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Abstract—Pulsed streamer discharges have been extensively
used in many applications such as control of NO and SO2
from exhaust gases, treatment of dioxins, removal of volatile
organic compounds, generation of ozone, and laser excitation.
An operation with a high energy efficiency is necessary for prac-
tical applications. It is very important to know the propagation
mechanism of streamer discharges in order to improve the energy
efficiency of pulsed discharge systems. In this paper, the emission
from pulsed streamer discharges in a coaxial electrode system in
air at 0.1 MPa was observed using a high-speed gated intensified
charge-coupled display camera. A concentric wire-cylinder elec-
trodes configuration was used. A positive pulsed voltage having a
width of about 100 ns was applied to the central electrode. The
streamer discharges were initiated at the inner electrode and
terminated at the outer electrode. The propagation velocity of the
streamer discharges was 1.8–3.3 mm/ns.

Index Terms—Atmospheric air discharge, coaxial electrode,
pulsed streamer discharges, streamer images, streamer in air,
streamer propagation.

I. INTRODUCTION

A CID RAIN arising from the combustion of fossil fuel pro-
duced by thermal power stations, certain industrial plants,

and motor vehicles poses a serious problem to the environment.
Several types of electrical discharges, such as surface, silent, and
corona have been applied in the removal of NOand SO from
exhaust emissions at various energy efficiencies. Currently, de-
velopments in the pulsed power technology have enabled the
production of efficient streamer discharges to remove NOand
SO [1]–[5].

Since the pulsewidth of the applied voltage has a strong influ-
ence on the energy efficiency of the removal of pollutants [6],
[7], a detailed understanding of the development of streamer
discharge using very short duration pulses is important for
practical applications. The most effective condition of streamer
discharges might be obtained from investigating the streamer
propagation across the electrodes gap. The streamer discharge
was originally proposed by Loeb [8], [9], Meek [10], [11],
and Raether [12]. The electric field at the head of and the
propagation velocity of the streamer were theoretically studied
using computer simulations [13]–[18]. The light emission
from streamer discharges was measured using an optical fiber

Manuscript received April 17, 2003; revised May 30, 2003.
T. Namihira, D. Wang, S. Katsuki, and H. Akiyama are with the Department

of Electrical and Computer Engineering, Kumamoto University, Kumamoto
860-8555, Japan (e-mail: namihira@eecs.kumamoto-u.ac.jp).

R. Hackam is with the Department of Electrical and Computer Engineering,
University of Windsor, Windsor, ON N9B3P4, Canada.

Digital Object Identifier 10.1109/TPS.2003.818765

Fig. 1. Schematic diagram of the apparatus.

and a photomultiplier tube in the vicinity of a central wire in
coaxial electrodes geometry [19], [20]. The images of streamer
discharges were observed using a high-speed gated camera in a
coaxial electrodes system at 74 kPa of air [21] and a point-plane
electrodes gap at 100 kPa of N[22] and air [23].

In this paper, the emission from pulsed streamer discharges
in coaxial electrodes geometry at 100 kPa of air pressure was
observed with the intensified charge-coupled display (ICCD)
camera having a high-speed gate. It was found that the streamer
discharges started from the inner electrode and gradually ex-
tended toward the outer electrode. The propagation velocity of
the streamer was found to depend on the applied voltage across
the electrodes gap and was 1.8–3.2 mm/ns.

II. A PPARATUS ANDPROCEDURE

Fig. 1 shows a schematic diagram of the experimental
arrangement. A three-staged Blumlein line generator with a
pulsewidth of 100 ns was used [2]. This generator was charged
at 20, 25, and 30 kV. A rod made of tungsten, 0.5 mm in
diameter and 10 mm in length, was placed concentrically in a
copper cylinder. The diameter of the outer electrode was either
76 or 152 mm. A short length of the electrodes was necessary
to render clear images of the streamer discharge. Dry air at
0.1 MPa was used. A positive voltage polarity was applied to
the wire and measured using a voltage divider k .
The discharge current was measured using a Rogowski coil
(Pearson current monitor, Model 2878, Pearson Electronics,
USA) on the ground wire. A high-speed gated ICCD camera
(C7972-01, Hamamatsu Photonics, Japan) with a sensitive
MCP (Micro Channel Plate, maximum gain 10 000) was
used to observe the images of streamer discharges. The expo-
sure time was fixed at 5 ns. The delay time after application of
voltage was varied in steps of 10 ns in the range of 0–130 ns.
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Fig. 2. (a) Applied voltage to and (b) discharge current in the coaxial
electrodes gap for varying dc charging voltages to the Blumlein generator.
Wire: 0.5 mm. Outer cylinder diameter: 76 mm.

III. RESULTS AND DISCUSSIONS

Fig. 2 shows typical waveforms of the applied voltage to
and the discharge current in the electrode gap for different dc
charging voltages to the generator. The output voltage from
the generator was applied at . The maximum values of
the pulsed voltage and the discharge current increased with
increasing dc charging voltage. Typically the peak current
increased from 38.0 A at 20 kV to 105.0 A at 30 kV
charging voltages.

Fig. 3 shows the images of emissions from streamer dis-
charges as a function of time after initiation of the discharge
current using 72- and 91-kV pulses. The images had good re-
producibility under the same experimental conditions because
the interactions between the electric fields near the neighboring
streamer heads are the same at somewhere in the coaxial
electrode geometry [24]. The bright areas of the images show
the position of the streamer heads during the exposure time of
5 ns. The streamer heads are associated with a higher density
of ionization due to the high electric field therein [8]–[18], [25]
and subsequently enhanced recombination, which is followed
by increased light emission. The main wavelengths of the
emissions were 337.1 and 391.4 nm from the second positive
band and the first negative band of N, respectively [26]–[28].

It is observed from Fig. 3 that the primary streamers propa-
gate from the central electrode to the outer electrode. The time
to cross the gap of the primary streamer discharges was reduced
from 55 to 40 ns with increasing peak voltages from 72 to 91 kV.
Before the arrival of the primary streamers to the outer cylinder,

Fig. 3. Images of light emissions from streamer discharges as a function of
time after initiation of the discharge current. Peak voltages: 72 or 91 kV. Outer
cylinder diameter: 76 mm.

the discharge current was small [10 A, Fig. 2(b)]. This was
because the charged species largely decayed by electron-ion re-
combination. Effectively, the capacitance between the streamer
head and the outer electrode acted as a limiting impedance [21].
After the arrival of the fully developed primary streamers, the
current was large [40–105 A, Fig. 2(b)]. This was due to large
ionization, which was sustained by a high space charge field
(Fig. 3). This effectively resulted in the disappearance of the ca-
pacitance between the streamer heads and the outer electrode.

The secondary streamers started from the central electrode at
30–35 ns (Fig. 3). The secondary streamer disappeared at the
middle of the electrodes gap because its electric field was insuf-
ficient to sustain the ionization.

After bridging the gap, the emission from the streamer dis-
charges was observed in the vicinity of the central electrode.
This is attributed to the strong electric field at the wire [29],
[30].

Fig. 4(a) and (b) shows the dependence of the peak applied
voltage and the velocity of the streamer heads on time after the
application of the voltage for the 76- and 152-mm diameters
of the outer cylinder, respectively. Previous results of streamer
propagation simulations indicated that the radius of streamer
heads was about 100m [14], [16]. The velocity
of the streamer heads is given by the following equation:

(1)
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Fig. 4. Dependences of peak voltage to the central wire and the velocity of
streamer head on time. Outer cylinder diameter: (a) 76 mm and (b) 152 mm.

where and (5 ns) are the length of the bright filament
on each images (Fig. 3) and the exposure time of gated ICCD
camera, respectively.

Fig. 5 show the dependence of the velocity of streamer heads
on the applied voltage for the reactors (calculated from Fig. 4).

It is observed from Fig. 4(a) that the velocity of the streamer
heads increases with increasing peak applied pulsed voltage
to the electrode gap. The streamer discharges with maximum
speeds of 1.8–3.3 mm/ns were greatly influenced by the elec-
tric field strength on the wire surface (Fig. 5). These results
agree with previous work [15]–[18], [23]. Fig. 4(b) shows that
for the larger outer cylinder the propagation velocity decreases
with increasing delay time, and therefore with increasing dis-
tance from the wire (Fig. 5). This is attributed to the decreasing
field with increasing distance from the central electrode in the
coaxial geometry.

IV. SUMMARY

The images of the streamer discharges in a coaxial electrode
at atmospheric pressure have been observed using a high-speed
gated ICCD camera. The following have been deduced.

1) The head of the streamer discharge propagated from the
central rod to the outer cylinder.

2) The maximum propagation speed of the streamer dis-
charges was 1.8–3.3 mm/ns in the range of 72–91 kV of

Fig. 5. Dependence of the velocity of streamer heads on the applied voltage
for the two reactors. Outer cylinder diameter, covered mark: 76 mm. Uncovered
mark: 152 mm.

peak voltage. These velocities have good agreements to
the computer simulations and the measurements in point-
plate electrode geometry.

3) The propagation speed of the streamer discharges was in-
fluenced by the electric field strength on the wire surface.
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