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Human TRKA (NTRK1) encodes the receptor tyrosine kinases (RTK) for nerve growth 

factor (NGF) and is the gene responsible for congenital insensitivity to pain with 

anhidrosis (CIPA), an autosomal recessive disorder characterized by a lack of pain 

sensation and anhidrosis. We reported 11 putative missense mutations in 31 CIPA 

families from various ethnic groups. Here we have introduced the corresponding 

mutations into the TRKA cDNA and examined NGF-stimulated autophosphorylation. 

We find that wild-type TRKA precursor proteins in a neuronal cell line and a 

non-neuronal cell line were differentially processed and phosphorylated in an 

NGF-dependent and -independent manner, respectively. Two mutants (L93P and 

L213P) in the extracellular domain were aberrantly processed and showed diminished 

autophosphorylation in neuronal cells. Five mutants (G516R, G571R, R643W, R648C 

and G708S) in the tyrosine kinase domain were processed as wild-type TRKA but 

showed significantly diminished autophosphorylation in both neuronal and 

non-neuronal cells. In contrast, R85S and (H598Y; G607V), detected previously as 

double and triple mutations, are probably polymorphisms in a particular ethnic 

background. The other putative mutant D668Y might be a rare polymorphism or might 

impair the function of TRKA without compromising autophosphorylation. Mutated 

residues in the tyrosine kinase domain are conserved in various RTKs and probably 

contribute to critical function of these proteins. Thus, naturally occurring TRKA 

missense mutations with loss of function provide considerable insight into the 

structure-function relationship in the RTK family. Our data may aid in developing a 

drug which targets the clinically devastating ‘complex regional pain syndrome’. 
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INTRODUCTION 

Nerve growth factor (NGF) supports the survival of sympathetic ganglion neurons and 

nociceptive sensory neurons in dorsal root ganglia derived from the neural crest and 

ascending cholinergic neurons of the basal forebrain (1, 2). Human TRKA (also named 

NTRK1) was isolated from a colon carcinoma as a potential new member of the tyrosine 

kinase gene family (3) and expression of TRKA(trk) was later found in the nervous system 

(4). TRKA is a receptor tyrosine kinase which is phosphorylated in response to NGF (5, 6). 

The binding of NGF to TRKA stimulates homodimer formation and activation of tyrosine 

kinase activity. Phosphorylated tyrosine residues in the TRKA cytoplasmic domain serve as 

anchors for binding downstream signaling molecules (7, 8). Proteins known to become 

phosphorylated and activated in response to NGF include phospholipase Cγ-1 (PLC γ-1), 

phosphatidylinositol 3-kinase (PI3K), the adapter protein Shc and the Suc1-associated 

neurotrophic factor target (SNT, also called FRS2) (9). SNT/FRS2 was first identified as a 

specific target of differentiation factor-induced tyrosine kinase activity in neuronal cells (10) 

and then cloned as a lipid-anchored docking protein to link fibroblast growth factor and NGF 

receptor activation with signaling pathways essential for cell differentiation (11, 12). This 

protein is also phosphorylated in response to NGF (11, 13, 14).  

The human TRKA gene, located on chromosome 1q21-q22 (15) is divided into 17 exons 

and 16 introns. The entire sequence was estimated to span > 23 kb region, coding for a 

protein of 790 or 796 amino acid residues (16, 17). Six amino acid residues encoded by exon 

9 are in the extracellular domain of the neuronal-specific TRKA receptor (18). A single 

transmembrane domain divides TRKA protein into an extracellular domain and an 

intracellular domain (7, 8, 19). The extracellular domain is important for specific NGF 

binding and includes a signal peptide, three tandem leucine-rich motifs flanked by two 

cysteine clusters, and two immunoglobulin-like domains (or motifs). The intracellular 

domain, including a juxtamembrane region, a tyrosine kinase domain and a very short 

carboxy-terminal tail, is phosphorylated in response to NGF and is critical for intracellular 

signaling. In vitro assessment has identified TRKA tyrosine residues - 490, 670, 674, 675 and 

785 as autophosphorylation sites (20). The juxtamembrane domain contains an IXNPXpY 

motif, where p indicates phosphorylation at the -490Tyr residue of the activated TRKA(21). 

This motif is recognized by an Shc- adapter protein, required for activation of the 

Ras-MAPK pathway (20, 22). The Shc-association site is also important for PI3K activation. 

SNT/FRS2 also binds to the phosphorylated -490Tyr residue of TRKA (14). Tyrosines - 670, 
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674 and 675, which lie within the kinase activation loop, are involved in the regulation of the 

TRKA kinase activity and transphosphorylation (23). A consensus sequence motif YXXM, 

which interacts with PI3K, is located at the end of the kinase catalytic domain (-751Tyr in 

TRKA) (24, 25). There is another report indicating that PI3K and TRKA do not associate 

directly (26), and growth-associated binder-1 (Gab1)–docking protein is probably required 

for PI3K activation (27, 28). The short C-terminal tail of 15 amino acids includes a 

conserved tyrosine residue (-785Tyr in TRKA) which is responsible for binding of PLCγ-1 

(29, 30).  

Congenital insensitivity to pain with anhidrosis (CIPA: MIM 256800) is a rare autosomal 

recessive disorder characterized by recurrent episodes of unexplained fever, anhidrosis 

(inability to sweat), absence of reaction to noxious stimuli, self-mutilating behavior and 

mental retardation (31, 32). We earlier identified the genetic basis for this disorder by 

showing that mutations in TRKA are associated with the absence of functional high-affinity 

NGF receptors in four patients (33). CIPA is the first human genetic disorder implicated in 

the neurotrophin signal transduction system. We developed a comprehensive strategy to 

screen for TRKA mutations on the basis of the gene’s structure and organization (34), and we 

characterized intragenic polymorphic sites and described the haplotypic associations of 

mutant alleles (35). We detected 25 mutations, including 6 frameshift mutations, 4 nonsense 

mutations, 4 splice-site mutations and 11 putative missense mutations in 31 CIPA families 

from various ethnic groups (33-35). Mendelian inheritance of the mutations has been 

confirmed in families from which samples from parents were available. Loss of TRKA 

function is self-evident in the frame-shift, splice-site or nonsense mutations. In contrast, 

putative missense mutations, including ‘double’ and ‘triple mutations’ (34), require an 

expression study for confirmation, as a cause of CIPA. Such studies provide an opportunity 

to consider the structure-function relationship of TRKA protein as well as findings in 

receptor tyrosine kinase (RTK) family members.  

 We have now examined 11 putative TRKA missense mutations, distributed in the 

extracellular domain as well as the intracellular signal transduction domain, by expressing 

them in two different cell lines and the ligand-induced autophosphorylation was scrutinized. 
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RESULTS 

 

Eleven putative TRKA missense mutations examined in the present study 

 

We detected 11 putative missense mutations in 31 CIPA families from various ethnic groups 

(Table 1) (33-35). Arg85Ser and (His598Tyr; Gly607Val) were linked, on the same 

chromosome, to a splice-site mutation in intron 4 (IVS-1G>C) and a nonsense mutation in 

exon 1 (Gln9X). These were assumed to be ‘double’ and ‘triple’ mutations, respectively, 

since they were detected by screening the entire coding region of TRKA in consanguineous 

homozygous patients from United Arab Emirates and Italy, respectively (34). Positions of 

each putative mutation in the TRKA gene and its protein product were based on the domain 

structure (7, 17, 19, 36) and structure-based amino acid alignment of the insulin receptor (37, 

38). 

 

Transfection of the wild-type TRKA cDNA into two cell lines: SH-SY5Y and COS-1 

 

We subcloned the full-length wild-type TRKA cDNA into a mammalian expression vector 

pCAGGS and transfected it into a neuronal cell line, SH-SY5Y. The TRKA precursor 

protein was detected and processed to a 140 and a 110 kDa form (Fig.1A). The primary 

translated product is the 110 kDa glycoprotein which becomes immediately glycosylated, 

presumably during its translocation into the endoplasmic reticulum, and this molecule is 

further glycosylated to yield the mature 140 kDa form (36). A faint band of 80 kDa is 

probably the common unglycosylated polypeptidic backbone of these proteins. The 

TRKA-transfected cells were exposed to NGF in order to study receptor activation, the  

result being autophosphorylation of tyrosine residues. Signal of the 140 kDa form was 

intense and phosphorylated in response to NGF. The signal detected by anti-phosphorylated 

-674/675Tyr antibody was weaker than that detected by anti-phosphorylated -490Tyr 

antibody. Thus, the TRKA precursor protein is processed to two 140 and 110 kDa 

glycosylated forms and these are phosphorylated in response to NGF in SH-SY5Y cells; 

however, phosphorylation of the latter is less than that of the former. 

In the non-neuronal cell line COS-1, the TRKA precursor protein was processed mainly to 

the 110 kDa form, although the 140 and 80 kDa forms were also faintly visible (Fig. 1B). All 

forms were phosphorylated irrespective of the presence or absence of NGF. 

Autophosphorylation of all these was slightly enhanced by NGF. In this experiments, we 
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cultured COS-1 cells in 0.5 % fetal calf serum to reduce the basal activation induced by a 

putative activator or ligand included in calf serum. We used a commercially available cell 

extract of PC-12 cells, with or without NGF stimulation, as a reference in order to compare 

the size of TRKA forms (bands) in each cell line. The 140 kDa form was the main TRKA 

protein and was phosphorylated in response to NGF in the PC-12 cell extract (data not 

shown). But the 110 kDa form was the main TRKA protein in COS-1 cells and was 

phosphorylated without NGF stimulation. We also examined an effect of NGF concentration 

on autophosphorylation of the TRKA protein expressed in COS-1 cells. TRKA protein was 

phosphorylated without adding NGF and the state of phosphorylation was not affected by 

increasing the amount of NGF (data not shown). Taken together, autophosphorylation 

apparently can occur without NGF stimulation of COS-1 cells. NGF-independent 

constitutive autophosphorylation of the TRKA protein has also been observed in other cell 

lines overexpressing this gene (5). 

 

Transfection of putative mutant TRKA cDNAs into SH-SY5Y cells 

 

We then transfected TRKA cDNAs harboring 11 putative missense mutations into SH-SY5Y 

cells and observed autophosphorylation of the intracellular tyrosine residues. Three putative 

mutations, R85S, L93P and L213P, were located in the extracellular domain. Both R85S and 

L93P mutations substitute amino acids in the first leucine-rich motif (Table 1). The former 

was detected as one of ‘double mutation’ in the same patient and the protein product was 

processed in cells and showed NGF-stimulated autophosphorylation as the wild-type TRKA 

(Fig. 2, box 1). In contrast, the product of the latter L93P mutation was processed only to the 

110 kDa form in cells and showed a diminished response to NGF (Fig. 2, box 2). The third 

L213P mutation was in the first immunoglobulin-like domain and the product was also 

expressed and processed only to the 110 kDa form in cells. But there was significantly 

diminished NGF-stimulated autophosphorylation (Fig. 2, box 3). Thus, two mutations that 

substituted Pro for Leu in the same extracellular but in different domain seemed to impair the 

post-translational processing and NGF-stimulated autophosphorylation in SH-SY5Y cells. 

Eight putative missense mutations, G516R, G571, H598Y, G607V, R643W, R648C, 

D668Y and G708S, were located in exons 13-16, each encoding part of the intracellular 

tyrosine kinase domain (Table 1). When transfected into SH-SY5Y cells, all these TRKA 

mutants were expressed and their protein products were processed as the wild-type to the 140 

and 110 kDa form (Fig. 2, boxes 4-11). Five mutant proteins translated from G516R, G571R, 
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R643W, R648C and G708S showed a significantly diminished autophosphorylation (Fig. 2, 

boxes 4, 5, 8, 9 and 11). But the other three putative mutant proteins from H598Y, G607V 

and D668Y showed phosphorylation equivalent to that of the wild-type protein (Fig. 2, boxes 

6, 7 and 10). These data indicate that eight putative missense mutations substituting amino 

acids in the intracellular tyrosine kinase domain were expressed, that their products were 

processed to the 140 kDa form in SH-SY5Y cells and that five of them showed severely 

impaired NGF-stimulated catalytic activity. 

 

Transfection of putative mutant TRKA cDNAs into COS-1 cells 

 

In COS-1 cells, the wild-type TRKA protein was processed mainly to the 110 kDa 

glycosylated and 80 kDa unglycosylated forms as well as to some degree to the 140 kDa 

form. All three forms were phosphorylated, irrespective of the presence or absence of NGF. 

The signal detected by anti-phosphorylated -674/675Tyr antibody was more intense in 

COS-1 cells than in SH-SY5Y cells and increased slightly in response to NGF (data not 

shown). 

We then transfected TRKA cDNA harboring 11 putative missense mutations into COS-1 

cells and observed autophosphorylation of the intracellular tyrosine residues. The R85S 

mutation was expressed in the cells and its product was processed and phosphorylated as the 

wild-type TRKA (Fig. 3, box 1). The two missense mutations L93P and L213P were 

expressed and their products were processed to the 110 kDa form, but in some degree to the 

smaller 80 kDa form (Fig. 3, boxes 2 and 3). Phosphorylation of the L93P protein was 

equivalent to that of the wild-type TRKA protein in COS-1 cells. This was unexpected 

because autophosphorylation of the L93P was reduced in SH-SY5Y cells compared with the 

wild-type protein, as described above. In contrast, the L213P mutant showed a significantly 

diminished autophosphorylation, irrespective of the presence or absence of NGF (Fig. 3, box 

3). Thus, the processing of two mutant proteins substituting Pro for Leu in the same 

extracellular domain but in different domains seemed to be similar in COS-1 cells, albeit 

with a differential pattern of phosphorylation. 

Eight putative missense TRKA mutations in the tyrosine kinase domain were expressed and 

their products were processed to the 110 and/or 80 kDa forms, as the wild-type TRKA in 

COS-1 cells (Fig. 3, boxes 4-11). Five mutant proteins translated from G516R, G571R, 

R643W, R648C and G708S showed a significantly diminished autophosphorylation (Fig. 3, 

boxes 4, 5, 8, 9 and 11). But the other three putative mutant proteins from H598Y, G607V 
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and D668Y showed phosphorylation equivalent to that of the wild-type protein, irrespective 

of NGF stimulation (Fig. 3, boxes 6, 7 and 10). These data indicate that all eight putative 

mutations in the tyrosine kinase domain were expressed and their products were processed to 

the 110 kDa form in COS-1 cells and that five of them showed severely impaired catalytic 

activity for autophosphorylation of -490Tyr and -674/675Tyr residues. 

 

Alignment of the mutated residues in the TRKA protein with various RTKs 

 

Crystallographic structures of the RTK family, together with extensive biochemical studies, 

led to a better understanding of the structure and function of their mechanisms (37-39). We 

made an alignment of eight mutated TRKA residues in the tyrosine kinase domain, using 

various RTKs (Fig. 4). Five were invariant amino acids perfectly conserved among at least 

15 RTKs while the other three were not conserved, although one (-668Asp) was relatively 

well conserved among 12 of 15 RTKs. G512R and G571R substituted for the last invariant 

Gly of the glycine-rich nucleotide-binding loop (TRKA residues 511-516) and the invariant 

Gly of the β4-strand (569-573), respectively. Either H598Y or G607V substitutes an amino 

acid in the kinase-insert region that showed significant variance among various RTKs. Both 

R643W and R648C substitute the invariant Arg residues of the catalytic loop (residues 

642-649), in which all residues (except for Thr) are well conserved. D668Y substitutes an 

amino acid in the activation loop (residues 661-682) that includes -674/675Tyr and is 

important for activation of tyrosine kinase. G708S substitutes for the central residue of αF 

helix (700-716). 
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DISCUSSION 

 

We transfected the wild-type TRKA and 11 putative missense mutants into two cell lines, 

SH-SY5Y and COS-1, using as a vector the mammalian expression plasmid, pCAGGS. 

These two cell lines showed a low-level expression of the endogenous TRKA gene in vitro. 

Transfection of SH-SY5Y cells with the exogenous wild-type TRKA restored NGF 

responsiveness in terms of TRKA autophosphorylation that can be detected by 

immunoblotting, using two specific antibodies to recognize phosphorylated -490Tyr and 

-674/675Tyr of the TRKA protein. The wild-type TRKA was expressed and its product was 

processed to the 140 and 110 kDa forms. Both forms were phosphorylated in response to 

NGF, the latter showed a reduced response compared with the former. A previous study 

indicated that the mature 140 kDa form crosses the plasma membrane and is exposed to the 

cell exterior, but both forms possess in vitro kinase activity specific for tyrosine residues (36). 

In addition, our study suggested that a small proportion of the 110 kDa proteins could 

become exposed to the cell exterior since autophosphorylation was enhanced slightly by 

NGF stimulation. TRKA protein precursors in SH-SY5Y and COS-1 cells were differentially 

processed and phosphorylated in an NGF-dependent and NGF–independent manner, 

respectively, under the conditions used in this study. In COS-1 cells, the wild-type TRKA was 

strongly expressed and its product was processed mainly to the 110 kDa form that was 

phosphorylated, irrespective of the presence or absence of NGF. This strong expression 

might in part be due to the origin of DNA replication derived from SV40 in the pCAGGS 

plasmid, making way for the plasmid to replicate in COS-1 cells that produce SV40 T 

antigen (40). The observation that overexpression of TRKA results in NGF-independent 

activation has been described before (5, 20). The difference in the apparent size of the TRKA 

protein in two cell lines probably reflects the difference in post-translational modification, 

mainly glycosylation of the extracellular domain (36). Critical elements for TRKA 

processing may vary from cell to cell, hence studying this receptor in a neuronal context is 

important. 

We examined 11 putative mutations in the TRKA gene that we detected in 31 CIPA 

affected families of various ethnic origins (33-35). Three putative extracellular mutations 

substituted amino acids in the extracellular domain. Two mutations, L93P and L213P, were 

expressed in SH-SY5Y cells but their products were aberrantly processed. These two 

mutations probably impair post-translational processing and transport of receptor protein 

through the endoplasmic reticulum and Golgi apparatus to the plasma membrane. 
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Presumably, these do not fold normally, therefore are not transported efficiently, as 

demonstrated in several mutants of the human insulin receptor (41) and RET (42-45). Both 

mutant proteins showed diminished NGF-stimulated autophosphorylation in SH-SY5Y cells. 

However, the L93P protein was phosphorylated in COS-1 cells, irrespective of the presence 

or absence of NGF, suggesting that overexpression of this mutant protein could cause 

NGF-independent autophosphorylation of the intracellular domain. In contrast, the L213P 

protein showed severely impaired autophosphorylation in COS-1 cells, suggesting that it also 

lacked the tyrosine kinase catalytic activity in addition to a defect of post-translational 

processing. A previous study also stressed the importance of expression levels play in 

assessing the consequence of receptor mutations (23). Thus, a comparison of these two 

mutations indicates that the expression level as well as use of a suitable cell line are 

important in order to demonstrate specific effect(s) of mutation when mutated RTKs are 

being functionally evaluated in in vitro studies. The other putative mutation in the 

extracellular domain, R85S, was detected as one of the homozygous ‘double’ mutations in a 

consanguineous CIPA family from the United Arab Emirates. The proband of this family 

also has a splice site mutation on the same chromosome, which causes an aberrant splicing of 

exon 5, encoding the second cysteine clusters in the extracellular domain (34). The R85S 

was expressed and its product was processed and autophosphorylated as the wild-type TRKA, 

in both cell lines. It is likely that R85S is a polymorphism in a particular ethnic background, 

although we have not yet studied normal populations of the same ethnic origin.  

Eight putative missense mutations were distributed in the intracellular tyrosine kinase 

domain important for signal transduction. We aligned the mutated amino acid residues in the 

tyrosine kinase domain with various RTKs (Fig. 4). We demonstrated that five mutant TRKA 

genes (G516R, G571R, R643W, R648C and G708S) were expressed and their products were 

processed as the wild-type TRKA in both SH-SY5Y and COS-1 cell lines; however, they 

showed a significantly diminished autophosphorylation. In contrast, the other three mutants 

(H598Y, G607V and D668Y) were expressed and their products were processed in 

SH-SY5Y cells; they showed the NGF-stimulated autophosphorylation seen in the wild-type 

TRKA. Catalytic activity for autophosphorylation in the COS-1 cells was evident. The 

G516R mutant substituted the highly conserved glycine residue in a glycine-rich loop 

predicted to be a nucleotide-binding site. A Gly Val mutation at the equivalent position 

was also noted in the insulin receptor (37, 41). Because ATP is the phosphate donor in the 

reaction catalyzed by the RTK, a mutation in the binding site would inactivate the kinase 

activity. We first detected the G571R mutation in a Japanese family (33). -571Gly in the 
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insulin receptor is predicted to be in a β-sheet conformation. The functional significance of 

the region is not yet apparent. Among the RTK family members, -571Gly is invariant 

suggesting that it probably plays an important role in tyrosine kinase activity. Recently, this 

mutation has been characterized and was found to exert a loss-of-function effect (46). 

Equivalent residues of both R643W and R648C mutations were located in the catalytic loop 

in the insulin receptor (37, 38). R643W mutation substitutes Trp for -643Arg, a residue 

immediately preceding the putative catalytic base, -644Asp, that is highly conserved among 

the RTK family members. -643Arg is one of the charge pair partners for phosphorylated 

tyrosines in the activation loop (47). Interestingly, a mutation substituting Gln for Arg at the 

equivalent position was also noted in the insulin receptor (37). R648C mutation substitutes 

Cys for -648Arg, whose equivalent carbonyl oxygen in the insulin receptor is predicted to be 

hydrogen-bonded via a water molecule to one of the ribose hydroxyl group of ATP (38). 

Thus, it is likely that both R643W and R648C mutations affect catalytic activity of the 

TRKA protein. The G708S mutation substitutes Ser for -708Gly that is invariant in the RTK 

family and the equivalent residue in the insulin receptor is predicted in an α-helical 

conformation. Again, it is likely that G708S mutation affects catalytic activity of the TRKA 

protein, although the functional significance of this α-helical region is not yet apparent. 

Both H598Y and G607V were detected as one of the ‘triple’ mutations in a 

consanguineous family from Italy. The patient also has a nonsense mutation (Q9X) in exon 1 

on the same chromosome (34). Interestingly, sporadic human medullary thyroid carcinomas 

were examined for a putative mutation in the TRKA gene (48). The group detected both 

H598Y and G607V as polymorphisms, on the same chromosome and in a race-matched 

control population, although they did not analyze exon 1 in TRKA and their numbering 

system differs from ours. In addition, G607V has also been detected in homozygous healthy 

Bedouin individuals (49). Our expression study and mutation searches by other investigators 

strongly indicate that these two amino acid substitutions are polymorphisms in a particular 

ethnic background, not mutations.  

We detected D668Y as one allele in a compound heterozygote in four Japanese families 

with CIPA (35). D668Y was not detected in race-matched control chromosomes; this was 

linked to the same TRKA haplotype in four families. We searched all coding exons and 

flanking exon-intron junctions in the TRKA in these families. The other allele in each patient 

was a nonsense, frameshift, splice-site or missense mutation. The missense mutation was 

R648C, as described above. These findings strongly suggest that D668Y is a missense 
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mutation responsible for CIPA. D668Y mutant protein appeared at least capable of 

autophosphorylating -490Tyr and -674/675Tyr. We repeated the expression study with 

respect to D668Y, starting at the in vitro mutagenesis step and obtained similar results. One 

possible interpretation is that the kinase activity in this mutant is sufficient to 

autophosphorylate these sites but is impaired with respect to phosphorylation of other 

tyrosine residues on TRKA protein or its various protein substrates. In this context, it is 

interesting to note that mutation of any one of the activation loop tyrosines (-670Tyr, 674Tyr 

or 675Tyr) results in selective impairment of NGF-dependent PLC γ-1 phosphorylation (23). 

TRKA-mediated PLC γ-1 phosphorylation is nearly completely compromised by mutations 

of single activation loop tyrosines, whereas Shc phosphorylation can be rescued substantially 

by overexpression of the same mutants (23). Alternatively an additional tyrosine residue in 

the activation loop introduced by the D668Y mutation might exert a deleterious effect on the 

function of TRKA protein through other mechanisms rather than defects of 

autophosphorylation. We noted that the D668Y mutation is likely to be activating when 

introduced into other tyrosine kinase molecules, as deduced from the structural homology 

among protein kinases. Murine KIT receptor kinase (50) and human MET receptor kinase 

(51) were seen to be activated by amino acid changes at the Asp residue corresponding to 

position of this TRKA mutant. The former is interesting since it substitutes Tyr for Asp, as 

observed in our D668Y mutation. It is possible that the activating mutation may be 

incompatible with survival of neuronal cells when introduced homozygously into the embryo. 

Of course one cannot completely rule out the possibility that D668Y might be a rare 

polymorphism linked to a putative mutation that could not be detected using our present 

method. Experiments are in progress to address these questions by examining the 

downstream signal transduction of the TRKA protein. 

In the present study, we identified at least five loss-of-function mutations in the 

intracellular tyrosine kinase domain of the TRKA protein. We aligned these residues as well 

as putative polymorphisms with various RTKs, as shown in Figure 4. All five mutations are 

perfectly conserved among these receptors, strongly suggesting that these five amino acid 

residues play a critical role in the autophosphorylation induced by each corresponding ligand 

binding. Thus, naturally occurring missense mutations in the human TRKA gene provide 

considerable insight into structure-function relationships in the RTK family.  

Our study also has clinical implications to treat acquired ‘complex regional pain syndrome 

or sympathetically maintained pain’, including causalgia and reflex sympathetic dystrophy. 
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Detailed mechanisms of these conditions remain to be elucidated. Pain in these conditions is 

often associated with abnormal skin color, temperature change, abnormal sudomotor activity, 

or edema (52). According to our previous study on CIPA, the NGF-TRKA system has a 

crucial role in the development and function of the nociceptive reception as well as 

establishment of thermoregulation via sweating in humans (33). The sudomotor system is 

innervated and regulated by the sympathetic nervous system and nociceptive and 

sympathetic neural pathways are supported and maintained by the neurotrophic action of 

NGF (53-55). Availability of a viable therapy could specifically inhibit these pathways. 

Drugs designed to target the TRKA receptor would be one attractive candidate. Indeed, a 

synthetic TRKA-IgG fusion molecule was studied to sequester endogenous NGF in the 

treatment of experimental inflammatory pain states in laboratory animals (56). Their data 

suggest that peripherally produced NGF normally functions to maintain sensitivity of 

nociceptive sensory neurons and that in some inflammatory states, an up-regulation of NGF 

is responsible for alterations in pain-related behavior. Thus, the present study provides some 

clues to develop a specific drug that targets the NGF-TRKA signal transduction, based on a 

structure-based design. 
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MATERIALS AND METHODS 

 

Cell lines  

 

SH-SY5Y, a cell line derived from human neuroblastoma (57), and COS-1, an 

SV40-transformed simian cell line (58), were cultured in RPMI1640 containing 10 % fetal 

calf serum. 

 

Construction of expression plasmid for wild-type TRKA cDNA 

 

The plasmid pLM6, which carries the full-length 2.7 kb cDNA for the human TRKA 

receptor (36), was a generous gift from Dr. L. F. Parada. A mammalian expression vector 

(pCAGGS) used for this study was a generous gift of Dr. J. Miyazaki. The pCAGGS 

vector has a strong CAG promoter based on a modified chicken β-actin promoter with 

cytomegalovirus immediate early enhancer, a rabbit β-globin gene sequence including a 

polyadenylation signal, and an SV40 origin of DNA replication (40, 59). The pLM6 

plasmid was digested with the restriction enzyme EcoRI and subjected to an agarose gel 

electrophoresis. The full-length TRKA cDNA fragment was recovered from the gel and 

subcloned into the EcoRI site of pCAGGS vector. The junction between the pCAGGS 

vector and cDNA was sequenced to verify orientation. 

 

In vitro site-directed mutagenesis 

 

To construct TRKA mutants, the GeneEditor In Vitro Site-Directed Mutagenesis System 

(Promega, Madison, WI) was used according to the manufacturer’s instruction and with 

the pCAGGS expression vector containing the wild-type TRKA cDNA as template. In 

brief, a selection oligonucleotide provided in the system and a specific mutagenesis 

oligonucleotide described below were annealed to the plasmid DNA template. A mutant 

strand was synthesized with T4 DNA polymerase and T4 DNA ligase. The heteroduplex 

DNA was then transformed into the repair-minus Escherichia coli strain BMH 71-18 

mutS and the cells were grown in selective media to select clones containing the mutant 

plasmid. Plasmids resistant to the antibiotic selection mix were then isolated and 

transformed into the final host strain, JM 109, using the same selection conditions. 
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Mutations were verified by sequencing DNA in the region of interest, as described (33). 

The specific mutagenesis oligonucleotides were 5’-phosphorylated and complementary to 

the TRKA cDNA, except for a region of mismatch near the center. Sequences of the 

oligonucleotides are as follows. Each underline indicates the position of the desired 

mutation. 

5’-pCTGGAGCTCAGTGATCTGAG-3’ for R85S; 

5’-pGGCCTGGGGGAGCCGAGAAACCTCACC-3’ for L93P; 

5’-pGACGTGCTGCCGCGGTGCCAG-3’ for L213P; 

5’-pGGGCGCCTTTAGGAAGGTCTTC-3’ for G516R; 

5’-pGCGCTTCTTCCGCGTCTGCAC-3’ for G571R; 

5’-pCCTCCGATCCTATGGACCCG-3’ for H598Y; 

5’-pCTGCTGGCTGTTGGGGAGGATG-3’ for G607V; 

5’-pCATTTTGTGCACTGGGACCTG-3’ for R643W; 

5’-pCCTGGCCACATGCAACTGTC-3’ for R648C; 

5’-pCATGAGCAGGTATATCTACAG-3’ for D668Y; 

5’-pGTGGAGCTTCAGCGTGGTGCTC-3’ for G708S. 

 

 

Sequencing of DNA 

 

The plasmid DNA was sequenced using a dRhodamine Terminator Cycle Sequencing kit 

(PE Biosystems). The sequences were resolved and analyzed on an ABI PRISM 310 

Genetic Analyzer (PE Biosystems). 

 

Transfection of expression plasmids  

 

The expression plasmid DNA was prepared using a QIAGEN Plasmid Maxi Kit 10. 

Transfections were performed using the Lipofectamine Reagent (Life Technologies), 

according to the manufacturer’s protocol. In brief, nearly 50-80% confluent cells in a 

six-well tissue culture plate were washed three times with serum-free medium RPMI 1640. 

One microgram of the plasmid DNA was diluted and mixed with the Lipofectamine 

reagent in a sterile polystyrene tube. After diluting with serum-free medium, the 

DNA-Lipofectamine complex was overlaid onto the rinsed cells. The cells with the 

complex were incubated for 16-24 hr at 37˚C in a CO2 incubator. The 
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DNA-Lipofectamine complex was removed by aspiration. The cells were further 

incubated after adding RPMI 1640 medium containing fetal calf serum. 

 

Stimulation of cells with NGF  

 

Transfections were performed as described above. The cells were cultured in 2 ml of 

RPMI 1640 medium containing 10% and 0.5% fetal calf serum for SH-SY5Y and for 

COS-1 cells, respectively. Cells without transfection and cells transfected with the 

plasmid pCAGGS vector without the TRKA cDNA were used as a negative control and as 

a mock-treated control, respectively. The mutant or the wild-type TRKA-transfected cells 

and mock-transfected cells as well as non-transfected cells were treated under the same 

conditions in a six-well tissue culture plate. The plate was incubated in humidified air 

containing 5% CO2 for 48 hr. The cells were washed three times with serum-free medium 

and incubated for 2 hr in a serum-free medium. After the medium was aspirated, 1 ml of 

fresh serum-free medium containing 100 ng of a 2.5 S murine NGF (Promega) and 100 μg 

of bovine serum albumin was added, followed by incubation at 37˚C for 5 min. The cells 

were then immediately washed three times with phosphate-buffered saline containing 2 

mM of a phosphatase inhibitor, sodium orthovanadate (Na3VO4; Wako). After adding 1 

ml of the same buffer, the cells were harvested by scraping, transferred into a 1.5 ml tube 

and collected by centrifuging at 12 000 g for 5 min in a microfuge. 

 

Detection of phosphorylated TRKA protein by immunoblotting  

 

Lysis of cell pellets was done by adding 100 μl of lysis buffer (20mM HEPES, pH 7.4, 

100mM NaCl; 0.5% NP-40; 10% glycerol), containing 10 μg/ml aprotinin (Boehringer 

Mannheim), 10 mM EDTA and 2 mM Na3VO4. The tube content was vortexed and 

incubated on ice for 10 min. The tube was centrifuged at 12 000 g for 5 min at 4˚C. 

Supernatant fluid containing total cell lysate proteins was transferred to a fresh microfuge 

tube. The protein concentration was estimated by using the BCA Protein Assay kit 

(PIERCE). Then 20 μg of protein per lane was resolved by 6% sodium dodecyl sulfate - 

polyacrylamide gel electrophoresis. Kaleidoscope Prestained Standards (Bio-Rad) were 

run as a molecular weight marker for protein. Proteins were transferred from the gel to a 

membrane (Immobilon PVDF transfer membranes; Millipore), using an electroblotting 
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apparatus. Primary antibodies used were as follows: a rabbit polyclonal antibody, Trk 

(C-14; Santa Cruz Biotechnology) and two phospho-specific antibodies, [TrkA(Tyr490) 

and TrkA(Tyr674/675); New England BioLabs]. The former was raised against a peptide 

corresponding to amino acids 777-790, the C-terminus of TRKA protein, and was used to 

directly detect total TRKA protein. The latter two phospho-specific antibodies were 

prepared to detect phosphorylated -490Tyr and -674/675Tyr residues. The membrane was 

incubated with the primary antibody according to the manufacturer’s protocol. Next the 

membrane was incubated at room temperature for 1 hr with a secondary anti-rabbit 

antibody conjugated to horseradish peroxidase (DAKO). For detection we used ECL 

western blotting detection reagents (Amersham Pharmacia Biotech) and exposure to X-ray 

film. 
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FIGURES 

 

Figure 1. Expression of the wild-type TRKA cDNA and processing and 

autophosphorylation of its product in two different cell lines: SH-SY5Y and COS-1. 

 

 
 

Figure 1. Expression of the wild-type TRKA cDNA and processing and autophosphorylation 

of its product in two different cell lines: SH-SY5Y and COS-1. The full-length cDNA for 

human TRKA receptor (36) was subcloned into a mammalian expression vector (pCAGGS). 

The TRKA expression plasmid was transfected into SH-SY5Y cells (A) or COS-1 cells (B). 

Each cell transfected with the plasmid pCAGGS vector, without the TRKA insert, was used 

as a mock-treated control. Cells were incubated in the presence (+) or absence (-) of nerve 

growth factor (NGF) (100ng/ml) for 5 min and were harvested for detection of the total or 

phosphorylated TRKA proteins by immunoblotting. An antibody recognizes the C-terminal 

TRKA protein (TRKA, top panel). Two phospho-specific antibodies recognize the 

phosphorylated -490Tyr residue (pY-490, middle panel) and -674/675Tyr residues 

(pY-674/675, bottom panel) of TRKA protein. An arrow on the left side of each blot shows 
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the position of a prestained molecular weight marker. A bracket and an arrow on the right 

side indicate the position of glycosylated and unglycosylated TRKA proteins, respectively. 

(A) In SH-SY5Y cells, the TRKA precursor protein was detected and processed to 140 and 

110 kDa forms. An 80 kDa form (arrow) is probably the unglycosylated polypeptidic 

backbone of these proteins. The 140 kDa form was strongly phosphorylated in response to 

NGF. (B) In COS-1 cells, the TRKA precursor protein was mainly processed to the 110 kDa 

form, although 140 and 80 kDa forms were also visible. The 110 kDa form as well as 140 

and 80 kDa forms were phosphorylated, irrespective of the presence or absence of NGF 

stimulation. 
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Figure 2. Expression of mutant TRKA cDNAs and autophosphorylation of their 

products in SH-SY5Y cells. 

 

 
 

Figure 2. Expression of mutant TRKA cDNAs and autophosphorylation of their products in 

SH-SY5Y cells. 

TRKA cDNAs harboring 11 putative missense mutations were prepared, using in vitro 

site-directed mutagenesis. Each specific mutagenesis oligonucleotide was complementary to 

the wild-type TRKA cDNA, except for a region of mismatch. The mutant and the wild-type 

TRKA cDNAs were transfected into SH-SY5Y cells, under the same conditions. 

Autophosphorylation of the TRKA protein was detected after stimulation with NGF. 
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Figure 3. Expression of mutant TRKA cDNAs and autophosphorylation of their 

products in COS-1 cells. 

 

 
 

Figure 3. Expression of mutant TRKA cDNAs and autophosphorylation of their products in 

COS-1 cells. The mutant and the wild-type TRKA cDNAs harboring 11 putative missense 

mutations were transfected into COS-1 cells, under the same conditions, and phosphorylation 

of their products was observed.  
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Figure 4. Conservation of mutated residues in the TRKA protein in various receptor 

tyrosine kinases (RTKs). 

 

 
Figure 4. Conservation of mutated residues in the TRKA protein in various RTKs. Shown are 

regions in the tyrosine kinase domain flanking amino acid residues mutated in each patient. 

Missense mutations characterized in the present study are listed above the diagram, based on 

alignment of previous reports (36, 37, 60). Assignment of the nucleotide-binding loop, β4, 

kinase-insert region, catalytic loop, activation loop and αF structure was based on the 

three-dimensional structure of the human insulin receptor (37, 38). Parts of the kinase-insert 

region, the activation loop and the αF structure are shown. Each circle corresponds to the 

position of an amino acid substitution: closed and open circles indicate invariant and 

non-invariant amino acid residues, respectively, and the shaded circle indicates an amino acid 

residue conserved among 12 of 15 RTKs. Asterisks in parenthesis indicate the position in the 

human insulin receptor (37). A minimal number of gaps (-) was introduced in the 

kinase-insert region. aa, amino acid residues not included in the alignment. 
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Table 1. Putative missense mutations in human TRKA from 31 families with CIPA  
Mutation a Position in TRKA gene Position in TRKA protein b Reference 
Arg85Serc Exon 2 Leucine rich motif 1 34 
Leu93Pro Exon 2 Leucine rich motif 1 35 
Leu213Pro Exon 6 Immunoglobulin-like domain 1 34 
Gly516Arg Exon 13 Tyrosine kinase (nucleotide-binding loop) 35 
Gly571Arg Exon 14 Tyrosine kinase (β4) 33 
His598Tyrc Exon 15 Tyrosine kinase (kinase-insert region) 34 
Gly607Valc Exon 15 Tyrosine kinase (kinase-insert region) 34 
Arg643Trp Exon 15 Tyrosine kinase (catalytic loop) 34 
Arg648Cys Exon 15 Tyrosine kinase (catalytic loop) 35 
Asp668Tyr Exon 15 Tyrosine kinase (activation loop) 35 
Gly708Ser Exon 16 Tyrosine kinase (αF) 34 
a Based on the published sequence of TRKA cDNA (36) and TRKA gene (17). 
b Based on the domain structure (19) and structure-based sequence alignment of the insulin receptor (37, 38). 
c Arg85Ser and (His598Tyr; Gly607Ser) were linked, on the same chromosome, a splice acceptor site mutation in intron 4 
and a nonsense mutation in exon 1, respectively (34). 
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