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Product-Process Relations in Batch Manufacturing

George E. Monahan and Timothy L. Smunt

Abstract

Recent advances in automated technology have made it possible to incorporate many

of the benefits of flow lines in the production of low-to-medium volume products found in

a batch manufacturing environment. In this paper, we examine the interactions between

product and process characteristics in such an environment in order to better understand

the conditions under which one type of processing configuration performs better than

another. Using a simulation model, we examine both the main effects and the interaction

effects of product attributes, such as the number of products and job size, and process

attributes, such as operation-time variance, setup time, and flow dominance. The results

of two experiments are discussed. In the first experiment, demand on the system is stable.

The second experiment allows demand on the system to experience periodic "shocks" -

the demand rate is temporarily increased for a number of periods and is then returned to

normal. The objective of the second experiment is to determine how a system described by

various combinations of product and process characteristics responds to explicit demand

shocks. One of the ways in which we use the results from these experiments is to quantify

a portion of the Hayes-Wheelwright product-process matrix.
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Product-Process Relations in Batch Manufacturing

1. Introduction

Hayes and Wheelwright (1979) discuss the interdependencies between manufacturing

processes and products as they both evolve over their life cycles. In their product-process

matrix, the set of ideal production-process pairs appears along the main diagonal, reflecting

the notion, for example, that the most efficient method of producing a high-volume product

is through the use of dedicated flow lines utilizing specialized machines. For lower-volume

products, however, the ideal relationship between product and process is less obvious.

The product-process matrix would suggest that a job shop with jumbled flows would be

the best process for low volumes of high product variety. However, recent advances in

automated technology and cellular manufacturing have made it possible to realize many

of the efficiencies of flow lines for the production of low-to-medium volume products. The

development of flexible, programmable manufacturing technology has made it possible to

quickly change over the production process from one product to another. The result is

the potential for low-to-medium volume product demand to be efficiently produced in a

flow-line manner. Within the context of the Hayes and Wheelwright paradigm, advances

in manufacturing technology may be shifting the set of ideal product-process pairs to the

left.

The ability to efficiently product low volumes of products with flow-line processes has

important strategic implications. Shorter product life cycles and the apparent change in

consumer demand toward customized manufactured products are increasing the pressure

for firms to enhance their "manufacturing flexibility" without losing production efficiency.



(The notion of flexibility in manufacturing is multi-faceted. See, for example, Swami-

dass and Newell (1987) and Jaikumar (1984) for a discussion of the numerous ways in

which flexibility has been discussed in the operations management literature.) The use of

automated, flexible manufacturing systems is one way to accomplish this dual objective.

Another way is to group similar parts into families and dedicate machines to process only

parts within the families, thereby reducing setups and increasing flexibility.

The objective of this paper is to better understand the relationship between manufac-

turing attributes and product demand characteristics in a batch manufacturing environ-

ment. We specify several types of production environments and product demand conditions

so that we can identify the circumstances under which a job shop, a flow shop, or an inter-

mediate type of shop works best. We focus on the low-to-medium product volume quadrant

of the Hayes and Wheelwright product-process matrix to determine what might cause the

ideal product-process pairs to shift toward flow-line production. To do this, we identify

important characteristics of both product demand and manufacturing processes. Using a

simulation model, we then examine the effects and interactions of these characteristics on

system performance. The results from the simulation experiments indicate that the use of

job shops with multiple machines per department (the traditional process layout) is still

appropriate for many high variance, high product variety settings. However, our results

also indicate that when operation-time variance and setup times are both low enough and

pioduction volume is low, flow lines can perform better than traditional job shops.

The insights we gain here are useful in other contexts as well. In previous research

related to the acquisition of automated technology in batch manufacturing (Monahan and

Smunt, 1987 and 1989), we make the assumption that the product mix is stable over a



period of time but manufacturing technology is advancing. Clearly, if a firm modifies a

process design so as to increase (or decrease) its flexibility, the optimal product mix might

also increase (or decrease). In principle, we would like to identify the "ideal" product-

process pair by simultaneously determining both the optimal product mix and the optimal

process design. The results of this simulation study will be useful in this regard.

2. Product-Process Characteristics

Several process and product attributes and their interactions are an important de-

terminant of system performance as measured, for example, by mean flow time (MFT)

or flow time standard deviation. We typically discuss the simulation results in terms of

MFT, since MFT is highly correlated to other important performance measures, such as

work-in-process (WIP) inventory and customer service levels. In several instances, we also

present flow-time standard deviation and WIP results.

2.1 Manufacturing Process Characteristics

Watts, et al.(1989) discuss the relationships between attributes, such as process type,

setup times, capacity, routing, scheduling, and product design, that they term secondary

flexibilities , with characteristics of the firm's competitive position that they term primary

flexibilities, which include product volume, mix, variety, and delivery. We prefer to dis-

tinguish between various types of flexibilities by classifying important characteristics into

two categories - those that deal with the manufacturing process and those that deal with

product demand.

We hypothesize that four characteristics of a manufacturing process greatly influence

its performance in a batch processing environment. These characteristics are:



• flow dominance

• number of machines in each department

• setup time

• operation-time variance.

Flow dominance measures the proportion of jobs going from one machine to another.

Flow lines, for example, are characterized by a high degree of flow dominance - all jobs

follow the same routing through the process. At the other extreme, job shops typically

have low flow dominance, since jobs may have many different routings. Because of this

low flow dominance, bottlenecks may shift from department to department, resulting in

a possible degradation of system performance. At any point in time, jobs in the system

compete for manufacturing resources.

We use the number of machines in each department as a measure of the ability of

the system to respond to simultaneous demand on a resource. Setup times certainly in-

fluence system performance. High setup times, for example, tend to create bottlenecks

that can again degrade system performance. An example of primary flexibility, defined

by Watts, et al., is the use of general-purpose equipment that allows a wider product line

to be produced. Primary flexibility might also stem from faster changeovers of the equip-

ment, so that the existing product line can be economically produced in relatively small

batches. Faster changeovers can come from better tooling, worker method improvements,

or dedicated equipment to product families with similar processing requirement (cellular

manufacturing). The result is a shortening of lead times. Variations in demand can be

handled without the need for larger finished-goods inventory.

Finally, operation-time variance measures the extent to which disruptions occur in the



manufacturing process. Operation-time variance serves as a surrogate for the many types

of variation that can occur in a batch production environment, caused, for example, by

machine breakdowns, defective component parts, and worker interference (an insufficient

number of machine operators). Kochman (1989) categorizes disruptions and explicitly

models the effect of disruptions on system performance in an assembly line setting. He

models several forms of process variation and finds that increases in variance rapidly in-

crease flow times. He does not, however, consider the batch production environment or

the interaction of setups with operation-time variance.

2.2 Product Demand Characteristics

The nature of product demand in a batch production environment is different from the

demands patterns in assembly-line or continuous-flow environments since jobs are typically

starting and stopping at various workcenters as they progress through their task sequence.

As a result, machine setups increase and queues of jobs tend to form sporadically in the

system. The flow shop we consider in this study is actually a batch flow process, since

setups may be required at each workcenter in the flow line. These setup times, however,

will be at least as low as the setup times in a job-shop process. Assembly lines that are

designed for high volume production generally require extensive effort for changeover to a

new model line or product and are not considered in this study.

The characteristics of product demand that we hypothesize have a significant influence

on the system performance are:

• number of products

• job size

• demand stability.



System performance depends on the variety of products being produced by the pro-

duction process. As the number of products increases, setup times increase resulting in

diminished effective capacity. On the other hand, larger job sizes reduce the number of

setups required and increase effective capacity.

We call product demand stable when the load on the manufacturing system remains

constant. Unstable product demand is characterized by a temporary increase in the load

on the system. For example, such an increase may be the result of a recent advertising

campaign or a price discount. In our study, we assume that the temporary increase in

the load on the shop does not decrease its load before or after the temporary increase.

Although that situation is certainly possible, we are most interested in the system's ability

to return to its steady-state condition following a period of time in which severe bottlenecks

have occurred.

3. Simulation Experiment — Design

We use a factory simulation written in SIMSCRIPT to examine a number of product

and process characteristics. The manufacturing process characteristics we test are flow

dominance, number of machines in each department, setup time, and operation-time vari-

ance. The three product characteristics included in the simulation experiment are job size,

number of products, and demand shocks.

Typically, manufacturing process factors are controlled (to a varying extent) by the

operations management function, whereas product factors either are determined by an

external market (and are therefore uncontrollable) or are dictated by the marketing func-

tion. Since the product factors tend to be uncontrollable from an operations management

point-of-view, we test various levels of these factors so as to make our results generalizable.



The manufacturing factors, as a whole, represent different levels of manufacturing process

flexibility or varying levels of process structure.

Two major experiments were conducted. The first experiment examines the product

and process factors under the assumption that demand is steady. The second experiment

tests the influence of demand shocks in various product-process settings. (We create a

demand shock by doubling the demand for two periods, beginning in period five. After

the two-period shock, demand returned to normal levels.)

For these experiments, we develop a factory simulation model that ranges from a flow

line (complete flow dominance) to a random job shop (no flow dominance). Jobs arrive

deterministically into the factory, although the type of product that the job represents is

random and varies uniformly across 12, 24, or 36 product types. Job size is also random

and varies uniformly by plus or minus 50% of the average job size. The job size is also the

processing batch size. We do not batch orders in this study for two reasons. First, it is

difficult to determine optimal batch sizes a priori considering the complex multi-product,

multi-machine environment of our model. Second, batching on a periodic basis is quite

arbitrary. Delaying the release of an order might increase MFT unless complex order

release and due date assignment mechanisms are used to keep track of the system's state.

Although these mechanisms can be used to improve MFT performance (see Ragatz and

Mabert (1984)), it would add a confounding variable to the study.

Operation time for the job at each step in the task sequence is random with an Erlang

distribution. We used the Erlang distribution since it has the following properties; 1)

operations are strictly positive and are not truncated, 2) it can represent the exponential

distribution, and 3) it is skewed for coefficients of variation (CV) less than 1.0, which
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correlates to empirical evidence on work-time distributions (Dudley (1963)).

Setup times are deterministic and can be varied by multiplying them by a constant

that we call the setup ratio. We define the setup ratio as the ratio of setup time to operation

task time. Several setup ratio values are included in each experiment. The base case for

the setup ratio is 1.0, with each machine requiring 3.0 hours of setup whenever a different

product type is to be produced next. Operation task times are set to 0.048 hours each on

average. Each job requires six separate tasks for completion. The total operation time on

a machine, on the average, for a 150 unit job will be 7.2 hours (.048 hours x 150). A setup

ratio of 0.50 results in machine setup times of 1.5 hours each, although the total average

operation time for a 150 unit job remains at 7.2 hours. Jobs are processed in shortest

operation time priority, with no capacity limit on the WIP inventory that may develop

ahead of each workcenter.

The experimental product-process factors and their levels are shown in Table 1. The

first experiment uses a full factorial design that includes the first six factors for a total

of 3x3x5x4x5x3 = 2, 700 combinations. In order to eliminate transient-state

effects, each combination was initialized for 5,000 hours of simulated factory time. Then,

performance statistics for ten intervals of 5,000 hours each were collected (batch means)

to reduce sample variance. Each of these intervals was separated by 1,000 hour intervals

to further reduce autocorrelation between the batch means. Therefore, a total of 27,000

runs were made in the first experiment.

The second experiment also uses a full factorial design, but tests only the 12 product

case, which we refer to as our base case. Here, 3x3x5x4x5 = 900 combinations

with 10 repetitions each were tested for a total of 9,000 runs. These runs were also
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initialized for 5,000 hours. Following initialization, performance statistics were gathered

for forty periods of 320 hours each, so that a time series of performance measures could

be observed. Additional intervals between the batches were not utilized in this experiment

because serial correlation is of interest in this setting. Since we want to test the ability of

the system to return to steady-state conditions after the shock, it is important to track

performance criteria as they first increase and then decrease. Period-to-period correlation

shows the rate at which the system is responding.

In both of these experiments, we define utilization from three perspectives: 1) opera-

tion utilization is the proportion of machine time spent producing units, 2) setup utilization

is the proportion of machine time that is nonproductive due to required changeovers be-

tween production of different product types, and 3) total utilization is operation utilization

plus setup utilization. Average operation utilization was set to 60%. Total utilization var-

ied with job size and the setup-time ratio. (We verified that operation utilization of 60%

was a steady-state condition after 5,000 simulated hours.) At 60% operation utilization,

the manufacturing process total utilization ranged from 70% to 90% - typical values in

practice and in prior research studies of job shops. Note that for every combination of

factor levels tested, the operation utilization remains at 60% for each workcenter.

Table 2 contains the routings for the 12 product case. In the flow shop (FLOW),

each product type starts at workcenter 1 and ends at workcenter 6, after sequentially

using each workcenter in between. At the other extreme, the job shop ( JSHP) has twelve

workcenters. We originally set the routings so that each product type uses six of these

workcenters in random order. Each workcenter is used as the first, second, etc. task

in the sequence. A workcenter is used only once for each product type. We modelled
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the job shop using double the number of workcenters as the flow shop to illustrate the

typical conversion scenario as one goes from a general purpose process layout to cellular

manufacturing or flexible automation. Although the process layout is general purpose, the

tooling on such machines requires substantial changeover time with a resultant tendency

towards dedicating a portion of the equipment for certain classes of jobs. Therefore,

any particular job will require, for example, the use only 50% of the workcenters for

processing in the job shop. As firms move toward multi-function machines, made possible,

for example, by flexible automation or quick-change tooling that might be used in cellular

manufacturing, the number of different resources in the shop may decrease. We model this

effect by a requiring each job to use each of the six workcenters available. The intermediate

shop (INT) is a variation of the flow shop, with two job types whose routings are in different

directions. Intermediate conditions may occur as firms move from a process layout to more

automated manufacturing. It is unlikely that a firm will completely change its flows from

a jumbled order to a pure flow shop in one step.

We hypothesized that even small additions of non-sequential routings would have a

significant impact on system performance. For the 24 and 36 product scenarios, these

routing matrices are doubled and tripled, respectively.

We use twelve workcenters for the job shop case since, in practice, items produced in

this setting would typically require the use of only a portion of the resources. As a job shop

is converted to cellular manufacturing or to another form of flow-line process, the specific

machines needed to complete the processing of various types of jobs are allocated to specific

cells or lines. In our simulation experiment, we did not test parallel lines since the results

of multiple lines in steady state would be redundant and just increase computation time.
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FACTOR Level 1 Level 2 Level 3 Level 4 Level 5

Flow Dominance FLOW INT JSHP — —
Number of Machines 1 2 3 — —

Setup Ratio 0.10 0.25 0.50 0.75 1.00

Operation Time CV 0.01 0.50 1.00 1.50 —
Job Size 100 125 150 175 200

Number of Products 12(Base) 24 36 — —
Demand Stability Steady Shock — — —

Table 1: Simulation Factors

Intermediate Shop Routingps through Workcenters

PRODUCT Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

A-J 1 2 3 4 5 6

K 6 5 4 3 2 1

L 2 4 6 1 3 5

Flow-Shop Rotitings through Workcent ers

PRODUCT Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

A-L 1 2 3 4 5 6

Job Shop R outings throilgh Workcen ters

PRODUCT Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

A 1 2 4 10 6 8

B 2 11 3 4 8 7

C 3 10 5 6 7 12

D 4 8 2 7 1 11

E 9 7 1 12 4 5

F 6 12 10 11 9 3

G 7 6 8 3 5 2

H 8 1 9 2 3 10

I 10 5 12 1 2 4

J 5 3 11 9 10 6

K 11 4 6 8 12 9

L 12 9 7 5 11 1

Table 2: Flow Dominance Matrices for 12 Products
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In the flow shop and intermediate shop (the six workcenter scenarios) and in the job shop

(the twelve workcenter scenario), the number of jobs competing for any workcenter is the

same. Thus, both shops are balanced and comparable.

The performance measures (dependent variables) we use are MFT, flow-time variance,

WIP, amplitude of response to demand shocks, and response time to demand shocks. MFT

is calculated as the average flow time for all jobs that are completed during the run, where

flow time for a job is the difference between the time it completes processing the last task

in its assigned task sequence and the time it arrives at the factory. Flow-time variance

is measured as the standard deviation of flow times within the run. WIP is measured

as the number of units waiting to use any machine, but are not being processed by the

machine. The amplitude of response to demand shocks is measured as the difference

between the steady-state and the maximum level of the performance measure. Response

time is measured as the interval from the shock inception to the time when the performance

measure drops back to its steady-state condition.

In running these experiments, we found that it took a long time for the system to

reach steady-state, necessitating the use of long startup periods and large batches. In

total, the simulation experiments used over 10 CPU days on a VAX 8810.

4. Simulation Results - Stable Demand

In the stable demand experiments, average operation-time utilization was 60% for

each scenario. While the mix of products varied over time, the aggregate demand arriving

to the system was held steady by keeping the average interarrival time constant. The

results that follow are first illustrated and discussed for the 12 product case, which is our

base case scenario. Then, comparisons of system performance are made when the product
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mix increases to 24 and 36 products. In these experiments, Analysis of Variance (ANOVA)

indicates that all main and first-order interaction effects are significant at the 0.01 level or

better. The ANOVA table is shown in the Appendix to this paper.

We show the main effects across each flow dominance level in Table 3 for MFT and

WIP. One interesting main effect concerns the setup ratio. Note that the job shop is

the poorest performer for all setup ratio levels. This is due to jumbled flows causing

resource competition problems. We will elaborate on this in a later section. The job shop

does perform better, however, when operation-time variance is high, albeit only slightly.

Obviously, increasing the number of machines improves performance of all systems, but

it has the greatest relative effect for the job shop. Increasing the number of machines

per department from one to three, decreases MFT by 51% for the job shop, whereas the

MFT of the flow shop only decreases by 46% with the same addition of machines. The

availability of alternate resources is particularly important in a jumbled flow environment.

It is also interesting to see that increasing the product-mix from 12 to 36 products (with

operation utilization held constant), increases the job shop MFT by 11% and the flow shop

MFT by only 6%. Based upon the job shop's performance to increased product-mix, we

might conclude that it is a poor process design. Later we will show, however, that when

interaction affects are also considered, the job shop is superior in certain settings.

As the size of each job increases, setup times decrease but the time required to process

a batch increases. As the job size decreases, more setups occur and again flow times

increase. When setup time is relatively high (i.e. the setup ratio is 1.0), we found that

for the job sizes of about 125 units, the marginal increase in MFT due to an increase in

batch processing time is equal to the marginal decrease in MFT due to fewer setups. See,
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for example, the graphs of MFT versus job size for the JSHP3MC process in Figure 1 (for

SU=1.0) and Figure 2. In this sense, the "economic" job size is about 125 units.

In Table 3, notice that WIP is highly correlated with MFT most of the designs.

There is an interesting exception, however. When the job size increases from 100 to 125

units, WIP inventory decreases dramatically for all three processing configurations. As

expected, MFT also decreases. But notice what happens as the job size increases to 150.

WIP inventory continues to decrease but MFT increases. Here is an example where a

change in one factor (in this case job size) causes opposite reactions in two factors that

are typically highly correlated. Interactions such as these may be important and should

be explicitly considered by managers when determining the optimal process choice.

4.1 Interactions of Product-Process Characteristics: The Base Case

Although the main effects can sometimes be predicted without complex analysis, the

interaction effects are less obvious. For example, an increase in operation-time variance,

ceteris paribus, increases mean flow time. Suppose that a firm is considering the use of

Group Technology that entails the reorganization of its existing job shop into a number of

manufacturing cells. The conversion to cells increases flow dominance. If operation-time

variance was high in the job shop and remains so in the cells, system performance in the new

configuration is likely to degrade since resources are dedicated, which increases the level of

variance on any individual cell. Suppose, on the other hand, that the application of Group

Technology, which groups parts into common families, reduces operation-time variance. To

what extent must operation-time variance be reduced before system performance of the

cells exceeds that of the job shop? Additionally, the reorganization into cells may reduce

setup time, which also contributes to an improvement in system performance. This
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Setup

Ratio

Flow Shop

MFT WIP
Intermediate

MFT WIP
Job Shop

MFT WIP
.1 70.3 75.6 71.7 80.6 75.9 97.1

.25 76.4 87.4 78.5 94.9 84.0 116.1

.50 88.7 114.3 92.0 126.6 100.8 159.3

.75 106.9 163.0 112.7 182.6 126.8 234.4

1.00 152.0 304.3 163.3 345.5 188.9 431.4

Operation

CV
Flow

MFT
Shop

WIP
Intermediate

MFT WIP
Job Shop

MFT WIP
.01 58.2 17.8 64.1 38.3 84.9 108.0

.50 67.9 50.2 74.1 71.1 93.1 135.5

1.00 104.0 165.3 109.9 184.0 120.6 225.3

1.50 165.3 362.4 166.5 369.9 162.6 362.8

Number of

Machines

Flow

MFT
Shop

WIP
Intermediate

MFT WIP
Job

MFT
Shop

WIP
1 134.6 167.3 142.8 185.2 164.6 236.0

2 88.6 148.7 91.9 163.3 100.6 204.5

3 73.4 130.7 76.3 149.7 80.6 182.4

Product

Mix
Flow

MFT
Shop

WIP
Intern:

MFT
lediate

WIP
Job

MFT
Shop

WIP
12 95.4 138.2 100.2 154.7 108.5 186.3

24 99.7 152.0 104.6 168.8 116.6 211.5

36 101.4 156.5 106.2 174.7 120.8 225.2

Job

Size

Flow

MFT
Shop

WIP
Intern

MFT
lediate

WIP
Job

MFT
Shop

WIP
100 99.6 206.6 107.0 233.9 122.4 283.0

125 87.0 135.6 91.6 151.8 103.9 195.1

150 93.3 129.2 97.6 144.5 108.2 183.5

175 102.7 134.2 105.9 146.2 116.2 184.9

200 111.7 138.9 116.1 153.9 125.7 191.7

Table 3: Summary of Simulation Results - Stable Demand
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is a situation where there is an interaction of flow dominance, operation-time variance,

and setup time. It is, therefore, difficult to predict the performance of the newly formed

cells. In the following sections, we discuss several interesting interaction effects identified

in our experiments.

Many of the results from our simulation are illustrated with three flow dominance

and number of machines combinations. We chose to plot the flow dominance/number of

machines combinations of flow shop/one machine (FL0W1MC), the intermediate shop/two

machine (INT2MC), and the job shop/three machine (JSHP3MC) combinations in order

to represent the major differences in process designs. In a job shop, process layouts are

typically used, i.e., similar machines are grouped together by department or workcenter.

Since jobs require various routings in this setting, the availability of parallel processing

reduces (but does not negate) the probability of shifting bottlenecks in the shop. As

the process design moves towards a flow shop, the machines become linked together in

a sequential processing mode. Take, for example, the conversion of a process layout to

cellular manufacturing. A cell would typically consist of one of each machine-type required

to complete most (or all) of the steps in the task sequence for those parts assigned to the

cell. Parallel processing is not possible, then, unless intercell flow is allowed. We model the

intermediate shop with two machines in order to capture a case between the two extremes.

Setup and Flow Dominance Interaction Effect

The mean flow time (MFT) and flow-time standard deviation performance measures

are shown in Table 4 for the case where operation times are nearly deterministic. When

setup times are low (SU=0.1), the performance of JSHP3MC, as measured by MFT, is

slightly better than INT2MC or FL0W1MC. As the setup times increase, however, the
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FL0W1MC design performs the best, both in MFT and flow-time standard deviation. At

first glance, this result may seem counter-intuitive since job shops with parallel processing

are designed to handle high setup-time conditions. The job shop has routings that allow

for shifting bottlenecks, however, and many different products at various stages in the task

sequence can arrive at a particular workcenter in a short period of time. This "implicit

shock" on one workcenter causes blocking and starving of other workcenters. These work-

centers become under-utilized. The net result of the bottleneck is an increase in MFT. The

flow shop has a sequential routing, so it behaves in a stable manner as long as operation

and setup times exhibit little variance. Figure 1 depicts MFT for the two extreme setup

ratio values for all job sizes. Note that the job shop performs noticeably worse when the

setups are high and the job sizes are small.

Setup Ratio Design MFT Flow-Time SD
0.10 FLOW1MC 51.51 8.48

INT2MC 50.13 11.74

JSHP3MC 49.98 7.66

0.25 FLOW1MC 54.49 8.31

INT2MC 53.56 11.73

JSHP3MC 53.45 8.16

0.50 FLOW1MC 59.70 8.00

INT2MC 59.75 11.79

JSHP3MC 60.51 9.47

0.75 FLOW1MC 65.24 7.68

INT2MC 67.34 12.03

JSHP3MC 69.91 11.50

1.00 FLOW1MC 71.57 7.43

INT2MC 77.96 13.02

JSHP3MC 85.81 15.63

Table 4: Setup and Flow Dominance Effect when CV — 0.01.
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*** Insert Figure 1 about here ***

Operation-Time Variance and Flow Dominance Effect

Table 5 indicates that as the CV increases, the job shop performs better on MFT than

the flow shop. This result is similar to previous studies dealing with stochastic assembly

line design. (See, for example, Hillier and Boling (1979) and Smunt and Perkins (1985).)

As the process becomes more linked, as in the case of the flow shop, large operation-

time variance could cause the system to become blocked or starved. In our simulation

design, we did not constrain the amount of buffer storage between machines, so the relative

increase in MFT is due only to starving (input to a machine is not available). Because

of this condition, capacity is not utilized smoothly and bottlenecks will form more readily

throughout the flow shop process. The availability of parallel processing in the job shop

reduces the problems caused by operation-time variance.

Operation CV Design MFT WIP
0.01 FLOW1MC 60.50 14.10

INT2MC 61.74 38.36

JSHP3MC 63.93 83.46

0.50 FLOW1MC 77.14 48.55

INT2MC 68.62 68.03

JSHP3MC 67.45 105.82

1.00 FLOW1MC 139.26 177.10

INT2MC 93.30 170.84

JSHP3MC 78.23 172.06

1.50 FLOW1MC 241.93 391.34

INT2MC 131.79 331.57

JSHP3MC 95.29 277.70

Table 5: Operation-Time Variance and Flow Dominance Effect.
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Work-in-process inventory levels for the three designs are quite similar when the

operation-time CV is high, although the flow shop design has considerably less WIP when

the CV=0.01. The relatively high WIP level for the job shop in the low CV case is caused

by the shifting bottleneck problem. The WIP level for the flow shop increases to that of

the job shop when the CV is high. Queues can easily build up in the flow shop when the

one available machine is utilized longer than the average.

The two graphs in Figure 2 further illustrate the possible inverse relationship between

MFT and flow-time variation. This inverse relationship occurs for the middle operation-

time variance condition (CV=0.5). Although the MFT of the job shop is lower than that

of the flow shop for all job sizes, its standard deviation is higher. The intermediate shop

has the lowest standard deviation for small job sizes, but the highest for large job sizes.

When job sizes are small, the two job types that have non-sequential routings do not cause

problems in this "linked" system of six workcenters. However, as the job sizes become large,

these two job types cause shifting bottlenecks as they are introduced into the process. The

bottlenecks come and go often as these two jobs arrive randomly, causing the flow-time

standard deviation to rise.

The interaction of flow dominance, number of machines, and operation-time variance

is clearly complex. We know of no other studies that have investigated flow dominance at

intermediate levels, although our results suggest that it has a major influence on system

performance.

*** Insert Figure 2 about here ***

We also categorized our results for particular process design scenarios, defined by the

flow dominance, number of machines, and the setup ratio. In Table 6, we show results for
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five combinations across the continuum of a flow line with little setup to a job shop with

large setup. We assume that the type of flow lines that we are testing represent the ideal

case of cellular manufacturing - setup times are reduced on dedicated general-purpose

equipment by the use of special tooling for each product family. These combinations are:

• FLOWlMC/setup ratio=0.1

• INT2/setup ratio=0.1

• INT2/setup ratio=0.25

• INT2/setup ratio=0.5

• JSHP3/setup ratio=0.75

Oper. CV Design SU Ratio MFT Flow-Time SD WIP
0.01 FLOW1 .10 51.54 8.51 10.44

INT2 .10 50.06 11.73 19.21

INT2 .25 53.40 11.67 22.64

INT2 .50 59.54 11.78 30.61

JSHP3 .75 68.93 11.25 94.25

0.50 FLOW1 .10 61.58 14.36 30.87

INT2 .10 53.52 15.62 34.25

INT2 .25 57.60 15.94 41.00

INT2 .50 65.16 16.19 55.02

JSHP3 .75 72.96 15.78 119.78

1.00 FLOW1 .10 100.16 33.61 110.18

INT2 .10 65.46 24.70 83.82

INT2 .25 71.92 25.35 100.76

INT2 .50 82.34 25.49 126.28

JSHP3 .75 84.75 25.99 192.04

1.50 FLOW1 .10 155.82 56.41 227.27

INT2 .10 86.69 39.57 172.72

INT2 .25 99.23 40.62 213.10

INT2 .50 116.38 42.70 268.45

JSHP3 .75 105.90 40.39 323.81

Table 6: Process Design and Operation-Time Variance Interaction Effect
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The MFT, flow-time standard deviation, and WIP levels are displayed for the four levels of

operation-time variance when the job size is 150 units. The process design that consistently

performs the best in terms of all three measures is the intermediate shop with setup ratio

of 0.10. With low setup times and high operation-time variance (CV=1.00 and CV=1.50),

it is not surprising to see that with its tightly linked workcenters, the relative performance

of the flow shop is poor. What is interesting, however, is how dramatic the performance

of the system improves when parallel processing is possible. Even with the addition of a

single machine per workcenter, as in the INT2 setting, MFT is nearly cut in half. Notice

also that when operation-time CV is 1.00, the MFT for both the INT2 process with a setup

ratio of 0.50 is nearly the same as the JSHP3 process with a setup ratio of 0.75. Again

the increase in the ability to perform a number of tasks simultaneously resulting from the

addition of a third machine per workcenter compensates for the increase in setup time.

There are conditions, of course, where the other process designs excel; but these data

reinforce the need to carefully test intermediate process designs. As firms move from job

shops to cellular manufacturing and flexible automation, the intermediate settings will

become more prevalent.

4.2 Increased Product Mix

Using the same the base values of the factory simulation, we tested the effect of

increasing the number of products produced by any one process design from 12 to 24 and

36 products. We kept the total demand on the system (in number of units) the same.

Therefore, fewer orders for any one job type arrive into the system when the product mix

increases.
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Operation-Time Variance

In Table 7, we show the MFT for the three process design scenarios for each of the

three product mixes and operation-time variance and for the setup ratio of 0.75. We chose

the setup ratio of 0.75 since this setting is where interesting interactions with product mix

occur. For each product mix, the flow shop has the lowest MFT when the operation-time

variance is low. This is similar to the base case results for low operation-time variance.

What is interesting here is the increasing degradation of the job shop performance, and to

a lesser extent, the performance of the intermediate shop as more products are produced

on the system. The "implicit shock" discussed in the previous section becomes a larger

problem as more products are placed on the system. The interaction of low flow dominance

and a large product mix causes MFT to increase.

As the operation-time variance increases, however, the parallel processing capability

of the job shop overcomes the problems associated with low flow dominance. The results

for the high CV levels in Table 7 indicate that a job shop performs well for all product

mixes when operation-time variance is high.

When setup times are high and operation-time variance is moderate, a significant

interaction of flow dominance, number of machines, and product mix occurs. From Table

7, we see that the flow shop is the worst performer for the SU=0.75 and CV=0.5 settings,

but that the job shop is the best for 12 products and the intermediate shop is best for 24

and 36 products. Review of the detailed experimental data reveals that the largest impact

occurs for small job sizes, since the "implicit shock" effect is most pronounced here. Again,

we see that interactions of important process design and product characteristics are subtle

and are difficult to predict a priori.
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In our opinion, the use of a twelve workcenter job shop is the most appropriate way

to test the conversion from a process layout to a flow shop layout. It is conceivable,

however, that after the conversion occurs, the same number of machines are used in both

settings. If the only condition that changes is the flow dominance, the positive effect

of a decrease in the ratio of job types per workcenter becomes more pronounced as the

product mix increases. In the twelve workcenter job shop, only 50% of the job types visit

any one workcenter. Therefore, the job shop is likely to incur less machine changeovers

than the flow shop, since in the flow shop a workcenter is visited by twice as many job

types. Machine changeovers do not occur when the same job type is processed next on

the same machine. As the number of products (job types) in the system increase, the job

shop with twelve workcenters should do increasingly better than the flow or intermediate

shop. To test the robustness of our results, we performed a simulation experiment for a

six workcenter job shop where operation-time CV is 0.50 and the setup ratio is 0.75.

With these factor levels, JSHP3MC performs slightly better than INT2MC for 12

products, but degrades as the number of products increases to 24 and 36. Table 7 contains

the MFT values for the twelve workcenter setting. The MFT's for 12, 24, and 36 products

are 72.96, 76.46, and 77.48, respectively. For the six workcenter job shop (JS6-3MC), we

found that the average MFTs for the 12, 24, and 36 products settings were 72.97, 74.97,

and 75.05, respectively. Note that there is little change in the results. If anything, there is
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improvement in the performance of the job shop.f Apparently, the flow pattern by itself is

the most influential cause of a job shop's performance. In our experiment, the performance

of the job shop appears to be influenced more by the flow pattern than by the ratio of job

types to workcenters.

Operation CV Design MFT - 12 MFT - 24 MFT - 36

0.01 FLOW1MC 65.16 65.59 65.72

INT2MC 66.78 67.61 68.43

JSHP3MC 68.93 71.74 73.20

0.50 FLOW1MC 82.49 83.28 84.92

INT2MC 73.92 75.97 75.41

JSHP3MC 72.96 76.46 77.48

1.00 FLOW1MC 151.55 146.00 155.49

INT2MC 99.74 103.09 105.86

JSHP3MC 84.75 89.04 90.86

1.50 FLOW1MC 245.08 264.54 276.64

INT2MC 143.35 146.50 149.77

JSHP3MC 105.90 112,19 112.38

Table 7: Operation-Time Variance and Product-Mix Effect when the Setup Ratio is 0.75.

Figure 3 further illustrates the interaction between flow dominance, number of ma-

chines, and product mix for the smallest job size of 100 units. The top graph is based

f The flow patterns used in the six workcenter job shop experiment are similar to those

used in the twelve workcenter job shop. Each of the twelve job types have different flows.

It is more difficult to design truly random flows in the smaller job shop since two job types

must start and end at any workcenter. Even though we balance the job sequences in this

way to "jumble" the flow as much as possible, the flow dominance may be higher in this

setting. See Buss and Smunt (1989) for a discussion of the difficulties in determining a

good flow dominance measure, especially when the size of the shops are not comparable.
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on the original assumption of one machine per workcenter for the flow shop, two for the

intermediate shop, and three for the job shop. The counter-example of one machine per

workcenter for any flow dominance condition is shown in the bottom graph. By reviewing

the counter-example, it is clear that the number of machines is the cause of the subtle

interaction. Even jumbled flow systems can work well when parallel processing is possi-

ble; however, when only one machine is available, the processes with high flow dominance

perform the best for all product-mix levels. In practice, however, the relative number of

machines working in parallel depends to a large degree on the flow dominance. Again,

such interactions need to be carefully analyzed.

*** Insert Figure 3 about here #**

5. Simulation Results - Demand Shocks

A firm may occasionally see a temporary rise in demand for their products, due per-

haps to a sales promotion or to seasonality factors. One facet of manufacturing flexibility

is the ability of the manufacturing process to respond to such shocks. In this section, we

discuss results when demand is increased to two times the steady-state demand for two

periods of 320 hours each.

Low Setup

Figure 4 compares the three shop scenarios for each level of operation-time variance. It

is interesting to see that the job shop has the highest peak (i.e., has the greatest amplitude)

of MFT when operation-time variance is low; but when operation-time variance is high,

the flow shop has both the greatest amplitude and the longest response time, i.e., the time

it takes to return to steady-state performance levels. Figure 5 comprises companion graphs
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of department utilization (the average utilization for all departments), including operation

time and setup time. Although the utilization percentages start out approximately equal

at low CV levels, the job shop peaks at the highest percent utilization when there is high

operation-time variance. Even though it experiences the highest maximum utilization, the

response of the job shop to the shock is better, in terms of MFT, than is the flow shop

or intermediate shop. In this regard, the job shop is more flexible. When there is high

operation-time variance, the flow shop rapidly loses its ability to respond to a demand

pulse. In essence, the surge in demand is another type of variance added to the original

variance.

*** Insert Figures 4 and 5 about here ***

High Setup

When setup times are high, the effect of increases operation-time variance becomes

more pronounced. Figure 6 shows that the performance of all of the processes, especially

in terms of response time, degrades rapidly with increased variance. Figure 7 is analogous

to Figure 5 except that now setups are high rather than low. Comparing the utilization

response in Figures 5 and 7, a noticeable increase is apparent in the time it takes for all the

processes to return their steady-state condition. As the steady-state utilization levels of

the manufacturing processes increase (due to increased setup utilization here), the recovery

time from a shock to the system becomes longer.

*** Insert Figures 6 and 7 about here ***
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Specific Process Designs

In the previous discussion of shock effects, we focused on aggregate results for

JSHP3MC, INT2MC, and FL0W1MC scenarios. In practice, the process designs of in-

terest could be defined more specifically, especially in terms of flow dominance, number

of machines per workcenter, and setup times. The effect of a demand shock for these

specific designs is illustrated in Figure 8. Note that setup reduction makes the flow shop

and intermediate shop the best performers. Even when operation-time variance is high,

the process designs that exhibit high flow dominance have MFT's with lowest amplitude.

All-in-all, flow shops will perform well if either variance or setup is low. In the job shop

scenario, the system is setup-constrained. A demand shock has a greater influence on the

amplitude and response time of the MFT when capacity is constrained.

*** Insert Figure 8 about here ***

6. Quantifying the Product-Process Matrix

The main objective of this research is to better understand the relationships between

manufacturing attributes and product demand characteristics. Toward this end, we can use

the results of the simulation to establish a quantitative relationship between manufacturing

processes and product attributes. In essence, we can quantify at least a portion of the

Hayes-Wheelwright product-process matrix.

In Table 8, we show the MFT performance for various product-process pairs. Using

the data from the base case, the MFT averages for cells that represent typical product-

process pairs were calculated. We choose to represent the low volume/high product variety

category by letting the job size be 100 units and the number of products be 36. In the
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low volume category, one would expect a high degree of variance in the system, arising

not only from operation times, but also from the arrival patterns of the orders, machine

changeovers, etc. We show MFT results for operation-time CV's of 1.5 and 1.0 as surrogates

for these sources of variation. At the other extreme, we represent the high volume/low

variety category by letting the job size be 200 units and the number of products be 12.

Here, variance levels are likely to be lower since production levels are typically smooth.

On the process axis, we chose JSHP3MC, INT2MC, and FLOW1MC as the three main

process types.

For each product category, the minimum of the column denotes the best product-

process pair. The best product-process pairs derived from our experiment follow the main

diagonal, especially for the low variance conditions of each product volume category.

Our results are most appropriate for the upper quadrant of the product-process matrix,

since we only test fairly low levels of product volume. Job sizes are purposely kept low

since our experiments are designed to analyze issues in a batch manufacturing environment.

It is difficult to determine if the ideal product-process pairs would shift to the left when

attributes of flexible automation are considered.

Although such an analysis is possible, it would require a greatly expanded study of

product volumes, product mixes, flow dominance level, setup times, and operation-time

CV's.
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Process

Type

Low Volume

36 Products

Medium Volume

24 Products

High Volume

12 Products

CV=1.5 CV=1.0 CV=1.0 CV=0.5 CV=0.5 CV=0.01

JSHP3MC 126.7* 91.5* 79.3* 68.7 80.4* 77.2

INT2MC 180.2 109.4 91.6 68.6* 83.0 76.5*

FL0W1MC 328.2 162.2 135.7 76.5 92.8 76.5*

* denotes the minimum MFT in the column

Table 8: Experiment Results in Product-Process Matrix Form

7. Summary and Conclusions

Two comprehensive simulation experiments were conducted to investigate relation-

ships between process designs and product characteristics in a batch manufacturing setting.

The large number of important factors that were included in the experiments necessarily

generated a great deal of data. We now summarize the major insights established in each

of the experiments.

Findings from the Stable Demand Experiment

• Job shops work best when setups are low and not high. The jumbled flow of the job

shop results in shifting bottlenecks. Low setups are needed to offset the affects of

"implicit shocks" at the workcenters caused by the bottlenecks.

• Tightly-linked processes, represented by the flow shop with one machine per work-

center in our simulation, behave much like assembly-line systems and only work well

when the variance of operation times is low. When the variation of operation time is

high, the performance of the system is significantly improved by increasing the num-

ber of machines at each workcenter. Furthermore, large reductions in setup times can

improve the performance of a tightly-linked systems.
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• As expected, job shops perform better as the number of job types increases.

• WIP inventory and MFT are generally highly correlated, but can respond differently

to changes in job size.

Findings From the Demand Shock Experiment

• Job shops continue to respond better to explicit demand shocks when operation times

are highly variable.

The relationship between process and product characteristics for batch production

was shown to be complex, yet explainable if sufficient analysis is undertaken. Firms that

are considering the move to more flow-line production, while staying in the low-to-medium

volume production mode, need to first define the type of demand conditions under which

they will be operating in the future. Then, based on practical process alternatives available

to them, they need to analyze the performance of such processes under typical operating

conditions. Simulation analysis, such as we illustrated in this study, is an appropriate tool

for better understanding the product/process relations.
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Appendix A - ANOVA

Class Level Information

Class Levels Values

S (flow) 3 Flow shop, Int. Shop, Job Shop

L (no. of machines) 3 1 machine, 2 machine, 3 machine

M (no. of products) 3 12, 24, 36

SU (setup ratio) 5 0.1, 0.25, 0.5, 0.75, 1.0

CV (operation variation) 4 0.01, 0.5, 1.0, 1.5

JS (job size) 5 100, 125, 150, 175, 200

Number of Observations iin Data Set = 27000

(2700 observations x 10 repetitions)

Dependent Variable: MFT
Source DF Sum of Squares Mean Square

F Value

Model 563 155923662.039 276951.443

Error 26436 10511413.820 397.617

Pr > F

Corrected Total 26999 166435075.858

0.0

R-Square C.V. Root MSE MFT Mean
0.937 18.824 19.940 105.931



Source DF ANOVA SS F Value Pr > F

S 2 1285858.872 1616.95 0.0

L 2 24423497.625 30712.31 0.0

M 2 309992.651 389.81 0.0

SU 4 31871878.694 20039.29 0.0

cv 3 37902634.911 31774.79 0.0

JS 4 1822941.701 1146.17 0.0

S*L 4 472782.525 297.26 0.0

S*M 4 39921.473 25.10 0.0001

s*su 8 606010.108 190.51 0.0

s*cv 6 708894.985 297.14 0.0

S*JS 8 53269.930 16.75 0.0001

L*M 4 36615.319 23.02 0.0001

L*SU 8 4463821.715 1403.30 0.0

L*CV 6 12409070.483 5201.43 0.0

L*JS 8 282854.645 88.92 0.0

M*SU 8 567152.394 178.30 0.0

M*CV 6 144016.723 60.37 0.0

M*JS 8 319334.206 100.39 0.0

SU*CV 12 10120925.060 2121.16 0.0

SU*JS 16 13141081.472 2065.60 0.0

CV*JS 12 1065229.996 223.25 0.0

S*L*M 8 8647.920 2.72 0.0054

S*L*SU 16 264974.940 41.65 0.0

S*L*CV 12 334202.452 70.04 0.0

S*L*JS 16 47236.317 7.42 0.0001

S*M*SU 16 57664.512 9.06 0.0001

S*M*CV 12 6679.872 1.40 0.1574

S*M*JS 16 21072.817 3.31 0.0001

s*su*cv 24 460832.966 48.29 0.0

S*SU*JS 32 163172.575 12.82 0.0

S*CV*JS 24 117447.645 12.31 0.0

L*M*SU 16 76629.827 12.05 0.0001

L*M*CV 12 25155.149 5.27 0.0001

L*M*JS 16 49908.134 7.84 0.0001

L*SU*CV 24 1720430.226 180.29 0.0

L*SU*JS 32 2345232.176 184.32 0.0

L*CV*JS 24 144347.198 15.13 0.0

M*SU*CV 24 291001.940 30.49 0.0

M*SU*JS 32 1029499.284 80.91 0.0

M*CV*JS 24 192355.794 20.16 0.0

SU*CV*JS 48 6519384.804 341.59 0.0






