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ON THE UPPER AND LOWER SEMICONTINUITY OF THE AUMANN INTEGRAL

by

Nicholas C. Yannelis >

Abstract : Let (T,x»y) be a finite measure space, X be a Banach space,

P be a metric space and let L.(y,X) denote the space of equivalence

classes of X-valued Bochner integral functions on (T,x,u). We show

that if ij) : TxP - 2 is a correspondence such that for each fixed p£P,

((>(•, p) has a measurable graph and for each fixed teT, <j>(t,«) is either

upper or lower seraicontinuous then the Aumann integral of
(j»

, i.e.,

JT
4>(t,p)d u (t) =

{/ T
x(t)du (t) : xe S (p)}, where S (p) = (yeLjCy.X) :

y( t)e<j>( t ,p) y-a.e.}, is either upper or lower seraicontinuous in the

variable p as well. Our results extend those of Aumann (1965, 1976)

who has considered the above problem for X = R , and they have appli-

cations in general equilibrium and game theory.

Key words : Integral of a correspondence, upper semicontinuity , lower

semicontinuity
,
quasi upper semicontinuity, measurable selection,

Fatou's Lemma in infinite dimensions.

Department of Economics, University of Illinois, Champaign, IL

61820.

This is a revised version of ray paper entitled, "On the Lebesgue-
Aumann Dominated Convergence Theorem in Infinite Dimensional Spaces,"
written in 1987. The present version has benefitted from the com-
ments, discussions and suggestions of Erik Balder, M. Ali Khan,
Jean-Fransois Mertens and Aldo Rustichini. Of course, I am respon-
sible for any remaining shortcomings.





1. INTRODUCTION

Let T be a measure space, P be a metric space, X be a Banach space

X X
and (ji be a correspondence from TxP to 2 (where 2 denotes the set of

all nonempty subsets of X), such that for each fixed peP, <{>(•, p) has a

measurable graph and for each fixed teT, <j>(t,») is either upper or

lower semicontinuous. We would like to know whether the integral of

the correspondence <j> is either upper or lower semicontinuous as well.

It is the purpose of this paper to provide an answer to the above

question. Specifically, we show (Theorem 3.1) that integration pre-

serves upper semicontinuity (u.s.c.) and that, (Theorem 3.2) integra-

tion preserves lower semicontinuity (l.s.c).

It should be noted that the problem of whether integration preser-

ves u.s.c. or l.s.c. was first examined in a path breaking paper by

Auraann (1965, 1976), [see also Schmeidler (1970)]. However, Aumann

considered correspondences taking values in a finite dimensional

Euclidean space. It turns out, that the finite dimensional arguments

of Aumann cannot be readily adopted to cover Banach-valued correspon-

dences. In particular, Aumann's method of proof of the fact that

integration preserves u.s.c. is based heavily on the Lyapunov

Theorem, a result which is false in infinite dimensional spaces.

Nevertheless, for strong forms of u.s.c. correspondences (i.e.,

weakly u.s.c. correspondences) a result analogous of that of Aumann

has been obtained in Yannelis (1988a) by means of the "approximate

version of the Lyapunov Theorem." However, the arguments in Yannelis

(1988a) cannot be adopted here to prove Theorem 3.1, since the

correspondences we consider are u.s.c. in a much weaker sense than



that in the above paper and furthermore they are not convex or compact

valued. Hence, our arguments are of necessity quite different than

those in Yannelis (1988a).

Finally, we would like to note that as the work of Auraann (1965,

1976) was motivated by the problem of the existence of an equilibrium

in economies with a continuum of agents and finitely many commodities,

our work was also motivated by the same problem but it allows for a

2
continuum of commodities in addition to the continuum of agents.

The paper proceeds as follows: Section 2 contains notation and

definitions. Our main results are stated in Section 3 and their

proofs are collected in Section 4. Finally, in Section 5 we show that

integration preserves the weak closed graph property.

2. NOTATION AND DEFINITIONS

2 . 1 Notation

R denotes the n-fold Cartesian product of the set of real

numbers R.

conA denotes the closed convex hull of the set A.

A.
2' denotes the set of all nonempty subsets of the set A.

denotes the empty set.

/ denotes the set theoretic subtraction.

dist denotes distance.

proj denotes projection.

If A C X, where X is a Banach space, dk denotes the norm closure

of A.
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If F ,
(n=l,2,...) is a sequence of nonempty subsets of a Banach

n

space X, we will denote by LsF and LiF the set of its (strong) limitv
. '

J n n

superior and (strong) limit inferior points respectively, i.e.,

LsF = {xeX : x = lim x , x eF , k=l,2,...|, and

k-voo k k k

LiF = {xeX : x = lim x , x eF , n=l,2,...}
n l n n n >

n+oo

2.2 Definitions

Y
Let X and Y be sets. The graph of the correspondence

<j>
: X ->• 2

is denoted by G = |(x,y) e XxY : y e <j>(x)l . Let (T,t,u) be a

complete, finite measure space, and X be a separable Banach space.

The correspondence $ : T + 2 is said to have a measurable graph if

G ex® 3(X), where g(X) denotes the Borel a~algebra on X and

X
denotes product a~algebra. The correspondence $ : T •* 2 is said to

be lower measurable if for every open subset V of X, the set

{teT : (j>(t)^V * 0| is an element of -[•• Recall [see for instance

Himraelberg (1975), p. 47 or Debreu (1966), p. 359] that if 4, : T + 2
X

has a measurable graph, then
<j> is lower measurable. Furthermore, if

<}>(•) is closed valued and lower measurable then A : T * 2 has a

measurable graph. A well-known result of Aumann (1967) which will be

of fundamental importance in this paper, [see also Hiramelberg (1975),

Theorem 5.2, p. 60] says that if (T,t,u) is a complete, finite measure

space, X is a separable metric space and <j>
: T • 2 is a nonempty

valued correspondence having a measurable graph, then (j>(») admits a

measurable selection , i.e., there exists a measurable function

f : T * X such that f(t)e<j>(t) y-a.e.
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We now define the notion of a Bochner integrable function. We

will follow closely Diestel-Uhl (1977). Let (T, T , U ) be a finite

measure space and X be a Banach space. A function f : T + X is called

simple if there exist x. , x_ , ..., x in X and a,, a , •••> a in x
I Z n 1 Z n

n

such that f = £ x.y , where y (t) = 1 if tea. and y (t) = if
. . i*a. *a. i *a.
i=l 11 i

t£a.* A function f : T + X is said to be y-measurable if there exists

a sequence of simple functions f : T > X such that liraiif (t) - f(t)||
n n

n->-<»

= for almost all teT. A ^-measurable function f : T + X is said to

be Bochner integrable if there exists a sequence of simple functions

If : n=l,2,...| such that

lim/
T

llf
n
(t) - f(t)||d u (t) = 0,

n>oo

In this case we define for each Eex the integral to be
J

f(t)d|j(t) =

limLf (t)du(t). It can be shown [see Diestel-Uhl (1977), Theorem 2,
J E n M

n-M»

p. 45] that, if f : T ->• X is a y-raeasurable function then f is Bochner

integrable if and only if
J II f ( t )|| dp ( t) < «. We denote by L.(y fX) the

space of equivalence classes of X-valued Bochner integrable functions

x : T -> X normed by

lixil = /_yx(t)ndy(t).

It is a standard result that normed by the functional n •
ii above,

L.(y,X) becomes a Banach space, [see Diestel-Uhl (1977), p. 50].

We denote by S the set of all X-valued Bochner integrable selec-

tions from q> : T + 2 , i.e.
,

S - (xel^Cy.X) : x(t) e <j)(t) ji-a.e.}
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Moreover, as in Auraann (1965) the integral of the correspondence

$ : T * 2 is defined as follows:

/T
<j,(t)d u (t) =

{/ T
x(t)dy (t) : xe S }.

In the sequel we will denote the above integral by (<j>. Recall that

the correspondence $ : T + 2 is said to be integrably bounded if

there exists a map heL .(u,R) such that sup| n xii : xe<j>(t)} _< h(t) y-a.e.

Moreover, note that if T is a complete measure space, X is a separable

Banach space and <j> : T -»• 2 is an integrably bounded, nonempty valued

correspondence having a measurable graph, then by the Aumann

measurable selection theorem we can conclude that S is nonempty and

therefore fT <f>(
t)dy( t ) is nonempty as well.

Let A , (n=l,2,...) be a sequence of nonempty subsets of a Banach

space. Following Kuratowski (1966, p. 339) we say that A converges

in A (written as A > A) if and only if LiA = LsA = A. It may be
n J n n '

useful to remind the reader that LiA and LsA are both closed sets
n n

and LiA C LsA [see Kuratowski (1966), pp. 336-338].
n n

Let X be a metric space and Y be a Banach space. The correspon-

Y
dence ^ : X > 2 is said to be u.s.c. at x_eX, if for any neighborhood

N((()(x_)) of <}>(x
n ), there exists a neighborhood N(x

n ) of x
n

such that

for all xeN(xn ), <j>(x) C N(<f>(xn )). We say that <j> is u.s.c. if $ is

u.s.c. at every point xeX. Recall that this definition is equivalent

to the fact that the set IxeX : <{>(x) C V| is open in X for every open

subset V of Y, [see for instance Kuratowski (1966), Theorem 3, p.

176].
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Let v be a small positive number and let B be the open unit ball

Y
in Y. The correspondence

<f>
: X -» 2 is said to be quasi upper-

semicontinuous (q.u.s.c.) at xeX, if whenever the sequence x^,
n'

(n=l,2,...) in X converges to x, then for some n~ , <j>(x ) C <j>(x) + vB

for all n _> n„ . We say that <j> is q.u.s.c. if <p is q.u.s.c. at every

point xgX. It can be easily checked that if <j> is compact valued,

quasi upper-seraicontinuity implies upper-semicontintuity and vice-

versa.

Let now P and X be metric spaces. The correspondence F : P * 2

is said to be l.s.c. if the sequence p , (n=l,2,...) in P converges to

peP, then F(p) C LiF(p ). Finally recall that the correspondence

F : P * 2 is said to be continuous if and only if it is u.s.c. and

l.s.c.

With all these preliminaries out of the way we can now turn to the

statements of the main theorems.

3. THE MAIN THEOREMS

We now state our main results:

Theorem 3.1 : Let (T,t»y) be a complete, finite measure space, P

X
be a metric space and X be a separable Banach space. Let \\> : TxP - 2

be a nonempty valued, integrably bounded correspondence, such that for

each fixed teT, ij;(t,0 is q.u.s.c. and for each fixed peP, ^(«,p) has

a measurable graph. Then

J\\>(
t , • ) is q.u.s.c.
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Theorem 3.2 : Let (T,x,y) be a complete, finite measure space, X

be a separable Banach space and P be a metric space. Let <{> : TxP -> 2

be an integrably bounded correspondence such that for each fixed teT,

4>(t,») is l.s.c. and for each fixed peP, <j>(«,p) has a measurable

graph. Then

f<J>( t , • ) is l.s.c.

Remark 3.1 : If in addition to the assumptions of Theorem 3.1, it

is assumed that fi|»(t,«) is compact valued, then we can conclude that

J\l>(
t , • ) is u.s . c.

Remark 3.2 : If in Theorem 3.1 we add the assumption that ^(«,0

is convex valued and that for all (t,p)eTxP, ^(t,p) C K, where K is a

weakly compact, convex, nonempty subset of X, then it follows from

Lemma 4.1 (see next section) that
J T^( t , • )dy ( t ) is weakly compact

valued and we can conclude that f T^( t , • )dy ( t ) is weakly u.s.c, i.e.,

the set (peP :

j T \\>( t ,p)d(j( t ) C V| is open in P for every weakly open

subset V of X. Hence, from Theorem 3.1 we can obtain a version of

Theorem 4.1 in Yannelis (1988a) which does not require (T,t,jj) to be

atomless.

The Corollaries below follow directly from Theorems 3.1, 3.2 and

Remark 3.1. They extend some results of Aumann (1965, Theorem 5, and

Corollary 5.2) to separable Banach spaces.

Corollary 3.1 : Let (T,t,u) be a complete, finite measure space, P

be a metric space and X be a separable Banach space. Let ^ : TxP - 2

be an integrably bounded, nonempty valued correspondence such that for
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each fixed peP> ^(*,p) has a measurable graph and for each fixed teT,

t}»(t,0 is continuous. Moreover, suppose that f-tyi t , . )dy ( t ) is compact

valued. Then

fT i|>( t , • )dy ( t ) is continuous.

3
Corollary 3.2 : Let (T,x,u) be a complete, finite measure space

and X be a separable Banach space. Let $ : T -» 2'
, (n=l,2,...) be a

sequence of integrably bounded, nonempty valued correspondence having

a measurable graph, such that:

(i) For all n, (n=l,2,...), <£ (t) C K y-a.e., where K is a com-

pact, nonempty subset of X, and

(ii) 4> n
(t) + <fr(t) u

-a«e.

Then

J T 4, n
(t)d u (t) + a/

T
<j,Ct)d u (t).

Moreover, if <()(•) is convex valued then

/T <j> n
(t)du(t) +

/T<J>(t)dy(t).

4. PROOF OF THE MAIN THEOREMS

4 . 1 Lemmata

For the proof of our main results we will need some preparatory

Lemmata.

Lemma 4.1 : Let (T,x,u) be a finite measure space and X be a

Banach space. Let <|> : T - 2 be a correspondence satisfying the

following condition:

(i) <j)(t) C K y-a.e., where K is a compact, nonempty subset of X.
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Then

c&J_con$(t)dy(t) = / con<j>(t)dy ( t)

Proof : Let K = conK. Note that K is compact, [see Dunford-

Schwartz (1958), Theorem 6, p. 416] nonempty and convex. Hence, from

Diestel's theorem [Diestel (1977), Theorem 2] we have that S~ is
IS.

weakly compact in L.(y,X). Since con<j>(«) is norm closed and convex

valued so is S . It is a consequence of the Separation Theorem
con<}>

^ r

that the weak and norm topologies coincide on closed convex sets.

Hence, S is weakly closed. Since S C S~ and the latter set is
con<j) con<j> K

weakly compact we can conclude that S is weakly compact. Define
con^j

the mapping y : L (y,X) + X by y(x) =
J T

x(t)dy(t). Certainly y is

linear and norm continuous. It follows from Theorem 15 in Dunford-

Schwartz (1958, p. 422) that y is also weakly continuous. Therefore,

y(S ) = |y(x) : xe S \ = f_cond>(t)du(t) is weakly compact, and
1 con* l con* J J T Y

w e can conclude that clj con$( t )dy ( t ) = j con<j>(t). This completes the

proof of the Lemma.

Notice that the above proof of the Lemma showed that

J_con<j)( t)dy ( t ) is weakly compact. Hence, the above Lemma may be seen

as the infinite dimensional extension of Theorem 4 of Aumann (1965).

The result below is an infinite dimensional Li version of the

Fatou Lemma for the set of all integrable selections from a correspon-

dence.

Lemma 4.2 : Let (T,t,u) be a complete, finite measure space and X

X
be a separable Banach space. Let $ : T - 2

, (n=l,2,...) be a
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sequence of integrably bounded correspondences having a measurable

graph, i.e., G ex ® 8(X). Then
*n

S T . C LiS .

Y n Y n

Proof: See Yannelis (1988b, Lemma 5.3).

4.2 Proof of Theorem 3.1

Without loss of generality we may assume throughout the argument

that j dy(t) = 1. Let B be the open unit ball in X, and v be a small

positive number. We must show that if jp : n=l,2,...l is a sequence

in P converging to peP, then for a suitable n
n ,

/ \j>(t,p )d u (t) C
J rj,(t,p)dy(t) + vB for all n > n

Q
.

Define the mapping S : P + 2
L

l
(u '

X)
by S (p) = jxe L,(u,X) :

x( t )ei|>( t ,p) y-a.e.j. Let B and B be the open unit balls in X and

L.(u,X) respectively. We first show that for a suitable nn , S (p ) C

S (p) + vB for all n >^ n~.

We begin by finding the suitable n_. Since for each fixed teT,

ij>(t,») is q.u.s.c. we can find a minimal M such that

(4.1) ij>(t,p ) C i|»(t,p) + 6B for all n >_ M ,

where 5 =
jjfa.

We now show that M is a measurable function of t. However, first we

make a few observations. By assumption for each fixed p and n,

G ,r u t0 e t ® B(X) and so does (G , n, cd )

C
»
(where S

C
denotes

i|K*,p )+6o ijn«,p ;+5B
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the complement of the set S). It is easy to see that

G
t sH (G,/ ^ rJ

C
e t ® 6(X). Therefore, the set

V« ,P) *(• >Pn ) +5B
n

U = {(t,x) £ TxX : (t,x)e G , .O (G , w*r
)C

}

belongs to t® S(X).

It follows from the projection theorem [see for instance Hildenbrand

(1974), p. 44] that

proj T (U)e T .

Notice that,

proJ
T
(U) = {t e T : ij>(t,p) < i|>(t,p

n
) + 6B}

- {t e T : ij;(t,p)/( lj,(t,p ) + 6B) * 0} .

By virtue of the raeasurability of the above set we can now conclude

that M is a measurable function of t. In particular, simply notice

that,

{t eT: M
t
=m( =r\{te T: i|»(t,p

n
) C <{;( t ,

p)+6B} C\
{
teT: ^(t.p^) < <j,( t

,
p)+6B]

n>m

We are now in a position to choose the desired n~. Since ^(»,») is

integrably bounded there exists heL (p,R) such that for almost all

teT, sup{ II xii : x£ i|)(t,p)} _< h(t) for each pe P.

Choose 6 such that if U (S) < 5 , (S C T) , then
J

h(t)dy(t) < y.

Since M is a measurable function of t, we can choose nn such that

y({teT : M _> n~} ) < 6 . . This is the desired n~ . Let n _> n
n

yeSCp ). We must show that yeS (p) + vB.
^ n

ty

and
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By assumption, for each fixed peP, ^(»,p) has a measurable graph

and i^(«,«) is nonempty valued. Hence, by the Aumann measurable selec-

tion theorem there exists a measurable function f. : T -»• X such that

X
f,(t) e t|)(t,p) y-a.e. Define the correspondence 8 •' T > 2 by

9(t) = ({y(t)( + 5B) O i|»(t,p). It follows from (4.1) that for all

teTn = {t : M _< n-j , e(t) * 0. Moreover, 9(») has a measurable

graph. Another application of the Aumann measurable selection theorem

allows us to guarantee the existence of a measurable function

f
9

: T + X such that f„(t) e 6(t) u -a.e. Define f : T + X by

f (t) for t^T

f
2
(t) for teT

Q
.

Then f(t)e^(t,p) y-a.e. and since ij;(»,0 is integrably bounded we can

conclude that feS (p). If we show that ii f-yii < v then ygS (p) + vB

and we will be done. But this is easy to see. We have

Hf-yil = St/t "Mt) ~ y(t)lldy(t) + f_ llf
?
(t)-y(t)||dy(t)

i/i i
Q

< 2/ , h(t)du (t) + / 6du (t)
i/l

This completes the proof of the fact that, if the sequence

{p : n=l,2,...| in P converges to peP, then for a suitable n_

(4.2) S (p ) C S (p) + V B for all n > nn .

\\> n ijj
— U

Define now the mapping y : L.(y,X) + X by y(x) =
J

x(t)dy(t). It

follows from (4.2) that for all n _> n~ ,
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Y(8
t
(PB

)) - (Y(x) : xeS^(p
n )}

= f-l|>(t,p )dy(t) C Y (S(p) + V B) = y(S,(p)) + Y (vB)

=
/ T

^(t > p)dM (t) + V B

Hence,

Li|»(t,p
n
)dy(t) C

J T
4,(t,p)d u (t:) + vB for all n _> n

Q
.

i.e., f—iji(t, • )dy(t) is q.u.s.c. as was to be shown.

4.3 Proof of Theorem 3.2

T ( X )

We first show that the correspondence S : P -»- 2 1
^ '

" defined by

S x (p) (yeL ( U ,X) : y(t)ed»(t,p) p-a.e.l
d> i

is l.s.c.

To see this, let (p : n-1,2,...} be a sequence in P converging to

peP. We must show that S (p) C LiS (p ). Since by assumption for
d> (t> n

each fixed teT, <f>(t,») is l.s.c. we have that d>(t,p) CLi<j>(t,p ) for

all teT, and therefore,

(4 ' 3) yP)CSLl/Pn>-

It follows now from Lemma 4.2 that (4.3) can be written as

S
x ( P } C Sr^(P ) C LiS (p )

<f>
Lid) n $

r n

Hence

,

S (O is l.s.c.
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Define now the mapping y : L.(y,X) + X by y(x) = | x(t)dy(t).

Then y i- s linear and norm continuous. Notice that y(S (p)) =

fy(x) : xeS (p)} =
f T <J>(t ,p)dy ( t). Since S (.) is l.s.c. so is y(S ),

»
ffl 1

<P
d>

i.e., f rj>( t , • )dp( t ) is l.s.c. as was to be shown. This completes the

proof of Theorem 3.2.

4 .4 Proof of Corollary 3.2

We begin by proving an approximate version of the Fatou Lemma in

infinite dimensions [see also Balder (1987), Khan-Majuradar (1986) and

Yannelis (1988a) for w-Ls versions of this Lemma], which may be con-

sidered as an extension of the finite dimensional Fatou-type Lemmata

obtained in Auraann (1965), Artstein (1979), Balder (1984),

Hildenbrand-Mertens (1971), Rustichini-Yannelis (1986), and Schmeidler

(1970).

Lemma 4.3 : Let (T,x,u) be a complete, finite measure space and X

X
be a separable Banach space. Let <jj

: T -> 2 , (n=l,2,...) be a

sequence of nonempty valued, graph measurable and integrably bounded

correspondences, taking values in a compact, nonempty subset of X.

Then

LsJ $ (t)du(t) C c2,/
T
Ls<j>

n
(t)du (t).

Moreover, if Ls<+> (•) is convex valued, thenY n

Ls/
T <fr

(t)dy(t) C /Ls<j> (t)dy(t).

Proof : Denote by P the interval [0,1). Define the correspondence

ijj : TxP * 2 by
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. <b (t)

4,(t, P ) = V <}>

n
(t) U *

n+1
U)

if —-7- < D < ~
n+1 r n

if p =
n+1

I Ls<j> (t)Y n
if p = 0.

It can be easily checked that for each fixed teT, *(t,«) is u.s.c. and

that for each fixed peP, <J>(*>p) has a measurable graph. Moreover, *

is integrably bounded. Hence, * satisfies all the assumptions of

Theorem 3.1 and thus, j tyi t , • )dy ( t) is q. u.s.c. Let now

x e Ls („<$) (t)du(t), i.e., there exists x such that lim x = x,
J T r n M

n. , n.
k k-*» k

x £ f_* (t)dy(t), (k=l,2,...). We wish to show that
n
k \

x e ci/
T
Ls4>

n
(t)d u (t).

Since j ty( t , • )dy( t) is q. u.s.c. it follows that if p converges
n
k

to then
J

^(t,p )du(t) C
J \\>( t ,0)du ( t) + vB for all sufficiently

k
large k. Consequently, x e fT^( t ,0)dy ( t) + v>B for all sufficiently

n
k

large k and therefore, xecJ, f_il(( t ,0)dy( t) = cjtf_LsA (t)dn(t) as was to
J T J T n

be shown. If now Ls* (•), is convex valued (recall that Ls* (•) isT n Y n

closed valued as well) it follows from Lemma 4.1 and the first conclu-

sion of Lemma 4.3 that

Ls/
T$

dy(t) C c£j_LsA (t)dy(t) =
J

Ls^ (t)dy(t).

The proof of the Lemma is now complete.

We are now ready to complete the proof of Corollary 3.2. Notice

first that it follows from Lemma 4.2 that

(4.4) jLi* C Li
J

a. .
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To see this define the linear mapping y : L.(jj,X) * X by y(x) =

f_x(t)d u (t). Note that yiS.. ) = jv(x) : xe S
T

. 1 = [Li* and hence
> T ' Li* l

' Li(b J J y n
*n T n

by virtue of Lemma 4.2 we can conclude that y(S. . ) C y(LiS ) =
Lid) AY n T n

{•y(x) : xeLiS } = Lifd> . This completes the proof of (4.4). Since
L

d)
J nY n

by assumption
<j>

(t) -»- d>(t) y-a.e., i.e.,
<j>

( t ) = Lid) (t) =

Lsd) (t) y-a.e., it follows from Lemma 4.3 and the expression (4.4)

above that:

(4.5) /d> = /Li<fr
n
C Li/«|,

n
C Ls/d,

n
C cfc/Ls^ = c£/<J,.

Therefore

,

c£/
T
d>(t)d u (t) = LiJ <|> (t)du(t) = LsJ $ (t)d u (t),

i.e.
,

/T
<)>

(t)d u (t) + c£/
T
cf,(t)du (t).

If now <j>(«) is convex valued, (4.5) can be written (recall the second

conclusion of Lemma 4.3) as:

/ =
/
Li r n

C Li
/<l> n

C Ls
/<l> n

C
/
Ls

<J> n
= /•

Thus,

/T
<J>(t)dy(t) = Li/ ^ (t)d u (t) = LsJ <j» (t)du(t),

i.e.,

/T <f> n
(t)d u (t) *

/T
4,(t)d u (t),

and this completes the proof of Corollary 3.2
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5. ON THE WEAK CLOSED GRAPH PROPERTY OF THE AUMANN INTEGRAL

Let {A : n=l,2,...} be a sequence of nonempty subsets of a Banach

space X, and denote by w-LsA the set of its weak limit superior

points , i.e.
,

w-LsA = {xeX : x = w-limx , x eA , k=l,2,...l.
n i

. n, n . n. J

k->-ao k k k

Let (T,f,p) be a complete finite measure space, P be a metric

space and X be a separable Banach space. The correspondence

ijj : TxP + 2 is said to have a weakly closed graph if

w-Ls^(t,p ) C ij»(t t p) y-a.e., whenever the sequence |p : n=l,2,...| in

P converges to peP.

The following result in Yannelis (1988b) will be used to prove

that if for each fixed tgT, \\>(t
y
*) has a weakly closed graph then so

does the integral of <|j(t,*)«

Lemma 5.1 : Let (T,x,y) be a finite measure space and X be a

separable Banach space. Let |f : n=l,2,...| be a sequence of func-

tions in L (ji,X), 1 _< p < oo such that f converges weakly to

feL (y,X). Suppose that for all n, (n=l,2,...), f (t)eF(t) y-a.e.,

where F : T + 2 is a weakly compact, integrably bounded, nonempty

valued correspondence. Then

f (t)econw-Lsj f (t)} y-a.e
n

Proof : See Yannelis (1988b, Corollary 3.1).

We are now ready to state the main result of this section, which

generalizes Theorem 4.1 in Yannelis (1988a).
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Theorem 5.1 : Let (T,t,u) be a complete, finite measure space, P

be a metric space and X be a separable Banach space. Let ijj : TxP * 2

be a nonempty, closed, convex valued correspondence such that:

(i) for each fixed tgT, ij>(t,») has a weakly closed graph,

(ii) for all (t.p) E TxP, ijj(t,p) CK(t) where K : T * 2
X

is an

integrably bounded, weakly compact and nonempty valued

correspondence.

Then

Ji|)(t,.) has a weakly closed graph.

Proof : We first show that the set-valued function

S : P + 2
Ll(u,X) defined by

S (p) = {xeLjCy.X) : x( t ) e ,j,( t ,p) u -a.e.},

has a weakly closed graph, i.e., if jp : n=l,2,...| is a sequence in

P converging to peP» then

(5.1) w-LsS (p ) C S (p)_
lj; n ip

To this end let xew-LsS (p ), i.e., there exists x^ , (k=l,2,...) in
\j; n K

L (u,X) such that x^ converges weakly to xeL (y,X), and x (t)e^(t,p )

k

u-a.e. , we must show that xeS (p). It follows from Lemma 5.1 that

x( t )econw-Ls| x, ( t ) | u-a.e. and therefore

(5.2) x(t)econw-Ls^( t ,p ) u-a.e.
n

Since for each fixed teT, ip(t,») has a weakly closed graph we have

that:
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(5.3) w-Lsij>(t,p ) C ^ ( t , p) p-a.e
n

Combining (5.2) and (5.3) and taking into account the fact that \|> is

convex valued we have that x(t)eij/(t ,p) y-a.e. Since
ty

is integrably

bounded, we can conclude that xgS (p). This completes the proof of

the fact that S (•) has a weakly closed graph. Define the linear
•J*

mapping

tt : L^u.X) + X by tt(x) = /x(t)dy(t).

It follows from (5.1) that if the sequence {p : n=l,2,...j in P con-

verges to peP , then

Tr(w-LsS,(p )) = W(x) : xe w-LsS,(p )}

= w-LsU(t,p ) Ctt(S (p)) = Itt(x) : xe S (p)}

i.e., fij>(t:,0 has a weakly closed graph as was to be shown.

Remark 5.1 ; It can be easily shown by means of the failure of the

Lyapunov theorem in infinite dimensional spaces that Theorem 5.1 is

false without the convex valueness of the correspondence

X
\\i : TxP > 2 [see Rustichini (1987) for a complete argument].
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FOOTNOTES

In general equilibrium theory, T denotes the measure space of

agents, X denotes the commodity space, P denotes the price space,
4>(t,p) denotes the demand set of agent t at prices p and the integral
of (j> denotes the aggregate demand set [see for instance Aumann (1966)
or Schmeidler (1969) or Hildenbrand (1974) who have considered the

I
above problem for X = R , in order to prove the existence of an

equilibrium for an economy with an atomless measure space of agents
and with finitely many commodities].

2
See for instance Khan-Yannelis (1987) for the usefulness of our

results in general equilibrium theory. Also, applications of our
results in game theory are given in Balder-Yannelis (1988).

3
Compare with Corollary 3.2 in Yannelis (1988b) where a different

notion of convergence of sequences of set-valued functions was used.
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