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ABSTRACT

In this paper we study forecasting performance of the logit model, a feedforward

neural network model, and the regression tree model. These models are applied to

predict household appliance stocks using the Miracle data sets collected by San Diego

Gas and Electricity. Both in-sample and out-of-sample forecasting performance of

each of these models are investigated. We find that the neural network model and the

regression tree model exhibit clear advantages relative to the standard logit approach.
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1. Introduction

Appliance saturation plays an important role in determining residential energy

demand. In the short run, energy consumption of a household is a function of relevant

socioeconomic and demographic variables, conditional on the appliance portfolio owned by

that household. This motivates economists to study energy consumption using conditional

demand functions, e.g., Parti and Parti (1980). In the long run, the consumer may be

willing to pay a higher capital cost (in terms of discounted purchase price) for more

efficient appliances in order to reduce the operating cost (in terms of energy price). This

leads to the approach that models the demand for energy and choice of appliances

simultaneously, e.g., Hausman (1979) and Dubin and McFadden (1984). However, this

approach can handle only a small number of appliances. A simultaneous model of the

demand for energy and the demand for a general appliance portfolio is usually intractable

empirically.

In this paper we confine ourselves to the short run and estimate household

appliance ownership probabilities conditional on household characteristics. A successful

prediction of household appliance stocks should be helpful in improving short—run forecasts

of residential energy demand. Here we apply three different models to the Miracle data

sets collected by San Diego Gas and Electricity (SDG&E). These models are: the logit

model, a feedforward neural network model (Rumelhart, Hinton, and Williams (1986)), and

the regression tree model (Breiman, Friedman, Olshen, and Stone (1984)). The logit model

is a typical approach in econometrics to dealing with discrete choice problems. The other

two approaches are novel in the present context. Neural network modelling techniques

have been widely used in the sciences recently and are known to be useful in performing

complicated pattern recognition and classification tasks (e.g., Lapedes and Farber

(1987a,b)). The regression tree analysis is a nonparametric statistical method specifically



designed for classification problems. Our results investigate both the in—sample an

out—of—sample forecasting performance of each of these models. The two novel approache

exhibit clear advantages relative to the standard logit approach.

This paper proceeds as follows. In section 2, we discuss the methodologies use

for estimating appliance ownership models. In section 3, we describe the dat

characteristics and computer programs used for estimation. In section 4, we compare tt

performance of the three models. Section 5 concludes the paper.

2. Methodologies

Let {y.} be a sequence of independently distributed appliance ownershi

dummy variables, where y. = 1 if an appliance is owned by household i and y. =

otherwise, and let X. be a (column) vector of demographic variables (including a constai

term) for household i. We are interested in forecasting appliance ownership conditional c

X-. We write

y
i
= E[y

i
|x

i
] + e

i>
(i)

where E[y. |X.] is the expectation of y. conditional on X-. It is clear that E[y. |X.] :

P{y.=l|X.}, which provides the "best forecast" of y. given the information X.. Equatio

(1) defines the forecast error, e-.

[A] The Logit Model

A typical approach in econometrics is to parameterize the condition;

expectation in (1) as F(X'a), where F is some distribution function and a is a vector (

parameters, e.g., Amemiya (1985). If F is taken to be the standard normal distributio

function, we have the probit model. Here F is taken to be the logistic function,

F(X'or) = 1/[1 + exp(-X'a)], (2)



so we have specified the logit model. The parameters a can be estimated by maximizing

the following log-likelihood function:

log L = E°=1 yi
logF(X!a) + (1 - yj

)log[l - F(Xja)]. (3)

The predicted probability of owning an appliance is then given by F(X.'a), where a is an

estimate of a. It should be emphasized that we do not assume that this is correctly

specified. The logistic function (2) is at most an approximation to E[y. |X.].

In this paper we use the simple logit model to estimate the conditional mean.

It is well known that the logistic distribution is close to the cumulative normal

distribution, except at the extreme tails. Therefore, the logit and probit model provide

very similar results. In fact, the parameter estimates are in theory comparable when the

logit estimates are multiplied by 0.625 (Amemiya (1981)). We do not consider the

multinomial logit model here because we are only interested in classifying ownership and

nonownership of individual appliances, not ownership of entire portfolios of appliances (cf.

Hausman (1979)). Also, we do not adopt the nested logit model because the appliances

under analysis are not all related (cf., Dubin (1985, Chap. 3)).

[B] The Neural Network Model

The possibility of misspecification motivates us to find an alternative model

that can perhaps better approximate the conditional mean. An interesting class of

approximating functions is the class of multi— layer feedforward neural network models.

This class of functions is capable of approximating broad classes of functions to any desired

degree of accuracy (Hornik, Stinchcombe, and White (1989)). It seems reasonable to

expect that neural network models can do well in this ownership classification problem.

Let the network "output" o- be given by the following equations, which define a

"single hidden layer feedforward network":



Oj = G(0
O
+ A;/?) = G(/3 + Z^ftfp

a
ij
= *(XiTj) = *^j0 + S

k=l
x
ikV> j=1 >-

•

'

'q ' (4)

where A. = (a..,.---,a- ) is vector of "hidden unit activations," X. is a vector of inputs
1

v il' ' iq y ' 1
r

(explanatory variables) inclduing a constant term, /? — (/?-,,•• -,/3 )' and 7. =

(t-q,* • *,7:D)', j=l,- • • ,q, are parameters ("network connection weights"), and G, ^ are

some known functions. That is, inputs (demographic variables) first activate each hidden

unit in the intermediate layer through the function ^, and activations of hidden units in

turn affect outputs through the function G.

In this paper we choose ^ as the logistic function and G as the identity

function. This choice is convenient and suffices for the desired approximation property.

Note that the logistic function is a continuous version of the threshold function. Hence the

function ^ in the network plays the role of classifier which characterizes nonlinear features

of the function to be approximated. The more hidden units are available in the network,

the better approximation the network can produce. From (4) we obtain

°i = 4> + Ej=i*^jo + ELix
ikV^j

= f(x
i
A (5)

where 6 = (/L,- • •
>/L>7J>*

* * jTq)'- In our application, we fix the number of hidden units (q

= 4) so that the function f in (5) can only approximate unknown functions to a fixed degree

of accuracy. Nevertheless, f appears to be a reasonable approximating function to the

conditional mean function, and the network outputs o- should match E[y.
|
X-] fairly closely.

The parameters $ in the network (5) are estimated by the method of nonlinear

least squares (NLS). The predicted probability of owning an appliance is then given by

f(X-,0). The most commonly used estimation method associated with feedforward neural

network models is the "back—propagation" estimator (Rumelhart, Hinton, and Williams

(1986)). This method is a recursive estimation scheme implementing a gradient search



over the parameter space. The back—propagation method, like the gradient method in

numerical optimization, may converge very slowly (e.g., White (1988)), but it is appealing

when online data are available. However, we do not use the back—propagation estimator

because the Miracle data sets are not on—line data. Instead, we use the method of NLS.

The NLS estimates are consistent and asymptotically normally distributed under general

conditions, even in missperified models, see e.g., White (1990). They are also

asymptotically efficient relative to back—propagation estimates (White (1989)).

[C] Regression Tree Analysis

The third methodology for classifying owners and nonowners of appliances is

regression tree analysis (Breiman, Friedman, Olshen, and Stone (1984)). This technique

performs a sequence of binary splits according to household characteristics (demographic

variables) and results in a "tree" structure for classifying appliance ownerships. The

regression tree analysis differs from the other two models discussed in the preceding

subsections in that it is a nonparametric technique. Unlike other nonparametric

procedures such as the kernel estimation, the regression tree analysis provides information

regarding the structure of the data, as in the standard regression analysis.

In the beginning of the tree creation process, the whole data set belongs to a

root node. The regression tree method iteratively performs binary splits according to some

household characteristics x. (an element of X.) so that each X. can be assigned to either
lm v v i

°

one of the descendent nodes. Let there be N observations, and define X C IR as the

measurement space such that X. € X for all i. Creating a tree is equivalent to partitioning

the space X into different "rectangles". In what follows, T denotes a tree, t denotes a node

in the tree, and T denotes the set of terminal nodes in the tree. Hence t is a subset of X
}

and It forms a partition of X. Define the average of y. within node t as
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where N(t) is the number of observations in node t, and define the error measure at node t

as

R(t) = £ Sx (y. - y(t))
2

. (7)

From each node t, a candidate split s is such that, for some cut-off value c, we have left

and right descendent nodes:

t T = {X-: the mth coordinate x. < c),
L l

1 lm - J '

and

t = {X.: the mth coordinate x. > c).K l
l lm J

The best split s is defined to be the split such that

AR(s ,t) = max « AR(s,t)
,

where S is the set of all candidate splits, and

AR(s,t) = R(t) - [R(t
L ) + R(tR)].

That is, the best split maximizes the decrease of the error among all candidate splits.

Therefore, a node can be successively split into descendent nodes, and a "tree" type

structure can be constructed.

It can be shown that R(t) > R(tr ) + R(tR) for any split. Define the error

measure of the tree T as the sum of error measures of all terminal nodes T, i.e.,

R(T) = E _R(t), (8)

teT

where R(t) is given by (7). Clearly, R(T) > R(T') if T' is grown from T. Therefore, we

tend to do more splitting and grow a very large tree if R(T) is used as a performance

criterion. Consequently, we tend to make every terminal node "pure". This is analogous

to the problems created by adding ever more explanatory variables to a regression function.

We can overcome this "over—growing" problem by first developing a large tree



T and then pruning this large tree upward, where T is determined by setting the

minimum number of observations in each terminal node. Consider the following

error—complexity measure:

R
a
(T) = R(T)+a|f|, (9)

where |T| is the number of terminal nodes in T, and a > is the "complexity parameter."

In (9), the error measure of a complex tree with many terminal nodes is penalized by the

term a|T|. The magnitude of penalty depends on the value of a. It can be shown that

there is a decreasing sequence of subtrees of T (T__ 2 T.. DT --O root node) and amax max i £

corresponding increasing sequence of a values (0 = ou < a» < •••) such that T. is the

smallest subtree of T minimizing R (T), where a- < a < a., ,. After the sequence

{T.} is obtained, we can use cross—validated estimates R (T.) for R(T.) and choose the
•I mm

optimal subtree T* by the "1 SE rule". That is, we choose the smallest subtree T* such

that

RCV(T*) < [min. RCV
(T.)] + SE

,

where SE is some standard error estimate. The intuition of the 1 SE rule can be found in

Breiman, Friedman, Olshen, and Stone (1984, pp. 78-80). The details of growing and

pruning a tree can also be found in the same book. All the procedures described above are

implemented by the program CART (Classification And Regression Tree).

Once an optimal tree is constructed, each terminal node is assigned as owner or

non-owner by the plurality rule. That is, a terminal node is an "owner" node if there are

more owners than non-owners falling into this node. A new observation X now can be

easily classified into owner or nonowner by running X through the tree structure and

checking which terminal node the new observation ends up with. Alternatively, we can

assign an estimate of the probability of ownership for a household belonging to a given

terminal node as equal to the proportion of owners belonging to that terminal node, i.e.,



y(t), where t 6 T. We note that the appliance ownership problem is a binary choice

problem. Hence the regression tree is virtually the same as the two-class classification tree

discussed in Breiman et. al. (1984).

3. The Data and Computer Programs

The data used in this paper comprise part of the Miracle 4, 5, and 6 datasets

collected by SDG&E. The Miracle 4 survey was conducted in 1979 and yielded 12,380

usable observations; the Miracle 5 survey was sent out in 1981 and resulted in 8022 usable

observations; the Miracle 6 survey was conducted in 1983 and resulted in 7600 usable

observations. We specifically utilize information about household appliance ownership and

consumer demographics. Observations are usable if ownership and certain (but not all)

values of the explanatory variables are not missing.

In this study we focus on 7 gas appliances and 15 electric appliances. The gas

appliances under analysis include: (1) range; (2) dryer; (3) water heater; (4) main heating

system; (5) air conditioner; (6) fireplace; (7) B.B.Q. Data for the last two gas appliances

are not available in the Miracle 4 data set. The electric appliances consist of: (1) black and

white TV; (2) color TV; (3) dishwasher; (4) microwave oven; (5) range; (6) dryer; (7)

washer; (8) refrigerator; (9) water heater; (10) main heating system; (11) air conditioner;

(12) attic fan; (13) air cleaner; (14) electric blanket; (15) water bed. Data for the last four

electric appliances are not available in the Miracle 4 data set.

There are eight demographic variables used to characterize appliance ownership:

(1) home ownership (Nhomeown); (2) age of dwelling unit (Nyrbuilt); (3) number of

bedrooms (Nbedroom); (4) square footage of residence (zsqfoot); (5) number of persons in

household (znuminhh); (6) educational attainment in years of head of household

(Neducate); (7) family income (zincome); (8) type of dwelling unit (Nresid).
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For each data set, the appliance ownership dummy variables are transformed

from raw survey data into binary variables with values 1 and 0, indicating owner and

non—owner, respectively. Some demographic variables, e.g., square footage and household

income, are transformed into the midpoints of the ranges given by the survey questions.

For example, a household income is assigned $22,500 if the survey response indicates the

income is within the range $20,000—$24,999. Some observations are dropped because of

missing values or inappropriate responses. However, missing information for certain

variables is assigned the average value of the valid observations. A detailed description of

the data transformation can be found in Granger, Kuan, Mattson, and White (1989).

The logit model is estimated using "Statistical Software Tools" (SST) version

1.8 by J. A. Dubin and R. D. Rivers. The regression tree is created using the CART

program version 1.1 by California Statistical Software, Inc. The neural network models are

estimated by the method of NLS. The 7 connection weights are initialized randomly, and

the /?, 7 weights are then adjusted iteratively to minimize the average of squared errors.

4. Overview of Results

In this section we discuss and compare the empirical results obtained from the

logit analysis, the neural network analysis, and the regression tree analysis.

The sample averages of appliance—ownership dummy variables are summarized

in Tables 1 and 2. It is easily seen that these values change a lot from Miracle 4 to Miracle

5 but remain relatively stable from Miracle 5 to Miracle 6. This may be due to the fact

that the questionnaire used for the Miracle 4 survey is quite different from the other two

surveys, and that the Miracle 5 and 6 surveys are subject to the survey requirements

imposed by California Energy Commission. We observe an exception in that the sample

average of the black and white TV ownership variable drops from .39 (in Miracle 4) to .288
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(in Miracle 5) and then rises to .874 (in Miracle 6). We notice that only 2000 observations

for black and white TV are valid in Miracle 6, in contrast with 6700—6900 valid

observations for other appliances. It is likely that most of the non—owners are excluded

because of missing values. Thus the results for black and white TV are likely to be

unreliable.

Models for each appliance in each data set are estimated separately in this

study. We consider both in—sample and out-of—sample predictions. The out—of—sample

predictions are obtained by substituting the Miracle 5 and 6 data into the models

estimated with the Miracle 6 and 5 data, respectively. We do not use the Miracle 5 or 6

data to evaluate the model estimated with the Miracle 4 data because of the

incompatibility of the questionnaires in these surveys.

An example of the estimation results for each of the models is given in Tables

3A, B, and C. The particular results given are for Miracle 5, electric main heating system.

Similar results for each sample and each appliance are available from the authors on

request. Because our interest centers on comparing the different methods, we do not

provide a detailed analysis of the results of individual estimated models (there are a total

of 180 estimated models), but instead turn our attention to comparisons of model

performance.

The criterion we use to compare the performance of models is the average of

log—likelihood values. For the logit and neural network models the average is calculated

by:

N-1E?=1yilog(yi) + (1 -
yi

)log(l - yj), (10)

where y. is the predicted value and N is the number of valid observations. For the logit

model, y. = F(X?a) is calculated from (2), and a is the vector that maximizes (3). For the

neural network model,
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yi
= £(^,0), if .001 < HX^ff) < .999 (11)

= .999, iff(X.,0)> .999

= .001, if f(Xj,^) < .001,

where f(X.,0) is calculated from (5), and 6 is the NLS estimator.

In the regression tree analysis, each observation is assigned to a terminal node, and a

probability of ownership is assigned as y(t). Recall that y(t) denotes the sample average of

y. within node t (as in (6)), N(t) denotes the number of observations in node t, and |T
|

is

the number of terminal nodes. Putting y. = y(t) for X. 6 t, the average of log—likelihood

values is calculated by

1 N
N *E ^log^) + (1-^)10^1-^) =

i=l *
1 1 1

N~XE y(t)N(t)log(y(t)) + (1 - y(t))N(t)log(l - y(t)). (12)

t=l

We note that not all demographic variables are used to create a regression tree. A

demographic variable is used for splitting only when such a split can improve upon the

error measure. Hence the regression tree for each appliance is different. In some extreme

cases, there is no tree created because of the very high (low) sample averages and the "1 SE

rule". If there is no tree created, l^l = 1 and y(t) is the sample average of all y-. The

in—sample averages of log—likelihood values are given in Tables 5 and 6, and the

out—of-sample averages are listed in Tables 8 and 9. Tables 4A and B summarize this

information and give the number of best performances of each model for every data set.

The average of log-likelihood values is an appropriate criterion for evaluating

the performance of different models, as the summand in Equation (10) measures the

"entropy" of the estimated distribution relative to the true distribution (see e.g., Theil

(1971, pp. 636—640)). If y. is close to zero (one) and y. = (1), the prediction is accurate
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and the summand in (10) is close to zero. On the other hand, if y- is close to zero (one) but

y. = 1 (0), the prediction is very poor and the summand in (10) is very negative. Thus, the

sum in (10) measures the total "surprise" resulting from the contradiction between the

predicted probabilities and the true outcomes. A model that performs better should yield

less "surprise", compared to the other models. Equation (12) is interpreted in a similar

fashion. The average values allow for the comparison across appliances and surveys, since

the number of valid observations N differs for each appliance.

The truncation for the predicted probabilities in (11) is needed to ensure proper

calculation of the log^ikelihood. When the predicted probability is outside the range

[.001, .999], the resulting likelihood will be underestimated if the true outcome is opposite.

However, very few observations fall in this category, and this number is less than 20 for

most of the in—sample and out—of—sample forecasts. Table 10 gives some examples of the

worst cases for out—of—sample forecasts, in which the number of misclassification is shown

in the off—diagonal entries.

From the summary statistics in Tables 4A and 4B we can see that the neural

network model outperforms the other two models in-sample; out—of-sample, the regression

tree performs better for gas appliances, and all three models have similar performance for

electric appliances. A detailed comparison can be made by using the information in Tables

5, 6, 8 and 9.

Tables 5 and 6 contain, respectively, the in-sample averages of log—likelihoods

for gas and electric appliances in each data set. We observe that, when the neural network I

model is dominated by the other models, the difference between the average values of the

network and the best model is typically small. For gas appliances, the largest difference is

.0016, and most of the differences are below .001. For electric appliances, the largest

difference is .0019, and most of the differences are around .0015. On the other hand, when
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the neural network model dominates the other models, its average value usually differs

from that of the second best model by a larger amount. Some of the differences are greater

than .01. This shows that the neural network model outperforms the other models

significantly in-sample. It can also be seen that the logit model performs better than the

regression tree model.

In order to determine whether the in—sample differences reported in Tables 5

and 6 are statistically significant, we compute a version of Vuong's (1989) statistic for

model selection of strictly non—nested models. The version of Vuong's statistic computed

here can be expressed as

VN = 1/N E?=1(6. - h
;
)

2 - [1/N E?=1(gj
- hj)]

2

where

gj = y
i

log(y
i
) + (1 - y^logCl - yj)

is individual log-likelihood obtained from the network model with y. calculated from (11)

and

h; =
yi
log(F(X!a)) + (1 -

yi
)log(l - F(Xji))

if we compare the network and the logit model or

hi = yjlogtyM) + (l - yj)log(l -7(t)), X; e t,

if we compare the network and the regression tree model.

Under the null hypothesis that the two models compared (e.g., the neural

network model and the logit model) have equal expected log—likelihood, Theorem 5.1 of

Vuong (1989) establishes that this statistic is asymptotically distributed as standard

normal. The values for these statistics, comparing the neural network model to the logit

and CART models respectively for Miracle 5 and 6 are given in Table 7A for gas appliances

and Table 7B for electric appliances. For example, the Vuong statistic is 4.497 for the

neural network vs. the logit model of gas range ownership in the Miracle 5 data. This has a
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one—sided p—value (probability of wrongly rejecting the null hypothesis against the

alternative of superior performance by the network model) of practically 0. For the CART

model, the Vuong statistic is .552, implying a one—sided p—value of .709.

Looking over the results of Tables 7A and 7B, we see that of the cases in which

the network model exhibits superior performance, this superiority is statistically significant

at the standard 5% level except for gas range, dishwasher, microwave, electric range, and

washer in Miracle 5 and except for washer, main heating and air cleaner in Miracle 6.

In out—of—sample predictions for gas appliances, the regression tree model turns

out to perform best. The problem with the tree model is that its performance is rather bad

when no tree is created, as for gas air conditioner and gas B.B.Q. We also observe from

Table 8A that the neural network model never outperforms the other models for gas

appliances, but it is the second best model for 5 out of 7 gas appliances. It is also

interesting to see that for some appliances (gas dryer, water heater and main heating), the

out—of—sample average values of the network are better than the in—sample averages of the

logit model. In Table 8B the neural network model is the best model for 2 out of 7 gas

appliances, and for the other appliances it is the worst model. In both cases, the logit

model is always the best for gas B.B.Q., and the tree model is always the best for gas

range, water heater and main heating.

Tables 9A and 9B contain the out—of-sample averages of log—likelihood values

for electric appliances. In Table 9A, the regression tree model is the best (second best) for

5 (6) out of 15 appliances; and the neural network model is the best (second best) for 5 (4)
'

appliances. In Table 9B, the regression tree model is the best (second best) for 7 (4)

appliances; and the network is the best (second best) for 4 (6) appliances. In both cases,
|

the regression tree model always performs well for electric range, washing machine, and

main heating system; the network is always the best for electric dryer and electric blanket;
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and the logit model always performs well for microwave, refrigerator, and air cleaner. We

also note that the CART program does not create a tree for 6 out of 15 appliances in these

two tables. As for the results for gas appliances, the performance of the tree model is

usually poor when no tree is created. The exceptions are water heater in Table 9A and

attic fan in Table 9B, for which guesses yield better log—likelihood values.

Intuitively, the out—of-sample likelihood values should be worse than the

in-sample values. This is true for the logit model. We observe the following exceptions for

the regression tree model: gas dryer and gas water heater in Table 8A and electric air

conditioner and water bed in Table 9B. There is also one exception for the neural network

model: refrigerator in Table 9B. Local rather than global optimization in sample explains

these results.

Our results indicate that the tree model can do well in out—of—sample contexts.

However, if there is no tree created for an appliance and the sample averages of that

appliance are quite different in two data sets, the in—sample and out—of—sample likelihood

values differ significantly. For example, the difference of likelihood values for electric

water heater is 0.062 in Table 9A and 0.123 in Table 9B. Another interesting example is

that of color TV. The out—of-sample likelihood value resulting from the tree created in

Miracle 5 is very close to the in-sample value (see Table 9A). But there is no tree created

for color TV in Miracle 6, hence the out—of— sample likelihood value differs from the

in—sample value by 0.203 in Table 9B. These facts also suggest that the regression tree

may not be very useful for out—of—sample forecasting when no tree can be created.

5. Summary and Concluding Remarks

In this empirical study we find that the prediction ability of two novel methods

using neural network and regression tree models is reasonably good for this classification
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problem. Although the neural network model does not uniformly dominate the logit and

the regression tree models, it does outperform these models in in-sample prediction of

ownerships of many appliances. For out—of-sample prediction, the regression tree model is

most successful for gas appliances, but its ability is weakened when the CART program

fails to create a tree. The network and logit model also perform reasonably well out of

sample. The price paid for the increased performance of the regression tree and neural

network models is that they are computationally more intensive to estimate than the logit

model.

Although the results reported here are informative, they cannot be the last

word. Instead, they suggest the usefulness of further study of the relative performance of

the network and CART models, given that the network models have better in—sample

performance and the CART models have better out—of—sample performance. An obvious

reason for the better out—of-sample performance for CART is its use of cross— validation

to determine the optimal tree structure. Similar use of cross—validation to determine the

optimal number of hidden units (currently fixed at four in this study) may be expected to

lead to further improvements in out—of—sample performance for the network models.

Because of the huge computational effect required, convenient cross—validation methods for

nonlinear network models are not presently available. Development of such methods is

now in progress.

Another source of possible improvement in both in and out of sample network

performance is use of a "squashing function" at the output unit, achieved by replacing the \

present choice of G (the identity function) in equation (4) with a function such as the

logistic (already used for ^). This forces the network toward making more definite i

classifications and eliminates problems with outputs greater than one or less than zero.

Associated with this replacement is use of minimum entropy quasi—maximum likelihood
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estimation in place of current NLS techniques. This too should lead to further

improvements in both in— and out—of—sample network performance.

Performance of the regression tree model may also be improved by

experimenting with the CART program options. For example, we may decrease the

minimum size below which nodes will not be split, we may use linear combination of

variables, and we may use the "zero SE rule" instead of the "one SE rule" to select the

tree. We leave investigation of these possibilities to further research.
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Table 1 Sample Proportions of Gas- Appliance Ownership

Appliance Miracle 4 Miracle 5 Miracle 6

Range .487 .484 .480

Dryer .343 .291 .307

Vater Heater .793 .656 .655

Main Heating .790 .684 .686

Air Conditioner .018 .016 ,019

Fireplace N/A .199 .217

B.B.Q. N/A .051 .046

N/A: Not available.
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Table 2 Sample Proportions of Electric- Appliance Ownership,

Appliance Miracle 4 Miracle 5 Miracle 6

B/V TV .390 .288 .874

Color TY .896 .884 .990

Dish Vasher .600 .584 .572

Microwave .308 .365 .441

Range .506 .496 .488

Dryer .361 .305 .295

Vashing Machine .785 .692 .703

Refrigerator .996 .976 .977

Vater Heater .111 .091 .010

Main Heating .172 .152 .159

Air Conditioner .097 .216 .213

Attic Fan N/A .049 .048

Air Cleaner N/A .029 .036

Elec. Blanket N/A .410 .389

Vater Bed N/A .163 .144

N/A: Not available.
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Table 3 Estimation Results for Electric Main Heating System in

Miracle 5.

A. The Logit Model:

Variables Coefficient Standard Error

Constant -.651913 .297783

Nhomeown -.214032 .079322

Nyrbuilt -.067313 .004298

Nbedroom -.353786 .052370
Neducate .064085 .020598
zsqfoot .000193 .000077
znuminhh -.010022 .031496
zincome .000012 . .000003
Nresid -1.061678 .090408

Initial Likelihood: 5258.2. Likelihood at convergence: -2762.7,

B. The Neural Network Model:

Input Gamma Veights Connecting Input Units to Hidden Units
Variables #1 #2 #3 H
Constant .902074 -.555334 1.654142 2.276281
Nhomeown -4.181901 .444344 1.173967 1.018036
Nyrbuilt -7.418556 -1.149316 -1.050310 .941213
Nbedroom .589866 -1.811435 1.790252 1.737879
Neducate -3.996109 .890788 -1.133193 .632603
zsqfoot -1.617610 .138512 .385821 -.835286
znuminhh 2.524449 -.091295 1.992484 1.138858
zincome 2.604609 .087547 1.547868 1.353484
Nresid -5.683916 -.071938 2.302176 .930138

Beta Veights Connecting Hidden Units to Output Units
Bias £1 |2 f3 |4

-.913163 .410989 .832218 .043323 .771775
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C. The Regression Tree:

Options Used :

1. Construction Rule: Least Squares
2. Estimation Method: 10- fold cross validation
3. Tree Selection Rule: 1 SE Rule
4. Linear Combinations: No

5. Initial value of the complexity parameter =0.0
6. Size requirement for subsampling = 1000

7. Minimum size below which node will not be split = 200

8. Maximum number of surrogates used for missing values = 7

9. Maximum number of nodes in largest tree grown = 150

(Actual number of nodes in largest tree grown = 90)
10. Maximum depth of largest tree grown = 250

(Actual maximum depth of largest tree grown = 16)

11. Maximum size of memory available = 150000
(Actual size of memory used in run = 110929)

Tree Sequence :

Terminal
Tree Nodes

Cross- Validated
Relative Error

Resubstitution
Relative Error

Complexity
Parameter

53
54

55
56

57
58

59

60
61

62

12

11

10

8

7

6

5

3

2

1

.86

.86

.86

.86

.87

.87

.88

.90

.94

1.00+/-
i

.010

.010

.010

.010

.009

.009

.009

.008

.005

.000

.84

.84

.84

.85

.86

.86

.87

.90

.93

1.00

2.87
2.97
3.18
3.71
4.67
6.57
10.5
12.9
28.0
69.0
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Tree Diagram :

lilt™
1

- 12 3 4 5 6 7 8
Regions

Split Information :

Split #1 on variable Nresid
Split #2 on variable Nyrbuilt
Split #3 on variable Nhomeown
Split #4 on variable zsqfoot
Split #5 on variable Nyrbuilt
Split #6 on variable Nhomeown
Split #7 on variable Nyrbuilt

Terminal Node Information:

*

Node Cases Average SD

1 439 .535 .50

2 434 .362 .48

3 527 .245 .43

4 1151 .234 .42

5 413 .029 .17

6 2851 .045 .21

7 975 .176 .38

8 796 .060 .24

Average = percentage owning appliance in terminal node
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Table 4A Model Performance Comparison for Gas Appliances

f of best

performance

In Sample Out of Sample

M-4
data

M-5 M-6
data data

M-6 data M-5 data
M-5 model M-6 Model

Logit

CART

Network

1

1

3

2 2

2

5 3

3 1

4 4

2

M-4 (5,6) stands for Miracle 4 (5,6).

Table 4B Model Performance Comparison for Electric Appliances

| of best

performance

In Sample Out of Sample

M-4 M-5 M-6
data data data

M-6 data M-5 data
M-5 model M-6 Model

Logit

CART

Network

2 3 3

1 1

9 11 11

5 4

5 7

5 4

M-4 (5,6) stands for Miracle 4 (5,6).
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Table 5A In- Sample Averages of Log- Likelihoods: Miracle 4 Gas
Appliances.

Appliance Logit CART Network N

Range -.6069 -.6015 -.6012* 11841

Dryer -.5862 -.5851 -.5809 11709

Vater Heater -.4352 -.4234 -.4250 11501

Main Heating -.4612 -.4525 -.4475 11620

Air Conditioner -.0853 -.0901' -.0857 11663

Note: * Best performance, f No tree created.

Table 5B In- Sample Averages of Log- Likelihoods: Miracle 5 Gas
Appliances.

Appliance Logit CART Network N

Range -.6272 -.6172 -.6154* 7597

Dryer -.5387 -.5273 -.5218 7654

Vater Heater -.5627 -.5438 -.5378 7569

Main Heating -.5671 -.5627 -.5520 7586

Air Conditioner -.0764 -.0820' -.0778 7453

Fireplace -.4050 -.4129 -.3977 7396

B.B.Q. -.1885 -.2014*'' -.1894 7394

Note: * Best performance, f No tree created.
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Table 5C In- Sample Averages of Log- Likelihoods: Miracle 6 Gas
Appliances.

Appliance Logit CART Network N

Range -.6062 -.6004* -.6010 6910

Dryer -.5363 -.5354 -.5266 6814

Vater Heater -.5396 -.5265 -.5140 6760

Iain Heating -.5442 -.5260 -.5272 6789

Air Conditioner -.0852* -.0941' -.0861 6750

Fireplace -.4196 -.4261 -.4083 6916

B.B.Q. -.1650 -.1866' -.1654 6912

Note: * Best performance, f No tree created.
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Table 61 In- Sample Averages of Log- Likelihoods: Miracle 4 Electric
Appliances.

Appliance Logit CART Network N

B/V TV -.6591 -.6610 -.6567* 11749

Color TV -.2940 -.3043 -.2906 11569

Dish Vasher -.4690 -.4654 -.4644 11684

Microwave -.5564 -.5578 -.5504 11731

Range -.6045 -.5987 -.5984
4c

11841

Dryer -.6002 -.5996 -.5875
4c

11709

Vashing Machine -.2955
4c

-.3054 -.2929 11635

Refrigerator -.0237 -.0261' -.0239
4c

11868

Vater Heater -.3362 -.3486' -.3310 11501

Main Heating -.3925 -.3882 -.3860 11620

Air Conditioner -.2929 -.3013 -.2939 11663

Note: * Best performance, f No tree created.
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Table 6B In- Sample Averages of Log- Likelihoods: Miracle 5 Electric
Appliances.

Appliance Logit CART Network N

B/V TY -.5921 -.6004* -.5874*
ft

7710

Color TV -.3232 -.3401 -.3204 7721

Dish Vasher -.4989 -.4902 -.4868 7420

Microwave -.5756 -.5732 -.5727 7409

Range -.6227 -.6122 -.6090 7597

Dryer -.5541 -.5570 -.5397 7654

Vashing Machine -.3534 -.3498 -.3465 7645

Refrigerator -.1050 -.1132' -.1069
4c

7636

Vater Heater -.2989 -.3048" -.2923 7569

Main Heating -.3642 -.3584 -.3624 7586

Air Conditioner -.5135 -.5218' -.5114 7453

Attic Fan -.1896 -.1956* -.1911 7395

Air Cleaner -.1259 -.1312* -.1274 7397

Elec. Blanket -.6515 -.6576 -.6458*
JL

7422

Vater Bed -.4318 -.4337 -.4255 7387

Note: * Best performance, f No tree created.
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Table 6C In- Sample Averages of Log- Likelihoods: Miracle 6 Electric
Appliances.

Appliance Logit CART Network N

B/V TV -.3727
sk

-.3787*
•

-.3653* 2057

Color TV -.0545 -.0560' -.0563 6367

Dish Vasher -.4689 -.4685 -.4549* 6919

Microwave -.6008 -.6025 -.5952 6924

Range -.5999 -.5963 -.5878 6910

Dryer . -.5446 -.5409 -.5262 6814

Vashing Machine -.3177 -.3212 -.3141 6826

Refrigerator -.1030 -.1095* -.1041 6685

Vater Heater -.0567 -.0560' -.0569 6760

Main Heating -.3601 -.3572 -.3542*
4c

6789

Air Conditioner -.5092 -.5112 -.5035 6750

Attic Fan -.1814 -.1926* -.1830 6911

Air Cleaner -.1510 -.1521* -.1508* 6910

Elec. Blanket -.6359 -.6441 -.6328* 6909

Vater Bed -.3955 -.3993 -.3879* 6907

Note: * Best performance, f No tree created.
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Table 7A Vuong's Statistic for Non- nested Models: Network Model
vs. Logit and CART, Gas Appliances.
(One-sided P- values in parentheses.)

Gas
Appliance

Miracle 5 Miracle 6

vs. Logit vs. CART vs. Logit vs. CART

Range 4.497 .552 1.405 -.115

(.000) (.709) (.079) (.548)
Dryer 9.395 3.416 5.171 4.124

(.000) (.0003) (.000) (.000)
Vater Heater 8.867 2.519 8.838 4.399

(.000) (.006) (.000) (.000)
Main Heating 8.154 4.717 6.854 -.424

(.000) (.000) (.000) (.663)
Air Conditioner -1.782

(.963)
t -1.850

(.968)
t

Fireplace 3.124 4.570 4.972 5.664
(.001) (.000) (.000) (.000)

B.B.q. -.763

(.776)
t -.297

(.618)
t

f No tree created.
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Table 7B Yuong's Statistic for Non- nested Models: Network Model
vs. Logit and CART, Electri.c Appliances.
(One-sided P- values in parentheses.)

Electric
Appliance

Mirac,le 5 Miracle 6

vs. Logit vs. CART vs. Logit vs. CART

B/V TV 5.242

(.000)
t 3.188

(.0007)
t

Color TV 2.311 9.045 -2.372 t
(.010) (.000) (.991)

Dish Vasher 4.326 .888 5.319 3.207

(.000) (.187) (.000) (.0007)
Microwave 1.369 .150 3.305 2.526

(.085) (.440) (.0005) (.006)
Range 4.870 1.026 4.125 2.279

(.000) (.152) (.000) (.011)
Dryer 6.096 5.694 7.103 5.316

(.000) (.000) (.000) . (.000)
Vasher 2.708 1.093 1.420 1.982

(.003) (.138) (.078) (.024)
Refrigerator -2.682

(.996)
t -1.591

(.944)
t

Vater Heater 3.431

(.0003)
t -.430

(.666)
t

Main Heating .714 -1.280 2.416 .929

(.239) (.900) (.008) (.176)
Air Conditioner 3.599 t 4.139 4.407

(.0002) (.000) (.000)
Attic Fan -2.125

(.983)
t -2.069

(.981)
t

Air Cleaner -1.572

(.942)
t .509

(.305)
t

Blanket 5.209 5.226 1.949 4.323

(.000) (.000) (.026) (.000)
Vater Bed 4.156 4.181 5.138 5.392

(.000) (.000) (.000) (.000)

f No tree created.
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Table 8A Out- of- Sample Averages of Log- Likelihoods: Miracle 6

Gas Appliances with Miracle 5 Model.

Appliance Logit CART Network N

Range

Dryer

Vater Heater

Main Heating

Air Conditioner

Fireplace

B.B.q.

-.6157 -.6092* -.6179
(-.6062) (-.6004) (-.6010)

-.5464 -.5337 $ -.5355
(-.5363) (-.5354) (-.5266)

-.5474 -.5233 § -.5324

(-.5396) (-.5265) (-.5140)

-.5481 -.5347 -.5414

(-.5442) (-.5260) (-.5272)

-.0872 -.0947''' -.0898

(-.0852) (-.0941) (-.0861)

-.4314 -.4359 -.4406

(-.4196) (-.4261) (-.4083)

-.1687 -.1868* -.1705
(-.1650) (-.1866) (.1654)

6910

6814

6760

6789

6750

6916

6912

Note: * The best performance, f No tree created.

§ Out- of- sample likelihood better than in- sample likelihood
Numbers in parentheses are in- sample (Miracle 6) averages.



32

Table 8B Out- of- Sample Averages of Log- Likelihoods: Miracle 5

Gas Appliances with Miracle 6 Model.

Appliance Logit CART Network N

Range

Dryer

Vater Heater

Main Heating

Air Conditioner

Fireplace

b.b.q.

-.6355 -.6286* -.6524
(-.6272) (-.6172) (-.6154)

-.5580 -.5629 -.5335

(-.5387) (-.5273) (-.5218)

-.5739 -.5558 -.5813
(-.5627) (-.5438) (-.5378)

-.5712 -.5627 -.5789
(-.5671) (-.5627) (-.5520)

-.0806 -.0823* -.0789
(-.0764) (-.0820) (-.0778)

-.4258 -.4244 -.4265
(-.4050) (-.4129) (-.3977)

-.1959 -.2017* -.2078
(-.1885) (-.2014) (-.1894)

7597

7654

7569

7586

7453

7396

7394

Note: * Best performance, f No tree created.
Numbers in parentheses are in- sample (Miracle 5) averages
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Table 9A Out- of- Sample Averages of Log- Likelihoods: Miracle 6

Electric Appliances with Miracle 5 Model.

Appliance

B/V TV

Color TV

Dish Vasher

Microwave

Range

Dryer

Vashing Machine

Refrigerator

Vater Heater

Main Heating

Air Conditioner

Attic Fan

Air Cleaner

Elec. Blanket

Vater Bed

Logit CART Network

•1.1775

-.3727)

-.1238
-.0545)

-.4852
-.4689)

-.6061
-.6008)

-.6124
-.5999)

-.5646
-.5446)

-.3367
-.3177)

-.1042
-.1030)

-.1307
-.0567)

-.3641
-.3601)

-.5113
-.5092)

-.1860
-.1814)

-.1537
-.1510)

-.6513
-.6359)

-.3991
-.3955)

•1.1308'''

-.3787)

-.0583
-.0560)

-.4880
-.4685)

-.6096
-.6025)

-.6000
-.5963)

-.5586
-.5409)

-.3311
-.3212)

-.1095*

-.1095)

-.1184'

-.0560)

-.3592
-.3572)

-.5179*

-.5112)

-.1926*

-.1926)

-.1558*

-.1521)

-.6492
-.6441)

-.4008
-.3993)

•1.0597

-.3653)

-.1337
-.0563)

-.4862
-.4549)

-.6260
-.5952)

-.6109
-.5878)

-.5404
-.5262)

-.3325
-.3141)

-.1060
-.1041)

-.1319
-.0569)

-.3685
-.3542)

-.5084
-.5035)

-.1848*

-.1830)

-.1577
-.1508)

-.6418
-.6328)

-.4024
-.3879)

N

2057

6367

6919

6924

6910

6814

6826

6685

6760

6789

6750

6911

6910

6909

6907

Note: * Best performance, f No tree created.
Numbers in parentheses are in- sample (Miracle 6) averages
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Table 9B Out- of- Sample Averages of Log- Likelihoods: Miracle 5

Electric Appliances with Miracle 6 Model.

Appliance

B/V TV

Color TV

Dish Vasher

Microwave

Range

Dryer

Washing Machine

Refrigerator

Vater Heater

Main Heating

Air Conditioner

Attic Fan

Air Cleaner

Elec. Blanket

Vater Bed

Logit CART Network

1.5579
-.5921)

-.5195
-.3232)

-.5260
-.4989)

-.5787
-.5756)

-.6360
-.6227)

-.6018
-.5541)

-.3917
-.3534)

-.1060
-.1050)

-.4233
-.2989)

-.3676
-.3642)

-.5139
-.5135)

-.1972
-.1896)

-.1282
-.1259)

-.6734
-.6515)

-.4342
-.4318)

1.5137'

-.6004)

-.5431"'"

-.3401)

-.4990
-.4902)

-.5893
-.5732)

-.6281
-.6122)

-.5662
-.5570)

-.3566
-.3498)

-.1132^
-.1132)

-.4282'

-.3048)

-.3631
-.3584)

-.51843

-.5218)

-.1956'

-.1956)

-.1331*

-.1312)

-.6705
-.6576)

-.4290*
-.4337)

1.5226
-.5874)

-.5099
-.3204)

-.5371
-.4868)

-.5923
-.5727)

-.6395
-.6090)

-.5518*

-.5397)

-.3816
-.3465)

-.1065*

-.1069)

-.4180
-.2923)

-.3683
-.3624)

-.5226
-.5114)

-.1971
-.1911)

-.1298
-.1274)

-.6609*

-.6458)

-.4580
-.4255)

N

7710

7721

7420

7409

7597

7654

7645

7636

7569

7586

7453

7395

7397

7422

7387

Note: * Best performance, f No tree created.

§ Out- of- sample likelihood better than in- sample likelihood
Numbers in parentheses are in- sample (Miracle 5) averages.
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Table 10 Examples of Out- of- Sample Misclassification

Dish Vasher (Miracle 5 Data with Miracle 6 Model)

Owner Non- Owner

f .<.ooi 266 39

f
i
>.999 7 237

Gas Vater Heater (Miracle 5 Data with Miracle 6 Model)

Owner Non- Owner

f^.001 10 1

f^.999 29 83

Vasher (Miracle 6 Data with Miracle 5 Model)

Owner Non- Owner

f^.001 9 2

f
i
>.999 17 525

Gas Fireplace (Miracle 6 Data with Miracle 5 Model)

Owner Non- Owner

f
i
<.ooi 595 16

f^.999

Note : f. =f(X.,#).
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