BEBR
 FACULTY WORKING PAPER NO. 1496

On the Upper and Lower Semicontinuis of the Aumann Integral

Vicholas C. Yammelis

IHELLAFARIY OU TAE
OCTT : i 1998

BEBR

FACULTY WORKING PAPER NO. 1496
College of Commerce and Business Administration University of Illinois at Urbana-Champaign
September 1988

On the Upper and Lower Semicontinuity of the Aumann Integral
Nicholas C. Yannelis, Associate Professor Department of Economics

Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign

by

Nicholas C. Yannelis*,**

Abstract: Let (T, τ, μ) be a finite measure space, X be a Banach space, P be a metric space and let $L_{1}(\mu, X)$ denote the space of equivalence classes of X-valued Bochner integral functions on (T, τ, μ). We show that if $\phi: T \times P \rightarrow 2^{X}$ is a correspondence such that for each fixed $p \varepsilon P$, $\phi(\cdot, p)$ has a measurable graph and for each fixed teT, $\phi(t, \cdot)$ is either upper or lower semicontinuous then the Aumann integral of ϕ, i.e., $\int_{T} \phi(t, p) d \mu(t)=\left\{\int_{T} x(t) d \mu(t): x_{\varepsilon} S_{\phi}(p)\right\}$, where $S_{\phi}(p)=\left\{y \in L_{1}(\mu, X):\right.$ $y(t) \varepsilon \phi(t, p) \mu-a \cdot e \cdot\}$, is either upper or lower semicontinuous in the variable p as well. Our results extend those of Aumann (1965, 1976) who has considered the above problem for $X=R^{n}$, and they have applications in general equilibrium and game theory.

Key words: Integral of a correspondence, upper semicontinuity, lower semicontinuity, quasi upper semicontinuity, measurable selection, Fatou's Lemma in infinite dimensions.

[^0]
1. INTRODUCTION

Let T be a measure space, P be a metric space, X be a Banach space and ϕ be a correspondence from $T \times P$ to 2^{X} (where 2^{X} denotes the set of all nonempty subsets of X), such that for each fixed $p \varepsilon P, \phi(\cdot, p)$ has a measurable graph and for each fixed $t \varepsilon T, \phi(t, \cdot)$ is either upper or lower semicontinuous. We would like to know whether the integral of the correspondence ϕ is either upper or lower semicontinuous as well. It is the purpose of this paper to provide an answer to the above question. ${ }^{1}$ Specifically, we show (Theorem 3.1) that integration preserves upper semicontinuity (u.s.c.) and that, (Theorem 3.2) integration preserves lower semicontinuity (l.s.c.).

It should be noted that the problem of whether integration preserves u.s.c. or $1 . s . c$. was first examined in a path breaking paper by Aumann (1965, 1976), [see also Schmeidler (1970)]. However, Aumann considered correspondences taking values in a finite dimensional Euclidean space. It turns out, that the finite dimensional arguments of Aumann cannot be readily adopted to cover Banach-valued correspondences. In particular, Aumann's method of proof of the fact that integration preserves u.s.c. is based heavily on the Lyapunov Theorem, a result which is false in infinite dimensional spaces. Nevertheless, for strong forms of u.s.c. correspondences (i.e., weakly u.s.c. correspondences) a result analogous of that of Aumann has been obtained in Yannelis (1988a) by means of the "approximate version of the Lyapunov Theorem." However, the arguments in Yannelis (1988a) cannot be adopted here to prove Theorem 3.1 , since the correspondences we consider are u.s.c. in a much weaker sense than
that in the above paper and furthermore they are not convex or compact valued. Hence, our arguments are of necessity quite different than those in Yannelis (1988a).

Finally, we would like to note that as the work of Aumann (1965, 1976) was motivated by the problem of the existence of an equilibrium in economies with a continum of agents and finitely many conmodities, our work was also motivated by the same problem but it allows for a continum of commodities in addition to the continuum of agents. ${ }^{2}$

The paper proceeds as follows: Section 2 contains notation and definitions. Our main results are stated in Section 3 and their proofs are collected in Section 4. Finally, in Section 5 we show that integration preserves the weak closed graph property.

2. NOTATION AND DEFINITIONS

2.1 Notation
R^{n} denotes the n-fold Cartesian product of the set of real
numbers R.
conA denotes the closed convex hull of the set A. 2^{A} denotes the set of all nonempty subsets of the set A. \emptyset denotes the empty set.
/ denotes the set theoretic subtraction.
dist denotes distance.
proj denotes projection.

If $A \in X$, where X is a Banach space, c\&A denotes the norm closure of A.

If $F_{n},(n=1,2, \ldots)$ is a sequence of nonempty subsets of a Banach space X, we will denote by $L s F_{n}$ and LiF $_{n}$ the set of its (strong) limit superior and (strong) limit inferior points respectively, i.e.,

$$
\begin{aligned}
& \operatorname{LsF}_{n}=\left\{x \in X: x=\lim _{k \rightarrow \infty} x_{n_{k}}, x_{n_{k}} \varepsilon F_{n_{k}}, k=1,2, \ldots\right\} \text {, and } \\
& \operatorname{LiF}_{n}=\left\{x \in X: x=\lim _{n \rightarrow \infty} x_{n}, x_{n} \varepsilon F_{n}, n=1,2, \ldots\right\} .
\end{aligned}
$$

2.2 Definitions

Let X and Y be sets. The graph of the correspondence $\phi: X \rightarrow 2^{Y}$ is denoted by $G_{\phi}=\{(x, y) \varepsilon X x Y: y \varepsilon \phi(x)\}$. Let (T, τ, μ) be a complete, finite measure space, and X be a separable Banach space. The correspondence $\phi: T \rightarrow 2^{X}$ is said to have a measurable graph if $G_{\phi} \varepsilon \tau \otimes \beta(X)$, where $\beta(X)$ denotes the Borel σ-algebra on X and \otimes denotes product σ-algebra. The correspondence $\phi: T \rightarrow 2^{X}$ is said to be lower measurable if for every open subset V of X, the set $\{t \varepsilon T: \phi(t) \bigcap V \neq \emptyset\}$ is an element of τ. Recall [see for instance Himmelberg (1975), p. 47 or Debreu (1966), p. 359] that if $\phi: T \rightarrow 2^{X}$ has a measurable graph, then ϕ is lower measurable. Furthermore, if $\phi($.$) is closed valued and lower measurable then \phi: T \rightarrow 2^{X}$ has a measurable graph. A well-known result of Aumann (1967) which will be of fundamental importance in this paper, [see also Himmelberg (1975), Theorem 5.2, p. 60] says that if (T, τ, μ) is a complete, finite measure space, X is a separable metric space and $\phi: T \rightarrow 2^{X}$ is a nonempty valued correspondence having a measurable graph, then $\phi(\cdot)$ admits a measurable selection, i.e., there exists a measurable function $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{X}$ such that $\mathrm{f}(\mathrm{t}) \varepsilon \phi(\mathrm{t}) \mu-\mathrm{a} . \mathrm{e}$.

We now define the notion of a Bochner integrable function. We will follow closely Diestel-Uhl (1977). Let (T,T,u) be a finite measure space and X be a Banach space. A function $f: T \rightarrow X$ is called simple if there exist $x_{1}, x_{2}, \ldots, x_{n}$ in X and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ in τ such that $\mathrm{f}=\sum_{i=1} \mathrm{X}_{i} X_{\alpha_{i}}$, where $X_{\alpha_{i}}(t)=1$ if $t \varepsilon \alpha_{i}$ and $X_{\alpha_{i}}(t)=0$ if $t \varepsilon \alpha_{i}$. A function $f: T \rightarrow X$ is said to be μ-measurable if there exists a sequence of simple functions $f_{n}: T \rightarrow X$ such that $\underset{n \rightarrow \infty}{\lim f_{n}}(t)-f(t) \|$ $=0$ for almost all t\&T. A μ-measurable function $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{X}$ is said to be Bochner integrable if there exists a sequence of simple functions $\left\{f_{n}: n=1,2, \ldots\right\}$ such that

$$
\lim _{n \rightarrow \infty} \int_{T}\left\|f_{n}(t)-f(t)\right\| d_{\mu}(t)=0
$$

In this case we define for each Eet the integral to be $\int_{E} f(t) d \mu(t)=$ $\lim \int_{E} f_{n}(t) d \mu(t)$. It can be shown [see Diestel-Uh1 (1977), Theorem 2, p. 45] that, if $f: T \rightarrow X$ is a μ-measurable function then f is Bochner integrable if and only if $\int_{T}\|f(t)\| d_{\mu}(t)<\infty$. We denote by $L_{1}(\mu, X)$ the space of equivalence classes of X-valued Bochner integrable functions $\mathrm{x}: \mathrm{T} \rightarrow \mathrm{X}$ normed by

$$
\|x\|=\int_{T}\|x(t)\| d \mu(t)
$$

It is a standard result that normed by the functional \|•\| above, $L_{1}(\mu, X)$ becomes a Banach space, [see Diestel-Uhl (1977), p. 50].

We denote by S_{ϕ} the set of all X-valued Bochner integrable selections from $\phi: T \rightarrow 2^{X}$, i.e.,

$$
S_{\phi}=\left\{x_{\varepsilon} L_{1}(\mu, X): x(t) \varepsilon \phi(t) \mu-a \cdot e \cdot\right\} \cdot
$$

Moreover, as in Aumann (1965) the integral of the correspondence $\phi: T+2^{X}$ is defined as follows:

$$
\int_{\mathrm{T}} \phi(t) \mathrm{d}_{\mu}(\mathrm{t})=\left\{\int_{\mathrm{T}} \mathrm{x}(\mathrm{t}) \mathrm{d}_{\mu}(\mathrm{t}): \mathrm{x}_{\varepsilon} \mathrm{S}_{\phi}\right\} .
$$

In the sequel we will denote the above integral by $\int \phi$. Recall that the correspondence $\phi: T \rightarrow 2^{X}$ is said to be integrably bounded if there exists a map $h_{\varepsilon} L_{1}(\mu, R)$ such that $\sup \{\|x\|: x \varepsilon \phi(t)\} \leq h(t)$ u-a.e. Moreover, note that if T is a complete measure space, X is a separable Banach space and $\phi: T+2^{X}$ is an integrably bounded, nonempty valued correspondence having a measurable graph, then by the Aumann measurable selection theorem we can conclude that S_{ϕ} is nonempty and therefore $\int_{T} \phi(t) d_{\mu}(t)$ is nonempty as well.

Let $A_{n},(n=1,2, \ldots)$ be a sequence of nonempty subsets of a Banach space. Following Kuratowski (1966, p. 339) we say that A_{n} converges in A (written as $A_{n}+A$) if and only if LiA $_{n}=L s A_{n}=A$. It may be useful to remind the reader that LiA_{n} and LsA $_{n}$ are both closed sets and LiA ${ }_{n}$ C LsA ${ }_{n}$ [see Kuratowski (1966), pp. 336-338].

Let X be a metric space and Y be a Banach space. The correspondence $\phi: X \rightarrow 2^{Y}$ is said to be u.s.c. at $x_{0} \varepsilon X$, if for any neighborhood $N\left(\phi\left(x_{0}\right)\right)$ of $\phi\left(x_{0}\right)$, there exists a neighborhood $N\left(x_{0}\right)$ of x_{0} such that for all $x_{\varepsilon} N\left(x_{0}\right), \phi(x) \subset N\left(\phi\left(x_{0}\right)\right)$. We say that ϕ is u.s.c. if ϕ is u.s.c. at every point $x_{\ell} X$. Recall that this definition is equivalent to the fact that the set $\left\{x_{\varepsilon} X: \phi(x) \subset V\right\}$ is open in X for every open subset V of Y, [see for instance Kuratowski (1966), Theorem 3, p. 176].

Let v be a sinall positive number and let B be the open unit ball in Y. The correspondence $\phi: X \rightarrow 2^{Y}$ is said to be quasi uppersemicontinuous (q.u.s.c.) at $x \in X$, if whenever the sequence x_{n}, $(n=1,2, \ldots)$ in X converges to x, then for some $n_{0}, \phi\left(x_{n}\right) \in \phi(x)+v B$ for all $n \geq n_{0}$. We say that ϕ is q.u.s.c. if ϕ is q.u.s.c. at every point $x_{\varepsilon} X$. It can be easily checked that if ϕ is compact valued, quasi upper-semicontinuity implies upper-semicontintuity and viceversa.

Let now P and X be metric spaces. The correspondence $F: P \rightarrow 2^{X}$ is said to be l.s.c. if the sequence $P_{n},(n=1,2, \ldots)$ in P converges to $\mathrm{p} \varepsilon \mathrm{P}$, then $\mathrm{F}(\mathrm{p}) \in \operatorname{LiF}\left(\mathrm{p}_{\mathrm{n}}\right)$. Finally recall that the correspondence $F: P \rightarrow 2^{X}$ is said to be continuous if and only if it is u.s.c. and 1.s.c.

With all these preliminaries out of the way we can now turn to the statements of the main theorems.

3. THE MAIN THEOREMS

We now state our main results:

Theorem 3.1: Let (T, τ, μ) be a complete, finite measure space, P be a metric space and X be a separable Banach space. Let $\psi: T \times P \rightarrow 2^{X}$ be a nonempty valued, integrably bounded correspondence, such that for each fixed $t \varepsilon T, \psi(t, \cdot)$ is $q \cdot u \cdot s \cdot c$. and for each fixed $p \varepsilon P, \psi(\cdot, p)$ has a measurable graph. Then

$$
\int \psi(t, \cdot) \text { is q.u.s.c. }
$$

Theorem 3.2: Let (T, τ, μ) be a complete, finite measure space, X be a separable Banach space and P be a metric space. Let $\phi: T \times P \rightarrow 2^{X}$ be an integrably bounded correspondence such that for each fixed $\mathrm{t}_{\varepsilon} \mathrm{T}$, $\phi(t, \cdot)$ is l.s.c. and for each fixed $p \varepsilon P, \phi(\cdot, p)$ has a measurable graph. Then

$$
\int \phi(t, \cdot) \text { is l.s.c. }
$$

Remark 3.1: If in addition to the assumptions of Theorera 3.1, it is assumed that $\int \psi(t, \cdot)$ is compact valued, then we can conclude that $\int \psi(t, \cdot)$ is u.s.c.

Remark 3.2: If in Theorern 3.1 we add the assumption that $\psi(\cdot, \cdot)$ is convex valued and that for all $(t, p) \varepsilon T \times P, \psi(t, p) \in K$, where K is a weakly compact, convex, nonempty subset of X, then it follows from Lemma 4.1 (see next section) that $\int_{\mathrm{T}} \psi(\mathrm{t}, \cdot) \mathrm{d}_{\mu}(\mathrm{t})$ is weakly compact valued and we can conclude that $\int_{\mathrm{T}} \psi(\mathrm{t}, \cdot) \mathrm{d}_{\mu}(\mathrm{t})$ is weakly u.s.c., i.e., the set $\left\{p \varepsilon P: \int_{T} \psi(t, p) d \mu(t) C V\right\}$ is open in P for every weakly open subset V of X. Hence, from Theorem 3.1 we can obtain a version of Theorem 4.1 in Yannelis (1988a) which does not require (T, τ, \downarrow) to be atomless.

The Corollaries below follow directly from Theorems 3.1, 3.2 and Remark 3.1. They extend some results of Amann (1965, Theorem 5, and Corollary 5.2) to separable Banach spaces.

Corollary 3.1: Let (T, τ, μ) be a complete, finite measure space, P be a metric space and X be a separable Banach space. Let $\psi: T \times P+2^{X}$ be an integrably bounded, nonempty valued correspondence such that for
each fixed $p \varepsilon P, \psi(\cdot, p)$ has a measurable graph and for each fixed $\varepsilon_{\varepsilon} T$, $\psi(t, \cdot)$ is continuous. Moreover, suppose that $\int_{\tau} \psi(t, \cdot) d_{\mu}(t)$ is compact valued. Then

$$
\int_{\mathrm{T}} \psi(t, \cdot) \mathrm{d} \mu(t) \text { is continuous. }
$$

Corollary 3.2: ${ }^{3}$ Let (T, τ, μ) be a complete, finite measure space and X be a separable Banach space. Let $\phi_{n}: T \rightarrow 2^{X},(n=1,2, \ldots)$ be a sequence of integrably bounded, nonempty valued correspondence having a measurable graph, such that:
(i) For all $n,(n=1,2, \ldots), \phi_{n}(t) \subset k \mu-a . e$. , where K is a compact, nonempty subset of X, and

$$
\begin{equation*}
\phi_{n}(t) \rightarrow \phi(t) \mu-a \cdot e . \tag{ii}
\end{equation*}
$$

Then

$$
\int_{T^{\phi}}(t) d_{\mu}(t)+c \ell \int_{T} \phi(t) d_{\mu}(t) .
$$

Moreover, if $\phi(\cdot)$ is convex valued then

$$
\int_{T^{\phi}}(t) d_{\mu}(t) \rightarrow \int_{T} \phi(t) d_{\mu}(t) .
$$

4. PROOF OF THE MAIN THEOREMS

4.1 Lemmata

For the proof of our main results we will need some preparatory Lemmata.

Lemma 4.1: Let (T, τ, μ) be a finite measure space and X be a Banach space. Let $\phi: T \rightarrow 2^{X}$ be a correspondence satisfying the following condition:
(i) $\phi(t)$ C $K \mu-a . e$. , where K is a compact, nonempty subset of X.

Then

$$
c \ell \int_{T} \overline{\operatorname{con} \phi}(t) d \mu(t)=\int_{T} \overline{\operatorname{con} \phi}(t) d_{\mu}(t) .
$$

Proof: Let $\tilde{K}=\overline{\operatorname{con} K}$. Note that \tilde{K} is compact, [see DunfordSchwartz (1958), Theorem 6, p. 416] nonempty and convex. Hence, from Diestel's theorem [Diestel (1977), Theorem 2] we have that $S_{\tilde{K}}$ is weakly compact in $L_{1}(\mu, X)$. Since $\overline{\operatorname{con}}(\cdot)$ is norm closed and convex valued so is $\mathrm{S}_{\overline{\operatorname{con} \phi}{ }_{\phi}}$. It is a consequence of the Separation Theorem that the weak and norm topologies coincide on closed convex sets. Hence, $S_{\overline{\operatorname{con} \phi}}$ is weakly closed. Since $S_{\overline{\operatorname{con} \phi}}$ S $S_{\tilde{K}}$ and the latter set is weakly compact we can conclude that $S_{\overline{\operatorname{con} \phi}}$ is weakly compact. Define the mapping $\gamma: L_{1}(\mu, X)+X$ by $\gamma(x)=\int_{T} x(t) d_{\mu}(t)$. Certainly γ is linear and norin continuous. It follows from Theorem 15 in DunfordSchwartz (1958, p. 422) that γ is also weakly continuous. Therefore, $\gamma\left(S_{\overline{\operatorname{con}} \phi}\right)=\left\{\gamma(x): x_{\varepsilon} S_{\overline{\operatorname{con} \phi}}\right\}=\int_{T} \overline{\operatorname{con}}(t) d_{\mu}(t)$ is weakly compact, and we can conclude that $c \ell \int_{T} \overline{\operatorname{con}} \phi(t) d \mu(t)=\int_{T} \overline{\operatorname{con} \phi}(t)$. This completes the proof of the Lemma.

Notice that the above proof of the Lemma showed that $\int_{T} \overline{\operatorname{con}} \phi(t) d_{\mu}(t)$ is weakly compact. Hence, the above Lemma may be seen as the infinite dimensional extension of Theorem 4 of Aumann (1965).

The result below is an infinite dimensional Li version of the Fatou Lemma for the set of all integrable selections from a correspondence.

Lemma 4.2: Let (T, τ, μ) be a complete, finite measure space and X be a separable Banach space. Let $\phi_{n}: T \rightarrow 2^{X},(n=1,2, \ldots)$ be a
sequence of integrably bounded correspondences having a measurable graph, i.e., $G_{\phi_{n}} \varepsilon \tau \otimes \beta(X)$. Then

$$
\mathrm{S}_{\mathrm{Li}_{\phi_{\mathrm{n}}}} \mathrm{C} \mathrm{LiS}_{\phi_{\mathrm{n}}}
$$

Proof: See Yannelis (1988b, Lemma 5.3).

4.2 Proof of Theorem 3.1

Without loss of generality we may assume throughout the argument that $\int_{T} d_{\mu}(t)=1$. Let B be the open unit ball in X, and ν be a small positive number. We must show that if $\left\{p_{n}: n=1,2, \ldots\right\}$ is a sequence in P converging to $p \varepsilon P$, then for a suitable n_{0},

$$
\int_{\mathrm{T}} \psi\left(t, p_{\mathrm{n}}\right) \mathrm{d} \mu(t) \subset \int_{\mathrm{T}} \psi(t, \mathrm{p}) \mathrm{d}_{\mu}(\mathrm{t})+\nu \mathrm{B} \text { for all } \mathrm{n} \geq \mathrm{n}_{0} .
$$

Define the mapping $S_{\psi}: P \rightarrow 2^{L_{1}}(\mu, X)$ by $S_{\psi}(p)=\left\{x_{\varepsilon} L_{1}(\mu, X)\right.$:
$x(t) \varepsilon \psi(t, p) \mu-a . e \cdot\}$. Let B and \tilde{B} be the open unit balls in X and $L_{1}(\mu, X)$ respectively. We first show that for a suitable $n_{0}, S_{\psi}\left(p_{n}\right) \boldsymbol{C}$ $S_{\psi}(p)+v \tilde{B}$ for all $n \geq n_{0}$.

We begin by finding the suitable n_{0}. Since for each fixed $t \varepsilon T$, $\psi(t, \cdot)$ is $q \cdot u \cdot s . c$. we can find a minimal M_{t} such that
(4.1) $\psi\left(t, p_{n}\right) \boldsymbol{C} \psi(t, p)+\delta B$ for all $n \geq M_{t}$, where $\delta=\frac{\nu}{3 \mu(T)}$.

We now show that M_{t} is a measurable function of t. However, first we make a few observations. By assumption for each fixed p and n, $G_{\psi\left(\cdot, P_{n}\right)+\delta B} \varepsilon \tau \otimes B(X)$ and so does $\left(G_{\psi\left(\cdot, P_{n}\right)+\delta B}\right)^{c}$, (where S^{c} denotes
the complement of the set S). It is easy to see that
$G_{\psi(\cdot, p)} \cap\left(G_{\psi\left(\cdot, P_{n}\right)+\delta B}\right)^{C} \varepsilon \tau \otimes B(X)$. Therefore, the set

$$
U=\left\{(t, x)_{\varepsilon} T \times X:(t, x)_{\varepsilon} G_{\psi(\cdot, p)} \cap\left(G_{\psi\left(\cdot, p_{n}\right)+\delta B}\right)^{c}\right\}
$$

belongs to $\tau \otimes \beta(X)$.
It follows from the projection theorem [see for instance Hildenbrand (1974), p. 44] that

$$
\operatorname{proj}_{T}(U) \varepsilon \tau \text {. }
$$

Notice that,

$$
\begin{aligned}
\operatorname{proj}_{T}(U) & =\left\{t \varepsilon T: \psi(t, p) \notin \psi\left(t, p_{n}\right)+\delta B\right\} \\
& =\left\{t \varepsilon T: \psi(t, p) /\left(\psi\left(t, p_{n}\right)+\delta B\right) \neq \emptyset\right\} \cdot
\end{aligned}
$$

By virtue of the measurability of the above set we can now conclude that M_{t} is a measurable function of t. In particular, simply notice that,

$$
\left\{t \varepsilon T: M_{t}=m\right\}=\bigcap_{n \geq m}\left\{t \varepsilon T: \psi\left(t, p_{n}\right) \boldsymbol{c} \psi(t, p)+\delta B\right\} \cap\left\{t \varepsilon T: \psi\left(t, p_{m-1}\right) \notin \psi(t, p)+\delta B\right\} .
$$ We are now in a position to choose the desired n_{0}. Since $\psi(\cdot, \cdot)$ is integrable bounded there exists $h_{\varepsilon} L_{1}(\mu, R)$ such that for almost all $t \varepsilon T, \sup \left\{\|x\|: x_{\varepsilon} \psi(t, p)\right\} \leq h(t)$ for each $p \varepsilon P$.

Choose δ_{1} such that if $\mu(S)<\delta_{1}$, (S CT), then $\int_{S} h(t) d \mu(t)<\frac{\nu}{3}$. Since M_{t} is a measurable function of t, we can choose n_{0} such that $\mu\left(\left\{t \varepsilon T: M_{t} \geq n_{0}\right\}\right)<\delta_{1}$. This is the desired n_{0}. Let $n \geq n_{0}$ and $y \varepsilon S_{\psi}\left(p_{n}\right)$. We must show that $y \varepsilon S_{\psi}(p)+\nu \tilde{B}$.

By assumption, for each fixed $\mathrm{p} \varepsilon \mathrm{P}, \psi(\cdot, \mathrm{p})$ has a measurable graph and $\psi(\cdot, \cdot)$ is nonempty valued. Hence, by the Aumann measurable selection theorem there exists a measurable function $\mathrm{f}_{1}: \mathrm{T} \rightarrow \mathrm{X}$ such that $f_{1}(t) \varepsilon \psi(t, p) \mu-a . e$. Define the correspondence $\theta: T \rightarrow 2^{X}$ by $\theta(t)=(\{y(t)\}+\delta B) \cap \psi(t, p)$. It follows from (4.1) that for all $t \varepsilon T_{0}=\left\{t: M_{t} \leq n_{0}\right\}, \theta(t) \neq \emptyset$. Moreover, $\theta(\cdot)$ has a measurable graph. Another application of the Aumann measurable selection theorem allows us to guarantee the existence of a measurable function $\mathrm{f}_{2}: T \rightarrow X$ such that $f_{2}(t) \varepsilon \theta(t) \mu-a \cdot e$. Define $f: T \rightarrow X$ by

$$
f(t)= \begin{cases}f_{1}(t) & \text { for } t \in T_{0} \\ f_{2}(t) & \text { for } t \varepsilon T_{0} .\end{cases}
$$

Then $f(t) \varepsilon \psi(t, p) \mu-a \cdot e$. and since $\psi(\cdot, \cdot)$ is integrably bounded we can conclude that $f_{\varepsilon} S_{\psi}(p)$. If we show that $\|E-y\|<\nu$ then $y \varepsilon S_{\psi}(p)+\nu \tilde{B}$ and we will be done. But this is easy to see. We have

$$
\begin{aligned}
\|f-y\| & =\int_{T / T_{0}}\left\|f_{1}(t)-y(t)\right\| d_{\mu}(t)+\int_{T_{0}}\left\|f_{2}(t)-y(t)\right\| d_{\mu}(t) \\
& <2 \int_{T / T_{0}} h(t) d_{\mu}(t)+\int_{T_{0}} \delta d_{\mu}(t) \\
& <\frac{2 \nu}{3}+\delta \mu(T)=\frac{2 \nu}{3}+\frac{\nu}{3 \mu(T)} \cdot \mu(T)=\nu .
\end{aligned}
$$

This completes the proof of the fact that, if the sequence $\left\{p_{n}: n=1,2, \ldots\right\}$ in P converges to $p \varepsilon P$, then for a suitable n_{0}

$$
\begin{equation*}
S_{\psi}\left(p_{n}\right) \subset S_{\psi}(p)+\nu \tilde{B} \text { for all } n \geq n_{0} . \tag{4.2}
\end{equation*}
$$

Define now the mapping $\gamma: L_{1}(\mu, X) \rightarrow X$ by $\gamma(x)=\int_{T} x(t) d \mu(t)$. It follows from (4.2) that for all $n \geq n_{0}$,

$$
\begin{aligned}
& \gamma\left(S_{\psi}\left(p_{n}\right)\right)=\left\{\gamma(x): x_{\varepsilon} S_{\psi}\left(p_{n}\right)\right\} \\
& =\int_{T} \psi\left(t, P_{n}\right) d \mu(t) \in \gamma\left(S_{\psi}(p)+\nu \tilde{B}\right)=\gamma\left(S_{\psi}(p)\right)+\gamma(\nu \tilde{B}) \\
& =\int_{T} \psi(t, p) d \mu(t)+\nu B .
\end{aligned}
$$

Hence,

$$
\int_{T} \psi\left(t, p_{n}\right) d \mu(t) e \int_{T} \psi(t, p) d \mu(t)+\nu B \text { for all } n \geq n_{0}
$$

i.e., $\int_{T} \psi(t, \cdot) d \mu(t)$ is $q \cdot u . s . c$. as was to be shown.

4.3 Proof of Theorem 3.2

We first show that the correspondence $S_{\phi}: P \rightarrow 2^{L_{1}(\mu, X)}$ defined by

$$
S_{\phi}(p)=\left\{y \varepsilon L_{1}(\mu, X): y(t)_{\varepsilon \phi}(t, p) \mu-a \cdot e \cdot\right\}
$$

is l.s.c.

To see this, let $\left\{p_{n}: n=1,2, \ldots\right\}$ be a sequence in P converging to $\mathrm{p} \boldsymbol{P}$. We must show that $\mathrm{S}_{\phi}(\mathrm{p}) \in \operatorname{LiS}_{\phi}\left(p_{\mathrm{n}}\right)$. Since by assumption for each fixed $t \varepsilon T, \phi(t, \cdot)$ is l.s.c. We have that $\phi(t, p) E \operatorname{Li\phi }\left(t, p_{n}\right)$ for all $t \varepsilon T$, and therefore,
(4.3) $\quad S_{\phi}(p) \subset S_{L_{i \phi}}\left(p_{n}\right)$.

It follows now from Lemma 4.2 that (4.3) can be written as:

$$
S_{\phi}(p) \subset S_{L_{i \phi}}\left(p_{n}\right) \subset \operatorname{LiS}_{\phi}\left(p_{n}\right)
$$

Hence,

$$
S_{\phi}(\cdot) \text { is l.s.c. }
$$

Define now the mapping $\gamma: L_{1}(\mu, X) \rightarrow X$ by $\gamma(x)=\int_{T} x(t) d \mu(t)$. Then γ is linear and norm continuous. Notice that $\gamma\left(S_{\phi}(p)\right)=$ $\left\{\gamma(x): x_{\varepsilon} S_{\phi}(p)\right\}=\int_{T} \phi(t, p) d \mu(t)$. Since $S_{\phi}(\cdot)$ is $1 . s . c$. so is $\gamma\left(S_{\phi}\right)$, i.e., $\int_{T} \phi(t, \cdot) d \mu(t)$ is l.s.c. as was to be shown. This completes the proof of Theorem 3.2.

4.4 Proof of Corollary 3.2

We begin by proving an approximate version of the Fatou Lemma in infinite dimensions [see also Balder (1987), Khan-Majumdar (1986) and Yannelis (1988a) for w-Ls versions of this Lemmal, which may be considered as an extension of the finite dimensional Fatou-type Lemmata obtained in Aumann (1965), Artstein (1979), Balder (1984), Hildenbrand-Mertens (1971), Rustichini-Yannelis (1986), and Schmeidler (1970).

Lemma 4.3: Let (T, τ, μ) be a complete, finite measure space and X be a separable Banach space. Let $\phi_{n}: T \rightarrow 2^{X},(n=1,2, \ldots)$ be a sequence of nonempty valued, graph measurable and integrably bounded correspondences, taking values in a compact, nonempty subset of X . Then

$$
L s \int_{T} \phi_{n}(t) d \mu(t) c c \ell \int_{T} L s_{\phi_{n}}(t) d_{\mu}(t)
$$

Moreover, if $\operatorname{Ls} \phi_{n}(\cdot)$ is convex valued, then

$$
\operatorname{Ls} \int_{T} \phi_{n}(t) d \mu(t) C \int_{T} \operatorname{Ls} \phi_{n}(t) d \mu(t) .
$$

Proof: Denote by P the interval [0,1). Define the correspondence $\psi: T \times P+2^{X}$ by

$$
\psi(t, p)= \begin{cases}\phi_{n}(t) & \text { if } \frac{1}{n+1}<p<\frac{1}{n} \\ \phi_{n}(t) \cup \phi_{n+1}(t) & \text { if } p=\frac{1}{n+1} \\ \operatorname{Ls}_{n}(t) & \text { if } p=0 .\end{cases}
$$

It can be easily checked that for each fixed $t \varepsilon T, \psi(t, \cdot)$ is u.s.c. and that for each fixed $p \varepsilon P, \psi(\cdot, p)$ has a measurable graph. Moreover, ψ is integrably bounded. Hence, ψ satisfies all the assumptions of Theorem 3.1 and thus, $\int_{\mathrm{T}} \psi(t, \cdot) \mathrm{d} \mu(t)$ is q.u.s.c. Let now $x \varepsilon \operatorname{Ls} \int_{T} \phi_{n}(t) d \mu(t)$, i.e., there exists $x_{n_{k}}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=x$, $x_{n_{k}} \varepsilon \int_{T^{\phi_{k}}}(t) d_{\mu}(t),(k=1,2, \ldots)$. We wish to show that $x \in c \ell \int_{T} \operatorname{Ls} \phi_{n}(t) d \mu(t)$.

Since $\int_{T} \psi(t, \cdot) d \mu(t)$ is $q \cdot u \cdot s . c$. it follows that if $p_{n_{k}}$ converges to 0 then $\int_{T} \psi\left(t, p_{n_{k}}\right) d \mu(t) C \int_{T} \psi(t, 0) d \mu(t)+v B$ for all sufficiently large k. Consequently, $x_{n_{k}} \varepsilon \int_{T} \psi(t, 0) d_{\mu}(t)+\nu B$ for all sufficiently large k and therefore, $x \varepsilon c l \int_{T} \psi(t, 0) d \mu(t) \equiv c \ell \int_{T} L s \phi_{n}(t) d \mu(t)$ as was to be shown. If now $\operatorname{Ls} \phi_{\mathrm{n}}(\cdot)$, is convex valued (recall that $\operatorname{Ls} \phi_{\mathrm{n}}(\cdot)$ is closed valued as well) it follows from Lemma 4.1 and the first conclusion of Lemma 4.3 that

$$
\operatorname{Ls} \int_{T} \phi_{n} d_{\mu}(t) c c \ell \int_{T} \operatorname{Ls} \phi_{n}(t) d \mu(t)=\int_{T} \operatorname{Ls} \phi_{n}(t) d \mu(t) .
$$

The proof of the Lemma is now complete.

We are now ready to complete the proof of Corollary 3.2. Notice first that it follows from Lemma 4.2 that
(4.4) $\quad \int \operatorname{Li}_{\mathrm{n}} \mathrm{CLi} \int \phi_{\mathrm{n}}$.

To see this define the linear mapping $\gamma: L_{1}(\mu, X) \rightarrow X$ by $\gamma(x)=$ $\int_{T} x(t) d \mu(t)$. Note that $\gamma\left(S_{L_{i \phi_{D}}}\right)=\left\{\gamma(x): x_{\varepsilon} S_{L_{i \phi_{n}}}\right\}=\int L i \phi_{n}$ and hence by virtue of Lemma 4.2 we can conclude that $\gamma\left(\mathrm{S}_{\mathrm{Li} \mathrm{\phi}_{n}}\right) \boldsymbol{\boldsymbol { G } _ { \gamma }}\left(\mathrm{LiS}_{\phi_{\mathrm{n}}}\right)=$ $\left\{\gamma(x): x_{\varepsilon} \operatorname{LiS}_{\phi_{n}}\right\}=\operatorname{Li} \int \phi_{n}$. This completes the proof of (4.4). Since by assumption $\phi_{n}(t) \rightarrow \phi(t) \mu-a . e .$, i.e., $\phi(t)=\operatorname{Li} \phi_{n}(t)=$ $\operatorname{Ls} \phi_{n}(t) \mu-a . e .$, it follows from Lemma 4.3 and the expression (4.4) above that:

Therefore,

$$
c \ell \int_{T} \phi(t) d \mu(t)=L i \int_{T} \phi_{n}(t) d_{\mu}(t)=L s \int_{T} \phi_{n}(t) d_{\mu}(t),
$$

i.e.,

$$
\int_{T^{\phi}}(t) d_{\mu}(t) \rightarrow c \ell \int_{T^{\phi}}(t) d_{\mu}(t) .
$$

If now $\phi(\cdot)$ is convex valued, (4.5) can be written (recall the second conclusion of Lemma 4.3) as:

$$
\int \phi=\int \operatorname{Li} \phi_{\mathrm{n}} \mathrm{CLi} \int \phi_{\mathrm{n}} \subset \mathrm{Ls} \int \phi_{\mathrm{n}} \subset \int \operatorname{Ls} \phi_{\mathrm{n}}=\int \phi \cdot
$$

Thus,

$$
\int_{\mathrm{T}} \phi(t) \mathrm{d}_{\mu}(\mathrm{t})=\mathrm{Li} \int_{\mathrm{T}} \phi_{\mathrm{n}}(\mathrm{t}) \mathrm{d}_{\mu}(\mathrm{t})=\mathrm{Ls} \int_{\mathrm{T}} \phi_{\mathrm{n}}(\mathrm{t}) \mathrm{d}_{\mu}(\mathrm{t}),
$$

i.e.,

$$
\int_{T} \phi_{n}(t) d \mu(t) \rightarrow \int_{T} \phi(t) d \mu(t),
$$

and this completes the proof of Corollary 3.2.
5. ON THE WEAK CLOSED GRAPH PROPERTY OF THE AUMANN INTEGRAL

Let $\left\{A_{n}: n=1,2, \ldots\right\}$ be a sequence of nonempty subsets of a Banach space X, and denote by $w^{-L s A_{n}}$ the set of its weak limit superior points, i.e.,

$$
w_{n} \text { Lss }_{n}=\left\{x \varepsilon X: x=\underset{k \rightarrow \infty}{w-1 i m x_{n_{k}}}, x_{n_{k}} \varepsilon A_{n_{k}}, k=1,2, \ldots\right\}
$$

Let (T, τ, μ) be a complete finite measure space, P be a metric space and X be a separable Banach space. The correspondence $\psi: T \times P \rightarrow 2^{X}$ is said to have a weakly closed graph if $w-L s \psi\left(t, p_{n}\right) \in \psi(t, p) \mu-a . e .$, whenever the sequence $\left\{p_{n}: n=1,2, \ldots\right\}$ in P converges to $\mathrm{p} \varepsilon$ P.

The following result in Yannelis (1988b) will be used to prove that if for each fixed $t \varepsilon T, \psi(t, \cdot)$ has a weakly closed graph then so does the integral of $\psi(t, \cdot)$.

Lemma 5.1: Let (T, τ, μ) be a finite measure space and X be a separable Banach space. Let $\left\{\mathrm{f}_{\mathrm{n}}: \mathrm{n}=1,2, \ldots\right\}$ be a sequence of functions in $L_{p}(\mu, X), 1 \leq p<\infty$ such that f_{n} converges weakly to $f_{\varepsilon} L_{p}(\mu, X)$. Suppose that for all $n,(n=1,2, \ldots), f_{n}(t)_{\varepsilon} F(t) \mu-a . e .$, where $\mathrm{F}: \mathrm{T} \rightarrow 2^{\mathrm{X}}$ is a weakly compact, integrably bounded, nonempty valued correspondence. Then

$$
f(t) \varepsilon \overline{\operatorname{con} w}-\operatorname{Ls}\left\{f_{n}(t)\right\} \mu-a \cdot e .
$$

Proof: See Yannelis (1988b, Corollary 3.1).

We are now ready to state the main result of this section, which generalizes Theorem 4.1 in Yannelis (1988a).

Theorem 5.1: Let (T, τ, μ) be a complete, finite measure space, P be a metric space and X be a separable Banach space. Let $\psi: T \times P \rightarrow 2^{X}$ be a nonempty, closed, convex valued correspondence such that:
(i) for each fixed $t \varepsilon T, \psi(t, \cdot)$ has a weakly closed graph,
(ii) for all $(t, p) \in T \times P, \psi(t, p) \in K(t)$ where $K: T \rightarrow 2^{X}$ is an integrably bounded, weakly compact and nonempty valued correspondence.

Then

$$
\int \psi(t, \cdot) \text { has a weakly closed graph. }
$$

Proof: We first show that the set-valued function $S_{\psi}: P+2^{L_{1}(\mu, X)}$ defined by

$$
S_{\psi}(p)=\left\{x \in L_{1}(\mu, x): x(t) \varepsilon \psi(t, p) \mu-a \cdot e \cdot\right\}
$$

has a weakly closed graph, i.e., if $\left\{p_{n}: n=1,2, \ldots\right\}$ is a sequence in P converging to $p \varepsilon P$, then
(5.1) $\quad \operatorname{wLsS}_{\psi}\left(p_{n}\right) \in S_{\psi}(p)$.

To this end let $x \in \omega-\operatorname{LsS}_{\psi}\left(p_{n}\right)$, i.e., there exists $x_{k},(k=1,2, \ldots)$ in $L_{1}(\mu, X)$ such that x_{k} converges weakly to $x_{\varepsilon} L_{1}(\mu, X)$, and $x_{k}(t) \varepsilon \psi\left(t, p_{n_{k}}\right)$ $\mu-a . e$. , we must show that $x_{\varepsilon} S_{\psi}(p)$. It follows from Lemma 5.1 that $x(t) \varepsilon \overline{\operatorname{con} \omega}-\operatorname{Ls}\left\{x_{k}(t)\right\} \mu-a . e$. and therefore,
(5.2) $x(t) \varepsilon \overline{\operatorname{con} w}-L s \psi\left(t, p_{n}\right) \mu-a \cdot e$.

Since for each fixed $t \varepsilon T, \psi(t, \cdot)$ has a weakly closed graph we have that:
(5.3)

$$
w-\operatorname{Ls} \psi\left(t, p_{n}\right) \in \psi(t, p) \mu-a \cdot e .
$$

Combining (5.2) and (5.3) and taking into account the fact that ψ is convex valued we have that $x(t) \varepsilon \psi(t, p) \mu-a \cdot e$. Since ψ is integrably bounded, we can conclude that $x_{\varepsilon} S_{\psi}(p)$. This completes the proof of the fact that $S_{\psi}(\cdot)$ has a weakly closed graph. Define the linear mapping

$$
\pi: L_{1}(\mu, X) \rightarrow X \text { by } \pi(x)=\int x(t) d_{\mu}(t)
$$

It follows from (5.1) that if the sequence $\left\{p_{n}: n=1,2, \ldots\right\}$ in P converges to $\mathrm{p} \varepsilon \mathrm{P}$, then

$$
\left.\begin{array}{rl}
\pi\left(w-\operatorname{LsS}_{\psi}\left(p_{n}\right)\right) & =\left\{\pi(x): x \in w-\operatorname{LsS}_{\psi}\left(p_{n}\right)\right\} \\
& =w-\operatorname{Ls} \int \psi\left(t, p_{n}\right) \boldsymbol{C}_{\pi}\left(S_{\psi}(p)\right)
\end{array}\right)=\left\{\pi(x): x \varepsilon S_{\psi}(p)\right\},
$$

i.e., $\int \psi(t, \cdot)$ has a weakly closed graph as was to be shown.

Remark 5.1: It can be easily shown by means of the failure of the Lyapunov theorem in infinite dimensional spaces that Theorem 5.1 is false without the convex valueness of the correspondence $\psi: T \times P \rightarrow 2^{X}$ [see Rustichini (1987) for a complete argument].

FOOTNOTES

${ }^{1}$ In general equilibrium theory, T denotes the measure space of agents, X denotes the commodity space, P denotes the price space, $\phi(t, p)$ denotes the demand set of agent t at prices p and the integral of ϕ denotes the aggregate demand set [see for instance Aumann (1966) or Schmeidler (1969) or Hildenbrand (1974) who have considered the above problem for $X=R^{\ell}$, in order to prove the existence of an equilibrium for an economy with an atomless measure space of agents and with finitely many commodities].
${ }^{2}$ See for instance Khan-Yannelis (1987) for the usefulness of our results in general equilibrium theory. Also, applications of our results in game theory are given in Balder-Yannelis (1988).
${ }^{3}$ Compare with Corollary 3.2 in Yannelis (1988b) where a different notion of convergence of sequences of set-valued functions was used.

REFERENCES

Artstein, 2., 1979, "A Note on Fatou's Lemma in Several Dimensions," Journal of Mathematical Economics, 6, pp. 277-282.

Aumann, R. J., 1965, "Integrals of Set-Valued Functions," Journal of Mathematical Analysis and Applications, 12, pp. 1-12.
\qquad , 1976, "An Elementary Proof that Integration Preserves Upper Semicontinuity," Journal of Mathematical Economics, 3, pp. 15-18.

_ 1966, "Existence of a Competitive Equilibrium in Markets with a Continuum of Agents," Econometrica, 34, pp. 1-17.

, 1967, "Measurable Utility and the Measurable Choice Theorem," La Decision, C.N.R.S., Aix-en-Provence, pp. 15-26.

Balder, E. J., 1987, "Fatou's Lemma in Infinite Dimensions," Journal of Mathematical Analysis and Applications (to appear).
, 1984, "A Unifying Note on Fatou's Lemma in Several Dimensions," Mathematics of Operations Research, 29, pp. 267-275.
and N. C. Yannelis, 1988, "Equilibria in Random and Bayesian Cames with a Continum of Players," mimeo.

Debreu, G., 1966, "Integration of Correspondences," Proceedings of the Fif:h Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, Part I, pp. 351-372.

Diestel, J., 1977, "Remarks on Weak Compactness in $L_{1}(\mu, X), "$ Glasgow Mathematical Journal, 18, pp. 87-91.

Dunford, N. and J. T. Schwartz, 1958, Linear Operators, Part I, Interscience, New York.

Hildenbrand W., 1974, Core and Equilibria of a Large Economy, Princeton University Press, Princeton, New Jersey.
\qquad , and J. F. Mertens, 1971, 'On Fatou's Lemna in Several Dimensions," 2. Wahrscheinlichkeitstheorie verw. Gab., 17, pp. 151-155.

Himmelberg, C. J., 1975, "Measurable Relations," Fundamenta Mathematicae, LXXXVII, pp. 53-72.

Khan, M. Ali and M. Majumdar, 1986, "Weak Sequential Convergence in $L_{1}(\mu, X)$ and an Approximate Version of Fatou's Lemma," Journal of

Mathematical Analysis and Applications, 114, pp. 569-573.
\qquad , and N. C. Yannelis, 1987, 'Equilibria in Markets with a Continum of Agents and Commodities," mimeo.

Kuratowski, K., 1966, Topology, Vol. I, Academic Press, New York.
Rustichini, A., 1987, "A Counterexample and an Exact Version of Fatou's Lemma in Infinite Dimension," Archiv der Mathematik, (to appear).
\qquad , and N. C. Yannelis, 1986, "An Elementary Proof of Fatou's Lemma in Finite Dimensional Spaces," Department of Economics, University of Minnesota, Discussion Paper No. 237.

Schmeidler, D., 1969, "Competitive Equilibrium in Markets with a Continuum of Traders and Incomplete Preferences," Econometrica, 37, pp. 578-585.
\qquad , 1970, "Fatou's Lemma in Several Dimensions," Proceedings of the American Mathematical Society, 24 , pp. 300-306.

Yannelis, N. C., 1988a, "Fatou's Lemma in Infinite Dimensional Spaces," Proceedings of the American Mathematical Society, 102, pp. 303-310.
, 1988b, "Weak Sequential Converjence in $L_{p}(\mu, X)$," Journal of Mathematical Analysis and Applications, (to appear).

[^0]: *Department of Economics, University of Illinois, Champaign, IL 61820.
 **This is a revised version of my paper entitled, "On the LebesgueAumann Dominated Convergence Theoren in Infinite Dimensional Spaces," written in 1987. The present version has benefitted from the comments, discussions and suggestions of Erik Balder, M. Ali Khan, Jean-Fransois Mertens and Aldo Rustichini. Of course, I am responsible for any remaining shortcomings.

