On the complete Kahlerity of complex spaces

journal or	九州共立大学工学部研究報告
publication title	
volume	20
page range	17-23
year	1996-03
URL	http://hdl.handle.net/2298/3283

On the complete Kählerity of complex spaces

Makoto Abe and Hidetaka Hamada.

(Received September 21, 1995)

Abstract

We prove that on every reduced Stein space there exists a complete Kähler metric with a globally defined real-analytic potential function. We also give two results which are generalizations of a theorem of Yasuoka on the complete Kähler exhaustion.

0. Introduction

Grauert [6] proved that on every Stein manifold there exists a complete Kähler metric with a globally defined real-analytic potential function. A complex manifold on which there exists a complete Kähler metric is not necessarily Stein.

In this paper we first give a definition of the completeness of the Kähler metric on a reduced complex space and prove that on every reduced Stein space there exists a complete Kähler metric with a globally defined real-analytic potential function.

Let X be a reduced complex space and $|D_i| = 1$ a sequence of complete Kähler open sets of X such that $D_i \subset \subset D_{i+1}$ for every $i \geq 1$. Yasuoka [17] proved that the union $D:=\bigcup_{i=1}^n D_i$ is locally Stein at every $p \in \partial D$ if X is a complex manifold. Therefore D is Stein if X is a Stein manifold by Docquier-Grauert [4]. The second author [9,10] generalized this result for unramified regions over a Stein manifold or over a complex projective space P^n .

We consider the normal complex space X which satisfies the condition that for every $p \in S(X)$ there exist a neighborhood U of p, a complex manifold M and an open and finite holomorphic surjection $\varphi: M \rightarrow U$. We give two results on the local Steinness of D which are generalizations of the theorem of Yasuoka [17].

The results of this paper were announced in [2,3] in somewhat restricted forms.

1. Definitions

Throughout this paper all complex spaces are supposed to be second countable. We denote by S(X) the singular locus of a complex space X.

Let X be a reduced complex space and D an open set of X. D is said to be locally Stein at $p \in \partial D$

平成7年9月21日受理

^{*}Oshima National College of Maritime Technology

^{* *} Department of General Education, Faculty of Engineering, Kyushu Kyoritsu University

if there exists a neighborhood U of p such that $U \cap D$ is Stein. Let A be a thin set in X. A point $p \in \partial D \cap A$ is said to be *removable* along A if there exists a neighborhood U of p such that $U - A \subset D$.

We denote by d_g the distance function induced by the Hermitian metric g on a (not necessarily connected) complex manifold. $d_g(x,y) = +\infty$ if there exists no path joining x and y. We denote by $l_g(\gamma)$ the length of the piecewise smooth path γ measured by g. We denote by Ω_g the Kähler form associated to g.

Let X be a reduced complex space. A Hermitian metric g on X-S(X) is called a Kähler metric on X if for every $p \in X$ there exist a neighborhood U of p and a C^* strictly plurisubharmonic function $\lambda: U \to \mathbb{R}$ such that $\sqrt{-1} \partial \bar{\partial} \lambda = \Omega_g$ on U-S(X) (Grauert [7], p.346). Such λ is called a (local) potential function. A Kähler metric g on X is said to be complete if every Cauchy sequence of points in X-S(X) with respect to the distance d_g converges in X. X is said to be complete Kähler if there exists a complete Kähler metric on X.

2. Complete Kähler metric on a Stein space

We prove the following theorem which is a generalization of Satz 7 of Grauert [6].

THEOREM 1. On every reduced Stein space X there exists a complete Kähler metric g with a globally defined real-analytic potential function.

PROOF. There exists a real-analytic strictly plurisubharmonic exhaustion function $\psi: X \rightarrow \mathbb{R}$ by Narasimhan [14]. Let $\lambda := e^{x} : X \rightarrow \mathbb{R}$. Let g be the Hermitian metric on X - S(X) defined by the equation that $\sqrt{-1} \partial \bar{\partial} \lambda = \Omega_g$ on X - S(X). Then g is a Kähler metric on X. By the similar calculation of the proof of Proposition 16.5 of [13] we have the inequality that $g_{r(t)}(\gamma(t), \gamma(t))^{1/2} \ge (e^{\gamma(\gamma(t))}/2)^{1/2}$. $d\psi(\gamma(t))/dt$ for every piecewise smooth path $\gamma:[a,b]\to X-S(X)$. From this we obtain the inequality that $d_q(p,q) \ge \sqrt{2} \left(e^{\phi(q)/2} - e^{\phi(p)/2}\right)$ for every $p,q \in X - S(X)$. Let $\{p, \}_{n=1}^{\infty}$ be an arbitrary Cauchy sequence in X - S(X) with respect to d_q . Assume that the sequence $\{ \psi(p_*) \}_{*=1}^m$ is not bounded above. Then $\sup_{\nu \geq 1} d_{\varrho}(p_1, p_{\tau}) \geq \sup_{\nu \geq 1} \sqrt{2} \left(e^{\phi(p_{\nu})/2} - e^{\phi(p_1)/2} \right) = +\infty$. It is a contradiction. Therefore there exists M > 0 such that $\psi(p_*) < M$ for every $\nu \ge 1$. Since $\psi(m) \subset X$, there exist a subsequence $|p_{i_k}| \stackrel{\sim}{\sim}_{-1}$ of $|p_{i_k}| \stackrel{\sim}{\sim}_{-1}$ and $p_0 \in X$ such that $\lim_{n \to \infty} p_{i_k} = p_0$ in X. There exist a neighborhood V of p_0 , an open set D of some C^N , a holomorphic embedding $\varphi: V \to D$ and a C^{∞} strictly plurisubharmonic function $\hat{\lambda}: D \rightarrow \mathbb{R}$ such that $\lambda = \hat{\lambda} \circ \varphi$ on V. Let \mathfrak{g} be the Kähler metric on D defined by the equation that $\sqrt{-1} \partial \partial \hat{\lambda} = \Omega_g$ on D.It holds that $g = \varphi^* g$ on V - S(X). Let $B_g(\varphi(p_0), \varepsilon) :=$ $|x \in D| d_{\theta}(\varphi(p_0), x) < \varepsilon|$ for every $\varepsilon > 0$. There exists $\varepsilon_0 > 0$ such that $B_{\theta}(\varphi(p_0), \varepsilon_0) \subset \subset D$. Take an arbitrary $\epsilon \in (0, \epsilon_0)$. There exists $N_0 \in \mathbb{N}$ such that $p_{i_*} \in \varphi^{-1}(B_{\varrho}(\varphi(p_0), \epsilon / 2))$ for every $\nu \geq N_0$ and that $d_g(p_s,p_s)<\epsilon/2$ for every μ , $\nu\geq N_0$. Take an arbitrary $\nu\geq N_0$. Since $d_g(p_{l_s},p_s)<\epsilon/2$, there exists a piecewise smooth path $\gamma: [a,b] \to X - S(X)$ such that $\gamma(a) = p_L, \gamma(b) = p$, and $l_a(\gamma) < \epsilon/2$. Assume that $c: = \sup \{s \in [a,b] \mid \gamma([a,s]) \subset \varphi^{-1}(B_0(\varphi(p_0), \epsilon))\} \} < b$. Since $\gamma(c) \in V - \varphi^{-1}(B_0(\varphi(p_0), \epsilon))\}$ $(p_0), \epsilon), d_g(\varphi(\gamma(c)), \varphi(p_0)) \geq \epsilon \cdot l_g(\gamma) \geq l_g(\gamma \mid [a_{c_1}]) = l_g(\varphi_0(\gamma \mid [a_{c_1}])) \geq d_g(\varphi(p_1), \varphi(\gamma(c))) \geq d_g(\varphi(p_0), \varphi(p_0))$ $(\gamma(c))-d_g(\varphi(p_0),\varphi(p_i))>\epsilon-\epsilon/2=\epsilon/2$. It is a contradiction. Therefore c=b. It follows that d_g $(\varphi(p_{\bullet}),\varphi(p_{\bullet})) = \lim_{\epsilon \to -0} d_{\varrho}(\varphi(\gamma(t)),\varphi(p_{\bullet})) \le \epsilon$. Therefore $\lim_{\epsilon \to 0} \varphi(p_{\bullet}) = \varphi(p_{\bullet})$ in D. Since $\varphi: V \to \varphi(V)$ is homeomorphic, it holds that $\lim_{n\to\infty} p_n = p_0$ in X. Thus we proved the completeness of g. \square

3. Lemmas

LEMMA 1. Let X be a normal complex space and A a thin set in X of order 2. Then every locally Stein open set D of X has no boundary point removable along A.

PROOF. Suppose that there exists $p \in \partial D \cap A$ removable along A. Then there exists a neighborhood U of p such that $U - A \subset D$ and that $U \cap D$ is Stein. There exists a sequence |p| | f(p)| = 1 such that $\lim_{n \to \infty} |f(p)| = 1$. Since U is normal, there exists $f \in \mathcal{O}(U)$ such that f = 0 or $f \in D$. It is a contradiction. \square

The following lemma is an improvement of Lemma 3 of the first author's [1].

LEMMA 2. Let X be a normal complex space such that for every $p \in S(X)$ there exist a neighborhood U of p, a complex manifold M and an open and finite holomorphic surjection $\varphi : M \rightarrow U$. Let D be an open set of X. Assume that D is locally Stein at every $p \in \partial D - S(X)$ and that D has no boundary point removable along S(X). Then D is locally Stein at every $p \in \partial D$.

PROOF. Let $p \in \partial D \cap S(X)$. There exist a neighborhood U of p, a complex manifold M and an open and finite holomorphic surjection $\varphi: M \rightarrow U$. We may assume that U is connected and Stein. Then M is Stein by 73.1 of [11], p.313. $\tilde{S}:=\varphi^{-1}(S(U))$ is a positive codimensional analytic set of M. Let V be a Stein neighborhood of p such that $V \subset U$. V has no boundary point removable along S(X) by Lemma 1. We can verify that $W:=V \cap D$ is locally Stein at every $q \in \partial W - S(U)$ and has no boundary point removable along S(U). Let $\tilde{W}:=\varphi^{-1}(W)$. Take an arbitrary $r \in \partial \tilde{W} - \tilde{S}$. Since $\varphi(r) \in \partial W - S(U)$, there exists a neighborhood E of $\varphi(r)$ in U such that $E \cap W$ is Stein. $\varphi^{-1}(E) \cap \tilde{W} = \varphi^{-1}(E \cap W)$ is Stein by 73.1 of [11]. Hence \tilde{W} is locally Stein at every $r \in \partial \tilde{W} - \tilde{S}$. We can also verify that \tilde{W} has no boundary point removable along \tilde{S} . \tilde{W} is locally Stein at every $r \in \partial \tilde{W}$ by Lemma of Ueda [16], p.564, which is originally due to Grauert-Remmert [8]. \tilde{W} is Stein by Docquier-Grauert [4]. Therefore W is Stein by 73.1 of [11]. Thus we proved that D is locally Stein at every $p \in \partial D \cap S(X)$. \square

LEMMA 3. Let X be a reduced complex space. Let D_1 and D_2 be the open sets of X. Assume that for each i=1,2 there exists a Kähler metric g_i on $D_i-S(D_1)$ such that every Cauchy sequence of points in $D_i-S(D_1)$ with respect to the distance d_{g_1} converges in D_1 . Then there exists a Kähler metric g on $D_1 \cap D_2$ such that every Cauchy sequence of points in $D_1 \cap D_2 - S(D_1 \cap D_2)$ with respect to the distance d_g converges in $D_1 \cap D_2$.

PROOF. $g:=g_1+g_2$ is a Kähler metric on $D_1\cap D_1-S(D_1\cap D_1)$. Since it holds that $d_{g_i}\leq d_g$ on $D_1\cap D_1-S(D_1\cap D_1)$ for every i=1,2, every Cauchy sequence in $D_1\cap D_1-S(D_1\cap D_1)$ with respect to the distance d_g converges in $D_1\cap D_1$. \square

LEMMA 4. Let X be a reduced complex space. Let $|D_i| \stackrel{\leftarrow}{\models}_1$ be a sequence of open sets of X such that $D_i \subset \subset D_{i+1}$ for every $i \geq 1$. Assume that for every $i \geq 1$ there exists a Kähler metric g_i on $D_i = S(D_i)$ such that every Cauchy sequence of points in $D_i = S(D_i)$ with respect to the distance d_{g_i} converges in D_i . Then

 $D:=\bigcup_{i=1}^{m}D_{i}$ is locally Stein at every $p\in\partial D-S(X)$.

PROOF. Let $p \in \partial D - S(X)$. Let U be a Stein neighborhood of p such that $U \cap S(X) = \emptyset$. There exists a sequence $\{U_i\}_{i=1}^m$ of Stein open sets such that $U_i \subset \subset U_{i+1}$ for every $i \geq 1$ and that $U = \bigcup_{i=1}^m U_i$. By Theorem 1 or by Satz 7 of Grauert [6] there exists a complete Kähler metric on U_i for every $i \geq 1$. By Lemma 3 there exists a complete Kähler metric on $D_i \cap U_i$ for every $i \geq 1$. Since it holds that $D_i \cap U_i \subset \subset D_{i+1} \cap U_{i+1}$ for every $i \geq 1$, $D \cap U = \bigcup_{i=1}^m (D_i \cap U_i)$ is Stein by Yasuoka [17] or by the second author's [9]. \Box

LEMMA 5. Let X be a normal complex space. Assume that for every $p \in S(X)$ there exist a neighborhood U of p, a complex manifold M and an open and finite holomorphic surjection $\varphi : M \to U$. Let $\{D_i \mid \mathbb{Z}_i \text{ be a sequence of complete Kähler open sets of X such that } D_i \subset \subset D_{i+1} \text{ for every } i \geq 1$. Then $D := \bigcup_{i=1}^n D_i \text{ has no boundary point removable along } S(X)$.

PROOF. Suppose that there exists $p \in \partial D \cap S(X)$ removable along S(X). There exist a neighborhood U of p, a complex manifold M and an open and finite holomorphic surjection $\varphi: M \rightarrow U$. We may assume that U is Stein and that $U-S(X) \subset D$. T:=U-D. The set $\varphi^{-1}(T)(\neq \emptyset)$ is thin in M of order 2. M is Stein by 73.1 of [11], p.313. There exists a sequence $\{U_i\}_{i=1}^m$ of Stein open sets such that $U_i \subset$ $\subset U_{i+1}$ for every $i \ge 1$ and that $U = \bigcup_{i=1}^{\infty} U_i$. Take an arbitrary $i \ge 1$. There exists a complete Kähler metric g on D_i . There exist an open covering V_i of $D_i \cap U_i$ and C^* strictly plurisubharmonic functions $\lambda_i: V_i \to \mathbb{R}$ such that $\sqrt{-1} \partial \bar{\partial} \lambda_\alpha = \Omega_a$ on $V_i - S(D_i \cap U_i)$ for every α_i . We can define the real (1,1)-form ω on $\varphi^{-1}(D_i \cap U_i)$ by the equations that $\omega = \sqrt{-1} \partial \hat{\partial}(\lambda_a \circ \varphi)$ on $\varphi^{-1}(V_a)$. Let g be the positive semi-definite Hermitian form on $\varphi^{-1}(D_i \cap U_i)$ corresponding to ω . It holds that $g = \varphi^* g$ on $\varphi^{-1}(D_i \cap U_i)$ A, where $A := \varphi^{-1}(S(D_i \cap U_i))$. Since $\varphi^{-1}(U_i)$ is Stein by 73.1 of [11], p.313, there exists a complete Kähler metric h on $\varphi^{-1}(U_i)$ by Theorem 1 or by Satz 7 of Grauert [6]. f:=g+h is a Kähler metric on $\varphi^{-1}(D_i \cap U_i)$. Take any $x,y \in \varphi^{-1}(D_i \cap U_i) - A$ such that $d_i(x,y) < +\infty$. Let $\epsilon > 0$. We can prove the existence of such a piecewise smooth path $\gamma: [a,b] \rightarrow \varphi^{-1}(D_i \cap U_i) - A$ that $\gamma(a) = x, \gamma(b) = y$ and $l_{\ell}(\gamma) < d_{\ell}(x,y) + \epsilon$. Since $g_{\tau(\ell)}(\gamma'(t),\gamma'(t))^{1/2} + h_{\tau(\ell)}(\gamma'(t),\gamma'(t))^{1/2} \le \sqrt{2} f_{\tau(\ell)}(\gamma'(t),\gamma'(t))^{1/2}$, we have that $d_{\mathfrak{g}}(t) = \frac{1}{2} \int_{\mathbb{R}^{n}} |f(t)|^{2} dt$ $\varphi(x), \varphi(y)) + d_h(x,y) \le l_{\varrho}(\varphi_0 \gamma) + l_h(\gamma) \le \sqrt{2} l_{\varrho}(\gamma) \le \sqrt{2} d_{\varrho}(x,y) + \sqrt{2} \varepsilon$. By letting $\varepsilon \to +0$ we obtain that $d_{\theta}(\varphi(x), \varphi(y)) + d_{x}(x,y) \le \sqrt{2} d_{f}(x,y)$. Using this inequality we can prove the completeness of the distance d_i. Thus we proved that $\varphi^{-1}(D_i \cap U_i)$ is complete Kähler for every $i \ge 1$. Since it holds that $\varphi^{-1}(D_i \cap U_i) \subset \subset \varphi^{-1}(D_{i+1} \cap U_{i+1})$ for every $i \geq 1$, the union $\bigcup_{i=1}^m \varphi^{-1}(D_i \cap U_i) = \varphi^{-1}(D \cap U) = M - \varphi^{-1}(T)$ is Stein by Yasuoka [17] or by the second author's [9]. It contradicts Lemma 1.

LEMMA 6. Let X be a normal complex space. Assume that S(X) is discrete and that for every $p \in S(X)$ there exist a neighborhood U of p_i a complex manifold M and an open and finite holomorphic surjection $\varphi: M \rightarrow U$. Let $\{D_i \mid \mathbb{Z}_i \text{ be a sequence of open sets of } X \text{ such that } D_i \subset C_{i+1} \text{ for every } i \geq 1$. Assume that for every $i \geq 1$ there exists a Kähler metric g_i on $D_i - S(D_i)$ such that every Cauchy sequence of points in $D_i - S(D_i)$ with respect to the distance d_{g_i} converges in D_i . Then $D: = \bigcup_{i=1}^n D_i$ has no boundary point removable along S(X).

PROOF. Suppose that there exists $p \in \partial D \cap S(X)$ removable along S(X). There exist a neighborhood U of p, a complex manifold M and an open and finite holomorphic surjection $\varphi: M \to U$. We may

assume that U is Stein, that $U \cap S(X) = \{p\}$ and that $U - S(X) \subset D$. Then M is Stein by 73.1 of [11]. There exists a sequence $\{U_i\}_{i=1}^m$ of Stein open sets such that $U_i \subset \subset U_{i-1}$ for every $i \geq 1$ and that $U = \bigcup_{i=1}^m U_i$. Take an arbitrary $i \geq 1$. There exists a Kähler metric g_i on $D_i - S(X)$ such that every Cauchy sequence in $D_i - S(X)$ with respect to the distance d_{g_i} converges in D_i . Since $\varphi^{-1}(U_i)$ is Stein by 73.1 of [11], there exists a complete Kähler metric h_i on $\varphi^{-1}(U_i)$ by Theorem 1 or by Satz 7 of Grauert [6]. $g_i := \varphi^* g_i + h_i$ is a Kähler metric on $\varphi^{-1}(D_i \cap U_i)$. Since it holds that $d_{g_i}(\varphi(x), \varphi(y)) + d_{h_i}(x, y) \leq \sqrt{2} d_{g_i}(x, y)$ for any $x, y \in \varphi^{-1}(D_i \cap U_i)$, every Cauchy sequence in $\varphi^{-1}(D_i \cap U_i)$ with respect to the distance d_{g_i} converges in $\varphi^{-1}(D_i \cap U_i)$. Therefore g_i is a complete Kähler metric on $\varphi^{-1}(D_i \cap U_i)$. Since it holds that $\varphi^{-1}(D_i \cap U_i) \subset \subset \varphi^{-1}(D_{i+1} \cap U_{i+1})$ for every $i \geq 1$, the union $\bigcup_{i=1}^m \varphi^{-1}(D_i \cap U_i) = \varphi^{-1}(D \cap U) = M - \varphi^{-1}(p)$ is Stein by Yasuoka [17] or by the second author's [9]. Since dim $M = \dim U \geq 2$ and $\varphi^{-1}(p)$ is finite, it contradicts Lemma 1. \square

LEMMA 7. Let M and X be reduced complex spaces and $\varphi: M \rightarrow X$ a finite holomorphic surjection. Let D be an open set of X. If D is locally Stein at every $p \in \partial D$, then $\varphi^{-1}(D)$ is locally Stein at every $q \in \partial \varphi^{-1}(D)$.

PROOF. Take an arbitrary $q \in \partial \varphi^{-1}(D)$. Since $\varphi(q) \in \partial D$, there exist a neighborhood U of $\varphi(q)$ such that $U \cap D$ is Stein. $\varphi^{-1}(U)$ is a neighborhood of $q.\varphi^{-1}(U) \cap \varphi^{-1}(D) = \varphi^{-1}(U \cap D)$ is Stein by 73.1 of [11], p.313.

4. Complete Kähler exhaustion

We give two theorems which are generalizations of Theorem 3 of Yasuoka [17].

THEOREM 2. Let X be a normal complex space such that for every $p \in S(X)$ there exist a neighborhood U of p, a complex manifold M and an open and finite holomorphic surjection $\varphi : M \rightarrow U$. Let $\{D_i \mid \mathbb{Z}_1\}$ be a sequence of complete Kähler open sets of X such that $D_i \subseteq D_{i+1}$ for every $i \ge 1$. Then the union $D_i := \bigcup_{i=1}^n D_i$ is locally Stein at every $p \in \partial D$.

PROOF. By Lemmas 2,4 and 5.

COROLLARY. Let X be a weighted projective space. Let $|D_i|$ $\stackrel{\text{\tiny in-1}}{=}$ be a sequence of complete Kähler open sets of X such that $D_i \subseteq CD_{i+1}$ for every $i \ge 1$. Let $D_i = \bigcup_{i=1}^n D_i$. Then D is a Stein open set of X or D = X.

PROOF. There exist an integer n and a finite subgroup G of Aut (P^n) such that X is biholomorphic to the quotient complex space P^n/G by [11], p.208. X is normal by 72.5 of [11], p.312. The natural projection $\varphi: P^n \to X$ is finite, open and surjective. D is locally Stein at every $p \in \partial D$ by Theorem 2. $\tilde{D}: = \varphi^{-1}(D)$ is locally Stein by Lemma 7. Therefore \tilde{D} is Stein or $\tilde{D} = P^n$ by the theorem of Fujita-Takeuchi-Kieselman on Levi's problem [5,15,12]. In case that \tilde{D} is Stein, D is Stein by 73.1 of [11], p.313. \square

THEOREM 3. Let X be a normal complex space such that S(X) is discrete and that for every $p \in S(X)$ there exist a neighborhood U of p, a complex manifold M and an open and finite holomorphic surjection $\varphi: M \rightarrow U$. Let $\{D_i\}_{i=1}^m$ be a sequence of open sets of X such that $D_i \subset D_{i+1}$ for every $i \geq 1$. Assume that for every $i \geq 1$ there exists a Kähler metric g_i on $D_i - S(D_i)$ such that every Cauchy sequence of points in $D_i - S(D_i)$ with respect to the distance d_{g_i} converges in D_i . Then the union $D:=\bigcup_{i=1}^m D_i$ is locally Stein at every $p \in \partial D$.

PROOF. By Lemmas 2,4 and 6.

References

- [1] M.Abe, Domains in a two dimensional Stein space with quotient singularities, The Bulletin of Oshima National College of Maritime Technology 21(1988),103-110.
- [2] M.Abe, A generalization of Yasuoka's theorem on the complete Kähler exhaustion, Proceedings of the Second Korean-Japanese Colloquium on Finite of Infinite Dimensional Complex Analysis, Fukuoka, Japan, 27-29 July 1994(eds. Kajiwara, J., Kazama, H. and Shon, K. H.), Kyushu University Co-operation, Fukuoka, 1994, pp.1-5.
- [3] M. Abe and H. Hamada, On the open set exhausted by complete Kähler open sets in a Stein space with isolated singularities, Proceedings of the Second Korean -Japanese Colloquium on Finite or Infinite Dimensional Complex Analysis, Fukuoka, Japan, 27-29 July 1994 (eds. Kajiwara, J., Kazama, H. and Shon, K. H.), Kyushu University Co-operation, Fukuoka, 1994, pp. 7-13.
- [4] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123.
- [5] R.Fujita, Domaines sans point critique intérieur sur l'espace projectif complexe, J. Math. Soc. Japan 15(1963), 443-473.
- [6] H.Grauert, Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann. 131(1956), 38-75.
- [7] H. Grauert, Uber Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368.
- [8] H. Grauert and R. Remmert, Konvexität in der komplexen Analysis. Nicht-holomorphkonvexe Holomorphiegebiete und Anwendungen auf die Abbildungstheorie, Comm. Math. Helv. 31 (1956), 152-183.
- [9] H. Hamada, A domain exhausted by complete Kähler domains over a Stein manifold, Mem. Fac. Sci. Kyushu Univ. 39 (1985),105-111.
- [10] H. Hamada, A domain exhausted by complete Kähler domains over P*, Math. Rep. College Gen. Educ. Kyushu Univ. 19(1993), 26-30.
- [11] L. Kaup and B. Kaup, Holomorphic functions of several variables, Walter de Gruyter, Berlin-New York, 1983.
- [12] C. O. Kieselman, On entire functions of exponential type and indicators of analytic functionals, Acta Math. 117 (1967), 1-35.
- [13] S. Nakano, Theory of functions of several variables (in Japanese), Asakura Shoten, Tokyo, 1981.
- [14] R. Narasimhan, The Levi problem for complex spaces, Math. Ann. 142 (1961), 355-365.

- [15] A. Takeuchi, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan 16 (1964), 159-181.
- [16] T. Ueda, Domains of holomorphy in Segre cones, Publ. Res. Inst. Math. Sci. 22 (1986), 561-569.
- [17] T. Yasuoka, A domain exhausted by complete Kähler domains, Kobe J. Math. 2 (1985), 57-64.