) - ( M- y-)h)

Z
. (10)

2a
Z
h t=l t-1
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Solving for 3£(9)/a6 = 0, we obtain

-2 1 ? -2

nh
t-1

c

. a
2

*
n<W

y =
2" + ""

~r*

where

„ X
t

^(X
n
/X

Q
)

£
t

= en(X^) n
(11)

:2n,The asymptotic variance matrix of (y,a )' can be obtained by eva-

luating the expected value of the Hessian matrix of £(9).

Straightforward calculations show that

/n",
n-y

-2 2
a -a

D
» N (°)

2a
(12)

The discretized version of the GB process can be written as

= yh + e
t , (13)

Wl
t-1

2
where e ~ I1D N(0,o h) . The MLE of \i is just the sample mean of

(X -X )/X divided by h. Thus, we obtain

n X

nh
t-1

X
t-i

and

~2 1
n X

t ~ 2=
7h E (^T 1-Mh)

z
.

nh
t-1

X
t-1

(14)
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The variances of y and a are estimated by a /(nh) and 2a /n, respec-

7 -2
tively. The expected values of y and a , as given by Lo (1988), are

E(m) =i(e yh
-l)

and

2
„ / ~2v n-1 2yh., ah.. /, c \E(a ) = -^- e

M
(e -1). (15)

2
- ~2

Hence dropping terras of 0(h ), the asymptotic biases of y and a are,

respectively, y h/2 and h(2ya + (a /2)). Furthermore, the (true)

asymptotic variance of /n(y-y) is ((a /h)+(a /2)) + 2ya , which

exceeds the asymptotic variance of /n(y-y) by 2ya .

Some conclusions can be drawn from the above analysis. First, the

~2
results show that the asymptotic biases of y and a" are quite small.

2
For a typical stock with y = 0.15 and a = 0.09, we tabulate the

~2 9
asymptotic biases of y and a for h = 1, 4 and 13 weeks in Table 2.

For weekly data, the asymptotic biases are quite negligible. Even for

quarterly data, the asymptotic bias of y is less than 0.3 percent,

~2
although the asymptotic bias of a is more significant, coming close

2
to 9 percent of a . Second, we note that while a small sampling

interval reduces the asymptotic biases, it increases the sampling

variance of the MLE of y. For the same typical stock, we tabulate the

-2
asymptotic standard errors of y and a in Table 3 for n = 100 and 200.

The table shows that when h = 1, the true drift parameter is less than

one standard error away from zero for n as large as 200. On the other

hand, the volatility parameter can be estimated relatively precisely.

These results suggest that if it is the volatility parameter that is
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of primary interest, we should use short time intervals to sample more

observations within the sampling period.

Insert Tables 2 and 3 Here

For the CEV process, the exact likelihood function was derived by

Cox (1975) (see also Marsh and Rosenfeld (1983, p. 638)). But as the

likelihood function depends on the modified Bessel function, estima-

tion by exact MLE is computationally very expensive. Thus, we shall

only consider the following discretized approximation

X
t

- X
t_ 1

= MX^h + e
t

, (16)

where e are independently distributed as N(0,a hX , ) . The MLE can

be obtained by numerically maximizing the log-likelihood function

n n (X -X -uX h)
2

H*(6) = - £ lna
Z - 6 Z ZnX^ .

±- Z
C CJ ^

. (17)
2

t-1
t_1

2a
2
h t=l X

2

^

Some empirical estimates for the S&P 500 index will be reported in

Section 5.

We now turn to the interest rate models. First, we consider the

0U process. From results given in Vasicek (1977), conditional on

r , r is normally distributed with mean e r
.-_i

+ ^ *~ e ^ anc*

variance a (1-e )/(2a). Thus the log-likelihood is

K6) --# in (

a2(1
:
e
"2ah)

) - =
a

, . S (r -y-(r .-u)e-
ah

)
2
.(18)

2 2a 2/, -2ahu . t t-1
a (1-e ) t=l

2Concentrating 2.(9) with respect to a , the MLE of u and a are obtained

by minimizing the concentrated residual sum of squares. Then the MLE
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2
of a can be solved from its relevant first order condition. The

solutions are given by

1
a = - T- Ink

n

and

where

M = (r
1
-r

Q
)/(l-A) + r

Q

z 11

G
2 .(^L^)( 2« -), (19)

n , -2 ah
1 - e

n-1

r = ( E r )/n

t=0

r = ( L r )/n

t=l

n n

a- (^ (vr
i
)(rt-rr

o
))/

tf 1

(rt-r r
o
)2

* * * — nh
e
t

= r
t

- |i - (r
t-1

-w)e . (20)

-2
The variances of a, \i and a can be estimated using the following

formulae, which are obtained by evaluating the Hessian matrix,
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"2,, -2ah N

Var(a) =

,.2* -2ah °
, %2

2h ae S (r ,-y)

t=l

and

-I,. -2ah
* ,** a (1-e

NVar(y) =
)_

2a(l-e"
ah

)n

-4

Var(a ) = -^~. (21)
n

The discretized OU process is represented by the equation

r - r = a(u-r )h + e
, (22)

2
where e ~ IID N(0,a h) . Straightforward evaluation gives the

following results

a - \ (1-A)
h

U = u

~2 1

n ~2
a =

77v7
E £

r < 23 >nh
t-1

t

where

£
t

= r
t

" r
t-l " a^- r

t -i
)h

'

and u and A are as defined in equations (19) and (20). The variances

~ ~2
of a, y and a are given by the following estimates
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~2

Var(a) =
n -

h Z (r -u)
t=l

Var(p) =

-2
a

~ 2 u
a hn

Var(a
2

)

2 ;
4

•

n
(24)

The above results can be used to facilitate Monte Carlo comparison

of the exact and discretized MLE. It is also reassuring to find that

the discretized MLE of \i is equal to the exact MLE.

We now consider the CIR process. In this case, the exact likeli-

hood function is known and depends on the modified Bessel function of

the first kind with fractional real order (see Cox, Ingersoll and Ross

(1985, pp. 391-392)). Although theoretically the exact MLE can be

computed using numerical methods, the computation is excessive.

However, the discretized version of the process can be easily esti-

mated. We express the approximation as

r
t

" r
t _ 1

= a(li-r j)h + a^ r
t _i

e
t

(25)

which can be rearranged as

r—L— = -g^L- + /T^U-ah) + ae
t

,
(26)

/r
t-l

/r
t-l

where e are IID N(0,h). Defining y = r //r ,, z = l//r ,

z = /r , , ^ = aph, 4>
9

= 1-ah and <|>
= o h, equation (26) can be

rewritten as
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y
t

- Vti * *
2
z
t2

+ e. (27)

where e ~ IID N(0, <()-). The MLE of the regression parameters of (27)

are given by the ordinary least squares (OLS) estimates. Using

obvious matrix notations the MLE of <$>, <$>, are given by (<J> ,<j) )' =

(Z'Z^Z'y and L = y'My/n where M = I - Z(Z'Z)~
1
Z'. As 9 and iji form

one to one correspondence, the MLE of 9 can be calculated from
<J».

Thus we have

12

and

l-4>.

a =

ah

~2 Y
3

a =
h"-

(28)

To compute estimates of the asymptotic variance of 9, we again make

use of the OLS results. We define the matrix

H = a (a>u) =
3(«J'

1
,4>

2
)

l ~*2 (l-*
2
)
2

—

h

1

ah ah

_

(29)
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13
The variance of 9 can be estimated by

Var((a,y)') = ha
2
H(Z' Z)~

l
VL'

and

Var(a
Z

) = —-, (30)
n

where H is H evaluated at (cx,u).

Finally, we consider the BS process. Despite its widespread

application, the exact likelihood function of the BS process is

unknown. To derive the discretized MLE , we apply the method used for

the CIR process. Rearranging terms, the discretized BS process can be

written as

where e ~ 1ID N(0,<{> ) and <j> is as defined prior to equation (27).

Now we let y = r /r , , z . = 1/r , and z _ = 1. As the approximateJ
t t t-1' tl t-1 t2

vv

model is just a simple linear regression, the solution for
<J>

is par-

ticularly simple. Substituting <j> into equation (28), we obtain the

discretized MLE 0. With appropriately defined Z, equation (30) pro-

vides estimates of the variance of 0.

4 . Monte Carlo Results

Optiraality properties of the MLE, such as consistency and asymp-

totic efficiency, are applicable only when the sample size is large.

As the rate of convergence to the asymptotic distribution varies

according to the underlying model, it is difficult to provide rule of
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thumb that is suitable for all models. It is thus important to con-

sider small sample distributions of the MLE in order to obtain some

information regarding the sample size needed to justify the applica-

tion of asymptotic results. This information may also affect the

choice of the sampling interval. Furthermore, except for the GB proc-

ess few results are known about the properties of the discretized MLE

when the data are actually generated by the exact diffusion process.

In this section we examine these issues using a Monte Carlo experi-

ment.

As the solutions of the discretized and exact MLE for the GB and

OU processes are available in closed form, we select these processes

as objects of the experiment. The set-up of the parameters is as

2
follows: For the GB process, we consider y = 0.12, 0.18 and a

2
0.0625. For the OU process, we consider a = 0.8, u = 0.07 and a" =

0.001225. These parameters are chosen to represent likely values of

typical stock price and interest rate movements. For both processes,

we fix h = 1, 4, 13 and n = 100, 200, 400. Random samples of obser-

vations were generated based on the exact diffusion process. The

discretized and exact MLE were calculated for each sample, and this

was repeated 1000 times. To conserve space, not all results of the

experiment are reported. Selected findings are summarized in Tables 4

and 5, which give the means and standard deviations of the MLE from

the Monte Carlo sample.

Insert Tables 4 and 5 Here
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From Table 4, we see that \i and \i are quite similar, except that,

as expected, \i is larger on average and shows slight signs of upward

bias for h equal to 4 and 13. The precision of estimates of \i is

rather low, and it decreases with h. We note that 100 observations of

four-weekly data achieve the same accuracy as 400 observations of

weekly data, as far as the estimation of \i is concerned. In contrast,

2
the standard deviations of estimates of a are quite small and they do

14 ~2
not vary with h. As expected, a is upward biased when h is large.

When h = 13, the relative bias is about 10 percent. To examine the

convergence to normality, we calculated the nominal 95 percent con-

fidence interval for each Monte Carlo sample, based on the asymptotic

normal distribution and estimates of variance. The results (not

reported here) show that the asymptotic distribution is a good

approximation for n = 100.

To investigate the use of daily data, we conducted further experi-

ments. The results show that with 100 observations of daily data, the

2
standard deviations of the estimates of o are approximately the same

as those obtained from 100 observations of weekly data. Thus, for the

2
purpose of obtaining estimate of a as input to the Black-Scholes for-

mula, daily data are recommended, as long as the problem of bid-ask

spread associated with thin trading can be properly controlled. Since

only a few months of past data are required, so that nonstat ionarity

of the variance is unlikely to pose any serious difficulty, the MLE is

preferable to the implied estimate, which suffers from the problems

discussed in the Introduction.
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Frora Table 5, it is clear that the rates of convergence are quite

different for estimators of different parameters. Standard deviations

of the estimates of a are particularly large, and they increase as h

decreases. For h = 1 and n = 1000, we performed an extra experiment

and obtained the mean of a as 1.0383 and its standard deviation as

0.3745. Thus in practical situations, it is unlikely that we would be

able to obtain precise estimates of a. In contrast, estimates of u

2 ~2
and a converge quite quickly. For a , there is a downward bias.

With h = 13, the relative bias is about 20 percent. As the asymptotic

variances of estimates of a and \i depend on a, statistical inference

concerning these parameters using the asymptotic approximation should

2
be interpreted with care. However, this caveat does not apply to a .

5. Empirical Results

In this section, we report estimates of the diffusion processes

defined in Section 3.1 with real data.

For the stock price processes, we use the S&P 500 index. Weekly

observations of the index on Wednesday (or the next working day if

Wednesday is a holiday) are obtained from Standard and Poor's Security

Price Index Record. We consider sampling intervals of one week and

four weeks. For weekly data, the series goes from January 1980

through December 1987. For four-weekly data, the series goes from

January 1973 through December 1987. To study the effects of the

October 1987 crash, we also estimate the processes for data ter-

minating in June 1987. Exact and discretized MLE of the GB process,

as well as discretized MLE of the CEV process, are reported in Table 6,
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Insert Table 6 Here

As expected, the exact and discretized MLE of the GB process are

very close. Estimates of p are very sensitive to the sampling period

as well as to the crash. This sensitivity is much reduced for the

2
estimates of a , which are quite stable in the period 1973 through

1987, only to be disturbed by the crash. Estimates of 6 in the CEV

process depend critically on whether the crash is included in the

sample. For all four periods considered, the instantaneous variances

implied by the CEV process calculated at a value of the index approxi-

mately equal to the mean of the index over the sample period are com-

puted. These implied variances are very close to the estimates of

2
a of the GB process. For the four-weekly data from January 1973

through December 1987, the estimate of 3 is not significantly dif-

ferent from one. In this case, the estimate of \i is very close to its

counterpart for the GB process. In other cases, in which the GB pro-

cess is rejected against the more general CEV process (i.e., 8 * 1 )

,

the estimates of u of the GB process are downward biased. If the

crash is not included in the sample, estimates of 8 are less than 1,

which implies the variance of stock, return decreases as the stock

price increases. This finding for the pre-crash period concurs with

that of Christie (1982).

For the interest rate processes, we use data of the yields on U.S.

Treasury bills with three months to maturity. These yields are the

average issuing rates in weekly bill auctions reported in the Federal

Reserve Bulletin. As explained in Section 3.1, we assume either the
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diffusion processes drive the yield or the underlying state variable

driven by these processes can be approximated adequately by the yield.

Our data set consists of weekly observations from January 1980 through

June 1988, and four-weekly observations from January 1972 through June

1988. MLE of the OU (exact and discretized) , CIR (discretized) and BS

(discretized) processes are reported in Table 7.

Insert Table 7 Here

We observe that the exact and discretized MLE of the OU process

are very close, as is expected from the analysis and Monte Carlo

results of Sections 3 and 4. For all four processes, standard errors

of the estimates of a are quite large. Estimates of a are lower for

the CIR and BS process as compared with the OU process, although their

differences are considerably swamped by the large standard errors. In

contrast, estimates of \i are comparable for all processes. For the

weekly data, the implied estimates of the instantaneous standard

deviation evaluated at the estimated value of \i are 0.0279 and 0.0246

for the CIR and BS processes, respectively. For the four-weekly data,

the corresponding figures are 0.0272 and 0.0263. Thus, the volatili-

ties at the steady-state mean interest rate implied by the CIR and BS

processes are considerably lower than that of the OU process.

Ogden (1987) estimated the BS process using monthly data for the

period from June 1977 through June 1985. Instead of using the exact

formulae derived in this paper, Ogden obtained the MLE by numerical

... 2optimization. His estimates for a, \i and a are, respectively,
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0.6384, 0.1053 and 0.0830. We estimated these parameters using four-

weekly data for the same period to obtain the results: 0.6847, 0.1033

2
and 0.1119. Except for a , the two sets of estimates are quite close.

2
It is unclear whether the discrepancy in the estimates of a is due to

the difference in the data or to the estimation method.

Using arbitrage argument, Vasicek (1977) derived the stochastic

process for bond prices when the underlying state variable is assumed

to follow the OU process. Similar results were obtained by Cox,

Ingersoll and Ross (1985) when the underlying state variable follows a

2
CIR process. Apart from the parameters a, \i and a , the derived bond

price processes depend on an extra parameter which is interpretd as

the market price of risk. For Vasicek' s result, where bond yields

with different time to maturity are normally distributed, the parame-

ters of the term structure can be estimated using cross section plus

time series data. This is a topic for future research.

6 . Concluding Comments

We have considered the maximum likelihood estimation of the exact,

as well as discretized approximation, of some diffusion processes com-

monly used in studies on stock price and interest rate movements. We

have derived closed form solutions for some maximum likelihood estima-

tors, which would facilitate the estimation of these processes.

Our analysis of the exact and discretized maximum likelihood esti-

mators of the geometric Brownian process and the Ornstein-Uhlenbeck

process shows that for sampling interval of up to four weeks, with

sample size typically used in many applied studies, the inconsistency
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due to the discretized approximation is unlikely to be serious. We

have reported some small sample findings from a Monte Carlo experi-

ment. If our experience of these processes can be generalized, the

error due to discretized approximation is not a problem of major con-

cern. We have also obtained some empirical estimates for the stock

price and interest rate processes. These results were compared

against results by other authors in the literature.

In this paper we have focused on the problem of estimation. Other

important aspects are model selection and tests of raisspecif ication.

Statistical analysis should be applied to detect raisspecif ication

errors and select the best model. This step would help to decide the

best option pricing model to use. Problems in this area will be left

for future investigation.
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Footnotes

Throughout this paper, we assume a(«) and b(») to be time
invariant. Time varying models can be constructed by letting a(») and
b(») be functions of t.

2
The condition of equal sampling interval is not necessary for the

results in this section. It is only assumed for convenience.

3
Lo's theorem actually applies to a more general class of Ito

processes that admit a jump component. However, we shall not consider
processes with a jump component in this paper.

4
We have replaced j with the more conventional time index t. Note

that the use of t as a suffix now applies to the continuous time model
(as in equation (1)) as well as to the discrete time model (as in equa-
tion (3)). The usage of t should be clear from the context.

We assume throughout this paper that Xg is a given constant. In

other words, the MLE are derived conditional on Xq • This assumption
should not affect the asymptotic properties of the MLE.

Dietrich-Campbell and Schwartz (1986) actually considered a two-

equation model of short and long interest rates. Also, after trans-
formation the model should be, strictly speaking, represented by

another variable, say Y.

These estimates are based on the discretized process. Although
they will not converge to the true variance in general, they are the

estimates one would use if one did not have information about the

exact likelihood. This remark also applies to equations (24) and (30).

Q

We did not pursue with the calculation of the asymptotic variance

— ~2 2
of /n(a -a ), which is very cumbersome. Our conjecture is that it is

not dependent on h. The Monte Carlo experiment in Section 4 seems to

support this conjecture.

9
In this paper, all parameters are measured at annualized rates.

One year is approximated by 52 weeks. In contrast to using the month
as a basic unit, using the week ensures sampling intervals are regu-

lar.

These formulae are obtained by assigning value of zero to the off

diagonal elements of the Hessian matrix, which are of negligible

'2
order. Again, we note that the asymptotic variance of a does not

depend on h. This remark also applies to equation (24).
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Brown and Dybvig (1986) estimated the volatility and the implied
long rate of the C1R process using U.S. Treasury security prices.
They assumed that the actual bond prices deviate randomly from the
equilibrium prices implied by the CIR process, and fitted a non-linear
regression with cross-section data. Much of the stochastic structure
of the CIR process is not captured in their model.

12
Note that equation (23) can also be derived using this approach.

13 ~2 ~
~

The asymptotic covariance of a and (a,u)' is zero.

14 2
Differences in the standard deviations of estimates of a and y

help to explain why it is empirically easier to detect shifts in a
,

but not in \i (see, e.g., Boness, Chen and Jatusipitak (1974)).
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Table 1

Solutions of MLE for Various Diffusion Processes

Exact Closed Form Solution of HLE
Diffusion Likelihood
Processes Function Exact Discretized

GB A A A

CEV A NA NA

OU A A A

CIR A NA A

BS NA NA A

Notes

A means available and NA means not available.

See Section 3.1 for the meanings of the codes.



Table 2

~2 2
Asymptotic Biases of u and a , y = 0.15 and a = 0.09

h (in weeks) Asymptotic Biases

~2

1 0.000216 0.000597

4 0.000865 0.00239

13 0.00281 0.00776



Table 3

~2 2
Asymptotic Standard Errors of u and a , y = 0.15 and a = 0.09

h (in weeks) Asymptotic Standard Errors

-2
y a

100 1

4

13

0.2164

0.1084

0.0603

0.013

0.013

0.013

200 1

4

13

0.1530

0.0767

0.0427

0.009

0.009

0.009



Table 4

Monte Carlo Estimates of GB Process

u = 0.18, a = 0.0625

Estimates

h (in weeks) n y a

(exact MLE)
u o

(discretized MLE)

13

100 0.1718 0.0618 0.1724 0.0622
0.1800 0.0089 0.1805 0.0090

400 0.1758 0.0623 0.1762 0.0627
0.0917 0.0045 0.0920 0.0045

100 0.1816 0.0624 0.1832 0.0643
0.0897 0.0085 0.0910 0.0089

400 0.1807 0.0620 0.1820 0.0639
0.0454 0.0043 0.0460 0.0046

100 0.1788 0.0618 0.1832 0.0681
0.0501 0.0088 0.0524 0.0103

400 0.1803 0.0624 0.1845 0.0689
0.0246 0.0045 0.0257 0.0053

Notes

The Monte Carlo sample size is 1000. For each case, the first
number refers to the sample means and the second number refers to the

sample standard deviation. For example, when h = 1 and n = 100, the
mean and standard deviation of the Monte Carlo sample of 1000 obser-

vations of u are, respectively, 0.1718 and 0.1800.



Table 5

Monte Carlo Estimates of OU Process

a = 0.8, u = 0.07 and a
2

= 0.1225*10~ 2

h (in weeks) n

Estimates

n a i(S)
~2 2
a (xiCT) a a

2
(xl0

2
)

100 3.5791 0.0527 0.1247 3.4029 0.1165
2.5193 0.4228 0.0175 2.2830 0.0162

400 1.3990 0.0698 0.1237 1.3755 0.1205
0.7213 0.0154 0.0086 0.6962 0.0084

100 1.4118 0.0700 0.1255 1.3189 0.1128
0.7504 0.0181 0.0184 0.6506 0.0166

400 0.9281 0.0698 0.1227 0.8931 0.1143
0.2694 0.0075 0.0087 0.2486 0.0079

100 0.9903 0.0701 0.1256 0.8656 0.0989
0.3504 0.0086 0.0204 0.2621 0.0145

400 0.8486 0.0699 0.1233 0.7623 0.1004

0.1502 0.0042 0.0098 0.1206 0.0072

13

Notes

:

See the note of Table 4. In addition, the columns of figures

"2 ~2
under a and a have been scaled up by 100.



Table 6

Empirical Estimates of Stock Price Processes'

Sampling Period Number
and Interval of Obser-
(in weeks) vations Model

Parameters

80/1-87/6, 1

80/1-87/12, 1

73/1-87/6, 4

73/1-87/12, 4

390

417

189

195

GB(E

GB(D
CEV(D

GB(E
GB(D

CEV(D

GB(E
GB(D

CEV(D

GB(E

GB(D
CEV(D

0.1536(0.0557)
0.1539(0.0559)
0.1557(0.0556)

0.1206(0.0600)
0.1207(0.0595)
0.1280(0.0590)

0.0759(0.0406)
0.0761(0.0406)
0.0873(0.0397)

0.0622(0.0426)
0.0622(0.0420)
0.0621(0.0436)

0.0233(0.0017)
0.0234(0.0017)
0.1228(0.0076)

0.0289(0.0020)
0.0284(0.0020)
0.0023(0.0001)

0.0240(0.0025)
0.0239(0.0025)
0.5240(0.0520)

0.0272(0.0028)
0.0265(0.0027)
0.0157(0.0013)

0.8363(0.0200)
0.0229 c

1.2429(0.0192)
0.0279°

0.6776(0.0301)
0.0244 c

1.0536(0.0295)
0.0262 c

Notes

rigures in parentheses are standard errors.

b
E denotes exacC and D denotes discretized.

This figure is the instantaneous variance implied by the CEV process evaluated at the

value of the index approximately equal to the mean over the sample period.



Table 7

Empirical Estimates of Interest Rate Processes'

Sampling Period Number
of Obser-

Model

Parameters
and Interval
(in weeks) vations a U a

80/1-88/6, 1 442 0U(E) 0.6340(0.3615) 0.0801(0.0182) 0.0336(0.0011)
0U(D) 0.6302(0.3571) 0.0801(0.0182) 0.0334(0.0011)

CIR(D) 0.5400(0.3632) 0.0784(0.0568) 0.0997(0.0034.)

BS(D) 0.5325(0.3673) 0.0784(0.0160) 0.3135(0.0105)

72/1-88/6, 4 214 0U(E) 0.6555(0.2734) 0.0812(0.0118) 0.0313(0.0015)
0U(D) 0.6392(0.2600) 0.0812(0.0118) 0.0306(0.0015)

CIR(D) 0.4913(0.2488) 0.0821(0.0408) 0.0949(0.0046)
BS(D) 0.4155(0.2420) 0.0844(0.0176) 0.3120(0.0151)

Notes

Figures in parentheses are standard errors

E denotes exact and D denotes discretized.

J
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