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A STUDY OF A CLASS OF SIMPLE SALESFORCE COMPENSATION PLANS

Abstract

This paper addresses the problem of finding the optimal salesforce compensation plan in

an uncertain selling environment. A procedure is developed to determine the optimal com-

pensation plan of the form (A + Bx) a where x is the sales level. This class includes the

commonly used linear compensation plan which consists of a salary and a straight com-

mission, and also the optimal agency theoretic compensation plan in the cases studied. A

comparative statics analysis is performed using numerical techniques to study how the linear

and the agency theoretic compensation plans would be affected by changes in the selling

environment, and the results are compared with earlier findings from the theoretical sales-

force compensation literature. Also, the relative performance of the linear and the agency

theoretic compensation plans is investigated. The simpler, linear plan is found to perform

almost as well as the more complex agency theoretic plan in a wide range of situations.





1. INTRODUCTION &: OBJECTIVES

Selling activities constitute a major expense of running a business. In 1981, U.S. companies

spent about $150 billion on personal selling, far exceeding the $61 billinon spent on advertis-

ing that year (Kotler, 1986, p.499). Not surprisingly, salesforce management and salesforce

compensation have received considerable attention from researchers. The existing research

literature on salesforce compensation can be broadly classified as follows : (1) description

of industry practice (e.g. Stanton & Buskirk, 1974; Steinbrink, 1978), (2) normative re-

search using quantitative models (discussed next), and (3) assessing the external validity of

normative models (e.g. John & Weitz, 1988 & 1989; Coughlan & Sen, 1988; Coughlan &
Narasimhan, 1989). The present research belongs to the second category identified above.

Normative research on the determination of an optimal salesforce compensation plan started

with the seminal work of Farley (1964) which addressed the problem of finding optimal com-

mission rates for a salesperson selling multiple products. Tapiero & Farley (1975), Weinberg

(1975, 1978), Albers (1980) and Srinivasan (1981) relaxed the assumptions originally made

by Farley and extended the scope of the research. The salient features of this stream of

research are the following : (l) the selling environment is deterministic, i.e. a given amount

of sales effort always generates the same sales volume, 1
(2) the salesperson is responsible for

a portfolio of products, and (3) the employing firm compensates the salesperson on a pure

commission basis. The focus of the research was on finding the optimal commission rates

and identifying when the rates should vary from product to product.

In a major departure from previous research, Basu, Lai, Srinivasan and Staelin (1985),

henceforth called BLSS, applied the paradigm of agency theory, first developed in mathe-

matical economics, to the problem of finding optimal salesforce compensation plans. The

model used by BLSS deviated from the research stream outlined in the previous paragraph

in the following ways : (l) the selling environment is uncertain, the sales generated being a

random variable whose distribution depends on the salesperson's effort, (2) the salesperson

is risk averse, and (3) the function relating the salesperson's earnings to sales generated is

not restricted a priori, in contrast to previous research which used pure commission plans ex-

clusively. The BLSS model considered the case where one salesperson sells a single product

in a single time period, and the focus was on finding the shape of the optimal compensation

plan, and analysing how it depends on parameters of the selling environment. For example,

BLSS demonstrated that as the environment becomes more uncertain, the optimal compen-

sation plan should have a larger ratio of salary to total compensation. Also, BLSS showed

that the optimal compensation plan obtained from agency theory could be described as

1 Weinberg (1975) discussed an uncertain selling environment. However, since the salesper-

son was considered to be risk neutral, uncertainty did not materially affect the solutions.



one consisting of a fixed salary and a sliding commission rate, and it could approximate

several compensation plans commonly used in practice. This added strength to the claim

that model assumptions were realistic.

The work by BLSS was the first of several applications of agency theory to the problem of

finding optimal salesforce compensation plans. Lai (1986) studied the impact of delegating

pricing responsibilities to the salesforce. Lai & Staelin (1986) and Rao (1988) analyzed

the problem of designing compensation plans for a heterogeneous salesforce. These works

are structurally similar to BLSS in that the firm and the salesperson(s) play a leader-

follower game in one period: the firm offers the salesperson a compensation plan, and the

salesperson responds by selecting a level of effort for the period under consideration.

The BLSS model of salesforce compensation, in spite of the elegance of the approach, yields

compensation plans which are considerably more complex than plans used in practice. For

example, in 1984, 29.8% of U.S. firms used salary and commission while 33.6% used salary

plus bonuses to compensate their salesforces (Wilson & Bennet, 1986). While these plans

can be approximated by those derived from agency theory, the departure can be significant

over the range of possible sales volume. This difference can be attributed to the possibility

that the agency theoretic plans are too complex for a firm to implement. Lai & Srinivasan

(1988), henceforth called LS, provided a different explanation for this phenomenon. LS

applied results derived by Holmstrom & Milgrom (1987) to finding optimal salesforce com-

pensation plans in a dynamic environment where the time period for which the firm declares

a compensation plan corresponds to a large number of periods for the salesperson for which

he/she chooses level of effort and gets paid. The salesperson's choice of effort in response to

the compensation plan declared by the firm evolves over these smaller periods, and he/she

can engage in 'creative accounting', claiming compensation for sales in a period at a later

time. This allows the salesperson to exploit nonlinearities in the compensation plan to the

detriment of the profitability of the firm. In this situation, LS obtained the significant result

that the optimal salesforce compensation plan here would be linear, i.e. consist of a salary

plus a straight commission on sales.

In addition to incorporating a dynamic perspective, the LS model differed from the BLSS

approach in the following significant details :

(1) The LS model used a constant absolute risk aversion utility function for the salesperson

rather than the square-root utility function used by BLSS.

(2) The salesperson's utility function is multiplicatively separable in earnings and effort. In

contrast, the BLSS model assumed additive separability.

(3) The sales generated follows a Weiner process in the LS model,leading to normally dis-

tributed sales. This is a realistic model of a selling environment where the salesperson calls

on a large number of small accounts. In contrast, the BLSS model used the gamma and the



binomial distributions to model sales, and is better suited to describe the case with fewer,

larger accounts.

In spite of the differences in model development, the LS and the BLSS model obtained

very similar implications for how the compensation plan would be affected by changes in

parameters of the selling environment.

The present research adopts the BLSS framework and assumes (unlike the LS model) that

the time period is identical for the firm and the salesperson. The compensation plan is

restricted to be of the form (A + Bx) a where x is the sales level. This class of compensation

plans includes, in addition to the linear plan, the agency theoretic compensation plan in a

wide range of situations.

Like BLSS, the present research considers the case of one salesperson selling a single product

in one time period. The objectives of the research are as follows :

(1) Develop a procedure for determining the optimal compensation plan of the form (A +
Bx) a

. This is done here for the case where the salesperson has a power utility function for

earnings, using a combination of analytical and numerical techniques.

(2) Compare the firm's expected profits under the agency theoretic compensation plan with

profits from a linear compensation plan. If the linear plan is found to perform almost as

well as the agency theoretic plan, that will demonstrate that even under the assumptions

of the BLSS model the managerial practice of using linear compensation plans is close to

optimal, and will complement the findings of Lai & Srinivasan (1988).

(3) The final objective of the study is to determine the robustness of the findings of the

BLSS study. For example, this study aims to investigate whether the result derived by

BLSS that with an increase in uncertainty, the compensation plan should have a higher

ratio of salary to total income, would hold for a linear compensation plan, or even for the

agency theoretic plan if the salesperson's utility function for income is not restricted to be

a square-root function (as assumed by BLSS). A numerical 'experiment' is conducted to

perform comparative statics analysis for the linear and the agency theoretic compensation

plans in order to address these questions.

The paper is organized as follows. Section 2 presents the notations used throughout the

paper and lists the basic assumptions of the model development (additional, more specific

assumptions are made in later sections). The BLSS model and its relation to the present

work are discussed briefly. Section 3 formulates the problem of finding an optimal compen-

sation plan of the form (A + Bx) a , and discusses how this problem can be solved using a

combination of analytical and numerical techniques. Section 4 presents numerical evidence

comparing performances of the linear and agency theoretic compensation plans, and inves-



tigates how these plans are affected by changes in parameters of the selling environment

such as uncertainty. Section 5 summarizes the findings of the paper.

For clarity of exposition, the proofs and much of the mathematical development used in

the paper have been placed in the appendices. Appendix A contains the proofs to the

propositions developed in the paper while Appendices B & C derive mathetical results used

in Appendix A.

2. ASSUMPTIONS, NOTATIONS AND MODEL DEVELOPMENT

In this section we develop the notations used in the rest of the paper, and present the major

assumptions of the model development. The assumptions made and their presentation

closely follow the BLSS paper and details are omitted here unless there is a difference

between the approaches.

Notations :

x = level of sales.

t = time (effort) spent by the salesperson in the period. The firm cannot observe t directly.

f{x\t) = probability density function of x given t.

F(x\t) = cumulative probability distribution of x given t.

ft{x\i) and Ft(x\t) represent ^/(x|t) and •^F[x\t), respectively. To simplify notations,

we will sometimes used /, ft, F and Ft to represent f{x\t), ft (x\t), F(x\t) and Ft(x\t),

respectively.

g(t) = E(x\t), and we will usually denote this by g.

Assumptions :

(a) The salesperson's utility function for earnings s and effort t is the additively separable

function, U(s) -V(t).

(b) U(s) > 0, U'(s) > 0, U"(s) < 0.

(c) V{t) >0, V'(t) >0, V"(t) >0.

We will sometimes denote V(t) by V, etc.

(d) The firm's objective is to maximize expected profit in the single time period under

consideration.

(e) c, the marginal cost of production and distribution expressed as a fraction of price, is

constant.

(f) The sales-effort response function is equally well known to the salesperson and the sales

manager (acting on behalf of the firm).

(g) The sales manager acting on behalf of the firm knows the salesperson's utility function.



(h) x depends on the effort devoted by the salesperson, the marketing mix of the firm, and

the uncertain marketing environment.

(i) f{x\i) satisfies the condition, = Ko(x — g(t)), where Ko is a positive constant.

Assumption (i) is more restrictive than its counterpart in the BLSS approach regarding

Ft(x\t) (assumption (i), BLSS). However, it is satisfied by the gamma and the binomial

density functions used by BLSS. (An important consequence of assumption (i) is, h is

strictly increasing in x. This property has been extensively used to derive the proofs in this

paper. Appendix C lists the specific results used in this study.)

As in the BLSS model, the firm and the salesperson here are assumed to participate in a

leader-follower game where the firm declares a compensation plan s(x) relating the sales-

person's earnings to the sales level. The salesperson responds by choosing the level of effort

t which maximizes his/her expected utility, i.e. the salesperson selects

t = argmax j U(s{x))f{x\t)dx - V(t). (l)

The salesperson will agree to be employed by the firm if and only if he/she can derive an

expected utility of at least m. As BLSS (and Holmstrom, 1979), we make the assumption

that salesperson's choice of t is uniquely determined by the first order condition for (1), i.e.

(j) given s(x), the salesperson's choice of t can be uniquley determined by solving

ju(s(x))ft (x\t)dx = V'(t). (2)

Model Development. Using the approach developed by Grossman and Hart (1983), the

firm's problem addressed by BLSS can be expressed in two stages as follows :

2

Problem Pi.

Stage 1. For each level of effort t, find the compensation plan s(x) which will induce the

salesperson to devote t at the least expected cost to the firm, i.e.

min / s{x)f{x\t)dx, (3)
»{x) J

such that

and

/ U{s{x))f{x\t)dx > m, (4)

j U(s(x))ft (x\t)dx = V'(t). (5)

'This approach is presented in more detail in Mathematical Appendices B & C to BLSS.

6



Let st(x) denote the compensation plan obtained here.

Compute the expected profit of the firm, n{t), corresponding to 5t(x), i.e.

*(*) = /[(I - c)x - s t (x)\f(x\t)dx = (1 - e)g{t) - f s t (x)f(x\t)dx. (6)

Stage 2. Choose t to maximize 7r(f). The corresponding compensation plan, denoted by

5*(x), will be optimal for the firm.

Assuming that a Lagrangean solution exists to the problem defined by (3) - (5) and that

it is globally optimal, BLSS demonstrated that st(x),the optimal compensation plan corre-

sponding to t, is given by

_L_ - x + uiMl m
where A > and /x are Lagrangean multipliers for constraints (4) and (5) respectively. A

and /z depend on t. As a consequence of assumption (i), equation(7) can be restated as

= a + 6x, (8)
U'(s)

where a and 6 do not depend on x. Equation (8) defines the shape of the optimal compen-

sation plan for a given t, which is the same for all values of t including the optimal t (a and

6 depend on t.).

As shown by BLSS, the nature of the optimal compensation plan for three commonly used

utility functions for income can now be expressed as follows:

(1) If the salesperson's utility for earnings is the power function

U(s) = 7 s
5

, 0<6<1, (9)

then

•*(*) = [A + Bx] 1^ 1-*).
(10)

(2) If the utility function is logarithmic, i.e.

U(s) = In(«), (11)

then

8*(x) = A + Bx. (12)

(3) If the salesperson has constant absolute risk aversion for income, i.e. the utility function

can be expressed as

U(s) = -e~\ (13)



then

a*[x) = \n[A + Bx\. (14)

It is interseting to note that these three utility functions are all concave and difficult to

distinguish empirically. However, they give rise to compensation plans ranging from strictly

concave to strictly convex. The wide acceptance of the linear compensation plan in industry

practice may conceivably be due to the firm's inability to identify the salesperson's true

utility function and the consequent decision to use the intermediate, linear compensation

plan.

Another possible explanation for the use of the linear compensation plan is the bounded

rationality of the salesperson. For example, let us consider the power utility function with

6 = 2/3. s*(x) will have the form (A + Bx) 3
, i.e. large, positive values of x will have

a large impact on the salesperson's computation of expected utility. If the salesperson

with bounded rationality truncates the probability distribution of x while assessing the

employment contract, he/she will underestimate expected utility for the employment. The

firm would have to counter this by offering greater compensation for sales achieved in order

to make the compensation plan acceptable to the salesperson. The linear compensation plan

relies less on extreme values of x and is likely to be more robust.

In the present research, we ignore the possible explanations for adopting the linear compen-

sation plan outlined above, and use the BLSS framework which favors the agency theoretic

compensation plan. The objective here is to establish that even in this situation, the linear

compensation plan would perform reasonably well.

3. MODEL DEVELOPMENT WITH THE COMPENSATION PLAN {A + Bx) a

3.1 Problem Formulation. In the rest of the paper, the following assumption is made

about the salesperson's utility function :

(k) The salesperson's utility function for income, U{s) is the power utility function given by

equation(9). If s < 0, then U(s) = -oo.

As a consequence of assumption (k), any compensation plan which involves a possibility of

monetary loss for the salesperson is infeasible.

We will now develop a procedure for finding the best compensation plan from the class of

plans of the form

5(1) = (A + Bx) a
, where l<a< -. (15)

1 — 6



We will use {A,B) to represent the compensation plan given by (15). Following BLSS,

we will call A the salary parameter of the compensation plan, and B the commission rate

parameter.

If a = 1, s(x) is the linear compensation plan. As shown in the previous section, the La-

grangean solution to the agency theoretic problem, if it exists, corresponds to a = -. As
1 — 6

6 — 0, the power utility function given by equation(9) converges to the logarithmic function

given by equation(ll), and s*(x) becomes linear. The study of the class of compensation

plans given by equation(15) allows us to examine the relative performances of the linear and

the agency theoretic compensation plans as 8 deviates from 0.

Let

Z = / s{x)f dx = (A + Bx) a
fdx, the salesperson's expected earnings, (16)

E x = E[U(s{x))\t\ = i f{A + Bx) aS
f dx, (17)

E2 = j
t

E[U(s(x))\t] = ±J(A + Bx) a5
ftdx. (18)

Then, restricting our attention to s(x) of the form given by equation(l5), the firm's problem

can be expressed in two stages as follows :

Problem P2.

Stage 1. For each f, choose (A,B) which will induce effort t from the salesperson at the

least expected cost to the firm, i.e.

(19)

subject to

(20)

(21)

It can be easily shown that an optimal solution (A, B) exists to the problem defined by (19)

- (21). Let Z{i) denote the minimum Z obtained here.

Compute the firm's expected profit ir{i) corresponding to this compensation plan :

x(t) = (l-c)g(t) - Z(t). (22)

Stage 2. Select t to maximize 7r(t).

Stage 1 and stage 2 of P2 are discussed in sections 3.2 and 3.3, respectively.

9

min
A,B

Z

E x
> m + V,

E2 ^z V.



3.2 Finding Optimal (A,B) For A Given t. The firm can induce the salesperson to

devote zero effort at the least cost if the compensation plan pays U~ 1 (m) for all values of

x. In what follows, we will implicitly assume that inducing t = is not optimal for the firm

and will only consider t > 0.

We now make the following additional assumptions regarding the probability density func-

tion f{x\t) :

(1) f(x\t) is defined on < x < oo, and it is a strictly positive continuous function of x for

< x < oo.

(m) If A > 0, B > 0, and at least one of A and B is strictly positive, then E{xa(A+Bx) b
\t} <

oo for any a > 0, and b > —1.

For example, the gamma function used by BLSS has property (m) for q > 1.

We now state two propositions about properties of the optimal solution to the stage 1

problem defined by (19) - (21).

Proposition 1. A feasible compensation plan must have A > and B > 0.

Assumptions (k) & (1) jointly dictate the nonnegativity of A and B while B > is necessary

to induce the salesperson to provide a positive effort.

Proposition 2. A locally optimal solution to the problem defined by (19) - (21) must

satisfy at least one of the following two conditions : (i)A = 0. (ii) E\ = m + V

.

This result follows from the fact that it is possible to reduce A and change B simultaneously

such that equation(21) is satisfied, thereby inducing the salesperson to provide effort t. This

process reduces both Z and JEi, and can be carried on indefinitely unless one of the two

conditions of proposition 2 is satisfied.

To summarize, a locally optimal solution (A, B) to the firm's problem defined by equations

(19)-(2l) will satisfy the following conditions :

A > 0, B > 0, (23)

and if A > 0,

= ^ J(A + Bx) a6
ftdx = V\ (24)

= - f{A + Bx) aS
fdx >m + V, (25)

= i f(A + Bx) aS
fdx = m + V. (26)

Proposition 3. If (A, B) satisfies (23)-(26) then (A, B) is unique, and is the globally

optimal solution to the firm's problem defined by (19) - (21).

10
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As shown in Appendix A, it is always possible to construct {A,B) which satisfies (23)-(26).

A brief outline of the procedure to accomplish that is now presented. Consider the set

of compensation plans (A, B) which satisfies E\ = K > 0. This is a nonempty set and

any member of this set satisfies the conditions, < A < AM and < B < BM, where

Ei(AM,0) = K, E\{0,BM) = K. For this set, as A increases, B and E*i decrease until

they both become for the plan (AM, 0). Ei is largest for the compensation plan (0,BM).

Let E2m{K) denote this largest value of E^. i?2m is a strictly increasing function of K.

Let us consider K = m + V . The following three cases are possible :

(1) £'2m (m + V) > V'. Here, the optimal compensation plan will have A > 0, and will

strictly satisfy the minimum expected utility requirement (20).

(2) £,

2m("^ + V) = V'. Here, the optimal compensation plan will have -4 = and will

strictly satisfy (20).

(3) £,

2m(m + V) < V'. Here, the optimal compensation plan will have A = 0, and we will

have Ei > m + V.

Note that in case (1), the optimal compensation plan has a fixed and a variable part.

However, in cases (2) & (3), the compensation plan is completely variable. For example, if

a = 1, the compensation plan in cases (2) & (3) will be a staright commissions plan.

Case (3) is significant because if it holds for a = -, then constraint (20) will not
l — o

be strictly satisfied by the optimal compensation plan. Following BLSS, it can be shown

that if the Lagrangean solution to the problem defined by (3)- (5) is the gloabally optimal

compensation plan, then we must have A > and hence constraint (4) (equivalent to

constarint (20)) must be strictly satisfied. Clearly, that is not happening here, implying

that the Lagrangean procedure cannot be used to give us the optimal solution in this case.

We will discuss this further in a more specific context.

If A > for the optimal solution, we call the solution 'interior'. Otherwise we call it a

'boundary' solution. We conclude section 3.2 by presenting the following proposition about

an interior optimal solution {A,B) to (19)-(21).

Proposition 4. If the optimal (A,B) is an interior solution, then A, B and Z(t) are

. ., , • , , dA dB dZ
dinerentiable functions of t and —— < 0, —— > 0, and -— > 0.

dt dt dt

Proposition 4 implies that the firm should reduce guaranteed compensation and increase

rewards for achieving higher sales in order to induce the salesperson to work harder. Also,

if for any t the optimal compensation plan is interior, continuity implies that it must be

an interior solution for any level of effort lower than t. Conversely, if we have a boundary

solution at t, we will have a boundary solution for any level of effort higher than t as well.

11



3.3 Determination of the optimal sales effort, t* . In section 3.2 we have discussed

how we can construct [A, B) which satisfies conditions (23)- (26) and hence gives us the

globally optimal solution to the stage 1 of P2 which considers a specific sales effort t. To

solve P2 completely, we need to find the optimal i, i.e. determine

t* = argmax {(l - c)g{t) - Z(t)} . (27)

Since we could not determine (A, B) in a closed form for an interior optimum, we have

to determine the optimal t numerically. We now present a procedure to accomplish that

under the following additional assumptions which hold for the numerical study presented in

section 4 :

(n) f(x\t) is the gamma function used by BLSS, and given by

«#> = rfe (^ ) (S)
," I^ (,)

- (28)

For this function, E{x\i) — g{t), and a2
{x\i) = g

2
(t)/q. A larger q represents a more certain

selling environment. To be consistent with assumption (m), we will only consider the case

where q > 1.

(o) g(t) = h + kf11
, V(t) = df1*, where d > 0, h > 0, k > 0, < ~n < 1, and 72 > 1.

Assumption (o) is equivalent to assumptions (o) & (p) of BLSS, and implies that g(t) is a

strictly increasing, strictly concave and differentiable function of t. Since V'(0) = here,

we will only consider t > to be consistent with assumption (c).

(p) & < ;

,
and 72 - 7i > 1-

71+72
This is a technical assumption needed to develop the model.

(q) m > 0, i.e. the salesperson will not be satisfied with zero pay for zero effort.

Under these conditions, the following two propositions hold:

Proposition 5. There exists < £m < 00 such that the optimal solution to (19)-(21) is

interior if t < tm , and boundary if t > tm . tm is strictly increasing in m or a.

Proposition 6. If t > tm , Z(t) is a strictly convex function of t.

Proposition 6 implies that ir(t) = (l — c)g(t) — Z(t) is strictly concave in t for t > tm . Also,

combining assumption (o) with the result that Z(t) is a strictly increasing differentiable

function of t for an interior optimum (from Proposition 4), we find that n(t) is a differentiable

function of t for t < tm . The optimal sales effort t* can now be determined as follows :

Stage 1. Compute tm .

12



Stage 2. Use grid search to compute the t which maximizes ir(t) for < t < tm . Denote

this by t\ and the corresponding expected profit by ix\.

[ Since 7r(t) is a differentiable function of t, the use of grid search is justified.]

Stage 3. Since 7r(t) is strictly concave in t for t > tm , the optimal sales effort, t%, from

the set tm < t < oo can be obtained with any desired degree of accuracy using numerical

techniques. (Figure 1 presents the flow chart of a simple algorithm which can accomplish

that.) Let -n\ denote the corresponding expected profit of the firm.

Figure 1 about here

Stage 4. Compare n\ and ir^ to determine the globally optimal sales effort t*

.

This concludes our discussion of how to solve problem P2. It should be noted that for

t > tm , the Lagrangean procedure cannot be used to solve stage 1 of Pi. Thus, in those

cases, stage 1 of Pi and stage 1 of P2 using a = may not be exactly comparable.
1 — 6

However, if we solve P2 using a = and obtain t* < tm i.e. the optimal solution to
1 — 6

P2 is interior, it can be easily shown that this solution constitutes a Lagrangean solution to

the agency theoretic problem PI. In that case, we will assume that the solution to P2 gives

us the optimal solution to Pi.

4. NUMERICAL RESULTS.

4.1 Study Design. In this section we study (i) how the nature of the optimal linear

compensation plan and the agency theoretic compensation plan depend on parameters of

the selling environment, and (ii) the relative profitablity of the linear and agency theoretic

compensation plans.

Due to limited computational resources, a numerical 'experiment' was conducted using the

following five values of 6 : 1/3 , .4, .5, .6, 2/3, i.e. we used a range of ±| around 6 = .5

used by BLSS.

For each value of 6, a full factorial design (2
8 = 256 units) was used with two levels of each

of the following 8 parameters of the selling environment, m, q, 71, 72, h, k, d and c. The

levels of parameter values used are presented in Table 1. For numerical convenience, levels

of m and k chosen were not the same across 6s. The parameter values were so chosen tha*.

in each of the 1280 cases studied, the optimal solution to P2 using a = was interior.
1 — 6

(We found that we could always get an interior solution to P2 by using an adequately large

m. This procedure is partially justified by the fact that tm increases with m [Proposition

5].)
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Table 1 about here

1
We would like to stress that apart from making sure that the solution to P2 with a =

was interior, i.e. it was also the optimal solution to PI, we did not choose parameter values

to favor either the linear or the agency theoretic compensation plan. This, combined with

the fact that we analysed a wide spectrum of possibilities, should establish that the results

obtained would hold over a large range of cases if not everywhere.

For each of the 1280 cases, P2 was solved using a = 1 (linear plan) and a = (agency
l — o

theoretic plan). Section 4.2 presents comparative statics results for the linear and the agency

theoretic plans, and section 4.3 discusses how the two plans performed relative to each other.

4.2 Comparative Statics. Proceeding as BLSS, we studied how the optimal compensa-

tions plans were affected by changes in m, q, /i, k, and c for each value of 6. For example,

to investigate the effect of changes in m, we organized the 256 cases in 128 pairs such that

in each pair, the two cases were identical except for the fact that the 'low' level of m was

used in one case and the 'high' level of m in the other. The solutions for each pair were

compared to determine how they differed on expected profit, n, optimal sales effort, £*, the

salary parameter A, the commission parameter B, the expected income of the salesperson,

Z, and salary as a frcation of total expected compensation, Aa jZ. Table 2 presents results

of comparative statics for the agency theoretic compensation plan, and Table 3 the results

for the linear compensation plan.

Table 2 about here

Table 3 about here

Following BLSS, f indicates that the quantity in consideration always increased from the

low to the high level of the parameter considered, \ indicates a decrease in all cases, and

I that both increases and decreases were observed. Also, since we used numerical analysis,

the change in the quantity considered was sometimes small enough to be due to rounding

errors (e.g. a change of 10
-6

in £*). We used '0' to represent such cases and also cases where

there was no change. Thus, ] means that in the cases studied, the changes in the quantity

in consideration were either positive or too small to be measured by the techniques used.

Results for the agency theoretic plan. A comparison of Table 2 with the results

obtained by BLSS (Table 3, page 287) shows that the numerical analysis here support the

findings of BLSS except for the follwing :

(1) For 6 = 1/3, an increase in minimum utility required, m, increases B.

(2) For 6 = 2/3, an increase in m increases optimal sales effort t*.

14



These two results are similar to the findings of Lai & Srinivasan (1988) (Table 1, page 31)

that B and t* do not depend on m.

Results for the linear plan. The results for the linear compensation plan differed in

many ways from BLSS and LS. To be specific, we observed the following:

1. Effect of m. The effects of changes in m on 7r, A, Z, and Aa/Z generally supported

the results of BLSS with the difference that in some cases, the changes in A and Aa/Z were

too small to measure with confidence.

Unlike BLSS, an increase in to sometimes increased t* and always increased the commission

rate B.

2. Effect of q. The impact of an incraese in q i.e. greater certainty in the selling environmet

is generally similar to BLSS except for the following:

(i) Commission rate B and salesperson's expected income Z may sometimes decrease when

the environment becomes more certain.

(ii) The effect of changes in q on A, t* or Aa jZ was sometimes too small to measure.

3. Effect of base sales level h. The effects of changes in h on 7r, £*, S, and Z were

consistent with the findings of BLSS. In the cases studied, A and Aa/Z either decreased or

changed imperceptibly (BLSS is inconclusive in these cases.).

4. Effect of k. Results are generally consistent with BLSS (the effect on t* here is

sometimes too small to measure).

5. Effect of c. Results are generally consistent with BLSS. The changes in quantities other

than k are sometimes too small to measure.

Summarizing, we find that for the agency theoretic compensation plan, the findings support

BLSS results in most cases. The results for the linear compensation plan differ more from

BLSS, but still the similarity in findings is remarkable. In particular, the BLSS results

about the effects of the parameters of the selling environment on the firm's expected profit

7r held in all the cases studied. The BLSS results about the ratio of salary to total income

also were found to hold weakly, i.e. the change was sometimes too small to detect.

4.3 Relative Performances of Linear and Agency Theoretic Plans. For each case

studied, we define :

1. flvt = expected profit of the firm from the agency theoretic plan.

2. tj\ = optimal selling effort for the agency theoretic plan.

3. 7T/ = expected profit of the firm from the linear plan.

4. ti = optimal selling effort for the linear plan.
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5. 7T = -{6m) 1 ' 6
.

This is the firm's expected profit in the worst case where it pays the salesperson a fixed

amount (equal to itq) to satisfy the minimum expected utility requirement, and receives no

selling effort in return.

6. R\ =
j

1-. This expresses the optimal selling effort under the linear plan as a fraction of

the optimal selling effort for the agency theoretic plan.

7. i?2 = {*"/ — 7ro}/{7TA — tto}. i?2 expresses the fraction of the agency theoretic plan's profit

achieved by the linear plan, where both profits are measured from the base tto-

Ri and i22 were computed in each case and used to measure how the linear plan performed

compared to the agency theoretic compensation plan. We wanted to determine, for each

value of 6 selected, how R\ and R2 varied from case to case and depended on the model

parameters.

For each value of <5, the following regression models were estimated:

8 8

Model 1. #1 = a + ^ «tA + ^^atJA^ + Ci- (29)

i=l t'=2 j<i

8 8

Model 2. R2 = 0o + J^/ftA:
+ YlYl^JDiD3 + €2 '

(
30

)

t'=l t'=2 ;'<»'

The a's and /?'s are regression parameters. D\, . . . ,Ds are dummy variables corresponding

to m, <?, k, 71, 72» d, ^> and c> respectively (The dummy variable is -1 if the parameter is

at the low level, and 1 if the parameter is at the high level.).

Results about R\ . Table 4 presents the regression results relating R\ to the independent

variables for each of the five values of 6 selected (after eliminating insignificant predictors).

In every case, the estimated intercept term oto is the average of R\ for the sample of size

256. The following patterns emerge from Table 4 :

1. As 6 increases, R\ tends to go down, the decline being very slow for 6 < .5. Thus, as

the salesperson becomes less risk averse, the agency theoretic compensation plan is more

effective in inducing higher effort from the salesperson compared to the linear plan.

2. As the environment becomes more certain such that risk aversion of the salesperson plays

less of a role in selection of effort level, the agency theoretic plan is once again more effective

in inducing higher effort than the linear plan.

3. As m increases, i.e. the cost of inducing any level of effort goes up, R\ increases.

The above discussions are of course limited by the fact that the analysis has been based on

arbitrarily chosen parameter values.
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Table 4 about here

Results about R2. The regression results relating R2 to the predictors are presented in

Table 5 (after eliminating insignificant predictors). For each 6, the estimated intercept term

0o is the average value of R2 for the sample of size 256.

Table 5 about here

From an inspection of Table 5, it is clear that the linear plan performs almost as well as

the agency theoretic plan when 6 < .5 with the average R2 exceeding 99% in each case. If

6 exceeds .5, the relative performance of the linear plan declines significantly.

Even though the regression results are limited by our arbitrary choice of parameter values,

it is interesting to note the high explanatory power of the regression model for the higher

values of 6 (For the lower values of 6, the variation of R2 is small.), and the fact that

certain results tend to hold over the range of 6's considered. Table 5 shows that the relative

profitability of the linear plan declines significantly when 6 increases beyond .5, or when

the certainty parameter q is high. Noting that 6 = 1 signifies risk neutrality, it is clear

that when the salesperson is not greatly affected by uncertainty, the agency theoretic plan

performs much better than the linear plan.

An inspection of Tables 4 & 5 reveals that when either k or 71 is high, the relative perfor-

mance of the linear plan is adversely affected. Intutitively, in these situations, the output

x depends strongly on the selling effort t. The agency theoretic plan, being more flexible

than the linear plan, can motivate the salesperson more effectively in these situations. Con-

versely, when it is costly to induce additional effort (m is high, d is high, 72 is high, or q is

low), or the revenue is not significantly affected by salesperson's effort (h is relatively high),

the relative performance of the linear plan improves.

Comparison with the First Best Solution. In order to explore the effect of uncertainty

on performance further, we compared the results from the linear and the agency theoretic

compensation plans with the 'first best' solution to the firm's problem of designing an

optimal compensation plan.

Here, the first best solution corresponds to the case where the firm can measure selling effort t

perfectly and without cost, and thus can 'force' the salesperson to devote any specific amount

of effort,
3

i.e. the constraint given by equation(5) signifying the salesperson's freedom to

choose effort level can be removed. The first best solution is thus equivalent to solving

problem Pi with only constraint 4, and the 'first best' expected profit provides an upper

For example, the firm can obtain effort t from the salesperson using the compensation plan

which pays U~ 1 {m + V(t)} if effort is t or more, and if effort is lower than t.

17



bound for the expected profit achievable from the agency theoretic compensation plan (also

known as the 'second best solution') which includes the constraint given by equation(5) as

well. It is a well known result in agency theory that even when the firm cannot observe t

directly, it can achieve the expected profit of the first best solution using a compensation

plan based on x if either of the following two conditions is satisfied : (i) the salesperson is

risk neutral, or, (ii) the selling environment is deterministic (see Holmstrom 1979, or Shavell

1979 for discussions of the first best solution). The first best solution therefore corresponds

to the hypthetical case where uncertainty has no effect on profitability.

Let t\ and 7Ti represent the optimal selling effort and expected profit, respectively, for the

first best solution. It can be easily shown that

t, = *Tgmax{{l-c)g(t)-U- l {m + V{t))}, m = {l-c)g{ti) -U~ l (m+V(*i)) (31)

In each of the 1280 cases studied, the following additional quantities were computed:

1. t x .

2. jrx .

3. R3 = (*A-t/)/(*i-*A).

4. R4 = (7TA - 7Tf)/(7ri - 7TA ).

Thus, i?3 and R4 measure the loss in performance resulting from using the linear plan instead

of the agency theoretic plan in terms of the loss in performance resulting from uncertainty

in the selling environment.

The following two additional regression models were estimated for each of the five values of

6 considered :

8 8

Model 3. R3 = rjo +^ »fcA + £ ^Z^'^; + **'
(
32

)

t=l i=2 ]<i

8 8

Model 4. R4 = v + ]£ v%Di + J^^ VijViDj + e4 . (33)

»=1 t=2 j<i

The results from the estimation of model 3 and model 4 are presented in Tables 6a and 6b,

respectively. (For clarity of exposition, only the estimated coefficeients of Di t ...,D% are

presented in the tables.)

Table 6a about here

Table 6b about here
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The findings are consistent with the results presented in Tables 4 & 5 earlier: when the sales-

person is more risk averse or the selling environment less certain, the linear plan performs

almost as well as the agency theoretic plan. With a reduction in the effect of uncertainty

(more certain environment or less risk averse salesperson), the more flexible agency theoretic

plan can exploit the opportunities presented by a kinder environment more effectively than

the linear compensation plan.

5. CONCLUSION

This paper develops a procedure for finding optimal compensation plans of the form (A +
Bx) a , and uses it to (a) investigate how the linear compensation plan performs compared

to the agency theoretic plan, and (b) determine if the comparative statics results for the

optimal agency theoretic compensation plan derived by BLSS in the context of the square-

root utility function can be extended to (i) the power utility function in general, and (ii)

the linear compensation plan.

It was found that for 6 < .5, the linear compensation plan was almost as profitable as

the agency theoretic plan. This is consistent with the industry practice of using simpler

compensation plans. When 6 exceeds .5, the relative performance of the linear plan declines

significantly. However, in these situations, the salesperson would be less risk averse and

hence less affected by variations in income. Thus it is likely that a simple compensation

plan consisting of a salary and a bonus if a quota is achieved would perform very well. It

appears therefore that there is a simple alternative to the agency theoretic compensation

plan in a wide range of cases.

The study also shows that under the linear compensation plan, the salesperson devotes sig-

nificantly less effort compared to the agency theoretic plan. Thus, if we relax the assumption

that the marginal cost of production does not depend on sales level, it is possible that the

relative profitability of the linear compensation would go down even more. We leave that

study to future research.

The comparative statics results of BLSS were found to be remarkably stable with respect

to changes in 6 for the agency theoretic plan and most of them were at least approximately

true for the linear compensation plan.

In contrast to Lai & Srinivasan (1988), the present study adhered to the more traditional

BLSS farmework. Still, it is interesting to note the convergence in results from both ap-

proaches, leading to the conclusion that the simple linear plan is often a very efficient way

to motivate a salesforce.
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APPENDIX A

A.l Proof of Propositions 1, 2 & 3. These propositions relate to finding an optimal

solution to the firm's problem of inducing the salesperson to devote a given selling effort t

at the least expected cost, i.e.

min Z (A-l)
A,B

such that

Ei{A,B) > m + V(*), (A-2)

E2{A,B) = V'(t). (A-3)

Proposition 1. A feasible compensation plan to the frim's problem defined by (A-l) -

(A-3) must have A > and B > 0.

Proof. Nonnegativity of A & B follows from assumptions (k) & (1). To show that we

need B > 0, consider any compensation plan (A, B) such that B < 0. Since (A + Bx) >

Vx 6 (0,oo), it can be easily shown that (A + Bx) a
is a decreasing function of x for

< x < oo.

Since y is a strictly increasing function of x (assumption (i)), we have, using Theorem

MLR2, Appendix C,

{A + Bx) a ft dx < 0. (A-4)/

Since V > 0, equation(A-3) cannot be satisfied.

QED

Proposition 2. A locally optimal solution {A,B) to the problem defined by (A-l) - (A-3)

must satisfy at least one of the following two conditions :

(i) A = 0. (ii) E x = m + V.

Proof. Let us consider the set of compensation plans {A, B} for which Ei is constant at

V'(t). For this set,

dE26E*=TX XA
dE*6A+
as A

dB
6B = °=*Ta

dEi I

dA \B
dEi I

dB \A

(A-5)

Using property 1 h property 2 from Appendix B, —- is always finite, i.e. B can be expressed
dA

as a differentiate function of A.
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Now,
dEi

dA

dEy

dA
+

dB
<LB_

dA

dEi dEi
_ dEi dB dA

dA
Ei

dE2

dB
>o, (A-6)

substituting from (A-5) ajid using property 3, Appendix B.

Similarly,

dZ_

dA Ei dA
+

dZ
dB

dB_

~dA Ei dA

dZ dEi
dB dA
dEi
dB

> o, (A-7)

using property 4, Appendix B.

Therefore, if we keep Ei constant at V and reduce A, Z and E\ are decreased simultane-

ously. This can be done and Z reduced while satisfying constraints (A-2) & (A-3) unless at

least one of the following two conditions hold :

(i) A = 0, or (ii) £1=771 + ^.

QED

Combining propositions 1 & 2 with conditions (A-2) & (A-3), a locally optimal solution

{A,B) to the firm's problem defined by (A-l)-(A-3) will satisfy the following conditions:

(A-8)

(A-9)

A > 0, B > 0,

jt E\U{s(x))\t\ = -
6 J(A

+ Bxrs
ftdx = V\

E[U(s(x))\t] = i f{A + Bx) a6 fdx > m + Vy

and, if A > 0,

i f{A + Bx) a6 fdx = m + V.

(A-10)

(A-ll)

Proposition 3. If (A,B) satisfies (A-8) - (A-ll), then (A, B) is unique, and is the globally

optimal solution to the firm's problem defined by (A-l)-(A-3).

To prove proposition 3, we first prove two lemmas.

Lemma 1. Suppose the compensation plan (0,B) satisfies (A-8)-(A-ll). Then, B is

uniquely determined.

Proof. For this plan, equation (A-9) becomes

ifw ftdx = Ba6 [i

J
x*s ft (x\t)dx = V

B =

Equation (A-12) uniquely determines B.

6 V
J xa6 ft (x\t)dx

(A-12)
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Lemma 2. It is not possible to have compensation plans (A\,B\) and (A 2 ,B2 ) such that

they both satisfy (A-8)-(A-ll) and A\ = 0, A 2 > 0.

Proof. Suppose (Au Bi) and A 2 ,B2 ) both satisfy (A-8)-(A-ll), and Ai = 0, A 2 > 0.

Using conditions (A-9)-(A-ll), we have,

i / {Ai + B x x)
a6

f dx > i /'{A 2 + B2x)
a6

f dx = m + V, (A-13)

and

i ({A^+Bix)* 6
ft dx = i f{A 2 +B2 x)

aS
ft dx = V. (A-14)

From (A-13)-(A-14),

${A X +B x x)
a6

ft dx f(A 2 +B2 x)
a6

ft dx

f{Ai+Bix)aS fdx ~ f{A 2 + B2 x)
aS fdx

<=>
J M*) (4) dx < f h2 {x) (£) dx, (A-15)

where

Hi{x) =
f(A1+ B lX)°'fdx'

Ml) =
!(At + Btx)"fdx-

(A_16)

/•OO /"OO

Note that for < x < oo, /ii(x) > , fc2 (x) > 0, and / /ii(x) dx = h 2 {x) dx = 1.

Jo Jo

Therefore, /ii(x) and h 2 (x) can be used as probability density functions defined on x 6

(0,oo).

Also, we can express
/t

1

r( as

/M(x) _ (At+^x)^
M*) " ' (A2 + B2x)-

(A" 17)

where Ci > does not depend on x.

It can be easily shown that here, — -—— has the same sign as {B\A 2 — A\B2 ) for all

dxh 2 [x)

x€ (0,oo).

Since B\ > (from proposition l), A\ = 0, and A 2 > 0, B\A 2 — A\B2 > 0, i.e. -—

—

- is a
fc2 (x)

strictly increasing function of x.

Since y is strictly increasing in x, we have, using Theorem MLR2 (Appendix C),

JhiW^dx > Jh 2 (x)^dx, (A-18)

which contradicts inequality (A-15), i.e. it is not possible to have solutions (A\,Bi),

(A 2 ,B2 ) to the firm's problem given by (A-l)-(A-3) such that A\ = 0, A 2 > 0.

QED
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Proof of Proposition 3. Suppose compensation plans (Ai,Bi) and (A 2 ,B2 ) both satisfy

(A-8)-(A-ll). Without loss of generality, let us assume that A\ < A 2 .

Since A\ > 0, A 2 > 0, the following three mutually exclusive cases collectively exhaust all

the possibilities :

Case 1. A\ = A 2 = 0,

Case 2. Ai = 0, A 2 > 0.

Case 3. A\ > 0, A 2 > 0.

Let us consider these three cases individually.

Case 1. Here, A\ = A 2 . Also, using lemma 1, B\ = B2 , i.e. the two compensation plans

are identical.

Case 2. From lemma 2, case 2 cannot happen.

Case 3. Suppose {A\,B\) and (A 2 ,B2 ), both represent solutions to the problem denned

by (16)-(18), and Ai > 0, and A 2 > 0.

From equations (A-8)-(A-ll), we have,

Bi > 0, B2 > 0, (A-19)

±f{Ai+Bix)aSfdx = i / [A 2 + B2 x)
aS

f dx = m + V, (A-20)

IjiAi+BixF'ftdx = ^ f {A 2 + B2 x)
a6

ftdx = V. (A-21)

Proceeding as in the proof of proposition 4, (A-20) & (A-21) can be combined to give

jh x {x)jdx = fh 2 {x)jdx, (A-22)

where hi(x) = -jrr— —77— and ^2(2:) = ttz ^

—

. . r ,
can be used asu J

f(Ai + Bix)«sfdx 2K i

f{A 2 + B2 x)
a6fdx

probability density functions denned on x € (0,oo).

Once again, — has the same sign as (BiA 2 — ^1^2) for all x € (0,oo).
dx h 2 [x)

Therefore, ^r is strictly increasing, strictly decreasing, or constant for < x < 00.

Since 4 is a strictly increasing function of 1, Theorem MLR2 (Appendix C) implies that

equation(A-22) will hold in the present case if and only if h ,*l is constant for < x < 00,

which can be true if and only if

B XA 2 - A X B2 =0 *=> —- = —- <J=>Ai + BiX = C2 {A 2 + B2 x), (A-23)
A 2 B2

where C2 is a constant.

Since V > 0, equation (A-21) will be satisfied only if C2 = 1, i.e. Ai = A 2 , i?i = £2 .
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Summarizing, we find that if (A,B) satisfies conditions (A-8)-(A-ll), it will be unique, and

hence it will represent the global optimum for the firm's problem defined by (A-l)-(A-3).

QED

A. 2. Constructing the optimal soultion for a given t.

We will now demonstrate that it is always possible to construct a compensation plan that

satisfies conditions (A-8)-(A-ll) and thereby represents the gloabally optimal solution to

the firm's problem defined by (A-l)-(A-3).

Let us consider the set of compensation plans (A, B) which satisfy

A > 0, B > 0, and E l = f U{s(x))fdx = i f {A + Bx) aS
fdx = K > (A-24)

where K is a given constant.

This set is nonempty since it can be verified by direct substitution that the condition E\ = K
is satisfied by the following two compensation plans :

Plan 1. A = {6K)^ = AM > 0(say), B = 0.

6K
Plan 2. A = 0, B =

.1 xa6 fdx

a6

= BM > 0(say). (A-25)

Combining property 1 & property 2, Appendix B, we have <
4j^J-

< oo, < 4^- < oo.

This implies that for the set defined above, we must have < A < AM and < B < BM.
Also, for any A £ (0, AM), Ei(A,0) < K, and E X {A,BM) > K, since^ > 0. Therefore,

3B G (0, 5M) such that Ei(A,B) = K. Finally, for this set of compensation plans,

BEy \

o,
dB
dA

_ dA \B

Ei=K dB \a

< (A-26)

oE\ dE\
since > 0, > 0, i.e. for this set, B decreases as A increases.

Now, for this set,

dE2

dA
dEi

E X =K dA
+

dE2

dB
dB
dA E X =K

dE2

dA

dEi dEi
dB 3A
dE x

dB
< 0, (A-27)

using Property 3, Appendix B.

Using Theorem MLR2 (Appendix C), ^2(^^,0) =0. As A is reduced and B increased to

keep E\ unchanged at K, E2 increases and attains the largest value at (0,BM), given by

E2 (0,BM) = -
6
j{BM-x) a6

ft dx =
KJ

f̂

f

£
X
= E2m (K) (say), (A-28)

substituting BM from (A-25). Note that E2m (K) is a strictly increasing function of K.
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Let us now consider K = m + V, i.e.

BM =
f

x

a6fdx

*
(
m + y) I x<x6

ft dxE^m+y
) -

f ,.(/ <fe -

(a-29)

The following three cases are possible :

Case 1. E2m > V'.

In this case, E2 {AM,0) = 0, and E2 {0,BM) = E2m > V.

From the continuity of E2 it follows that we can have < A < AM, < B < BM such

that E2 {A,B) = V. (A, B) satisfies conditions (A-8)-(A-ll) and represents the gloabally

optimal solution to (A-l)-(A-3).

Figure 2 presents the flow chart for an algorithm which can determine the optimal {A, B)

iteratively with any degree of accuracy desired.

Case 2. E2m = V.

It can be shown by direct substitution that the compensation plan (0, BM) satisfies (A-8)-

(A-ll). The minimum expected utility constraint of the salesperson is binding here.

Case 3. E2m < V.

Let

B = 6V 1^*
(A-30)

/ xaS ft dx

It can be shown by direct substitution that (0,B) satisfies (A-8) - (A-ll).

V'fxaSfdx
In this case, E\ = K = —~ 7-—— > m + V, i.e. the salesperson derives a higher

J xa0 ftdx
expected utility than m from the optimal compensation plan.

Summarizing, we have shown by construction that we can always have a compensation plan

(A,B) which satisfies (A-8)-(A-ll) and hence gives us the unique globally optimal solution

to the problem defined by (A-l)-(A-3). In cases 2 & 3 we have a boundary solution, i.e.

the compensation has no guaranteed component (salary). The compensation plan here can

be obtained in a closed form. In case 1, the optimal solution is interior, i.e. it consists of a

guaranteed income plus a variable component, and it can be estimated iteratively.

A.3 Proof of Proposition 4.

Proposition 4. If the optimal (A, B) is an interior solution, then A, B and Z(t) are

j-rr • 1-1 c . r ,
dA dB n dZ n

differentiate functions of t and — < 0, —— > 0, and -— > 0.
dt dt dt
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Proof. Rewriting (A-8)-(A-ll), (A, B) is the unique solution to the system of equations

<f>i(A,B,t) = Ei(A,B) - m - V(t) = 0, (A-31)

4>7(A,B,t) = E2 (A,B) - V'(t) = 0. (A-32)

Using the implicit function theorem,

/ dA\ / d£± d<t>i \ -i / d<t>\ \
I dt \ _ I dA dB \ ( dt \

\ 4B )
-

\ a±i a±2. ) I _a^ I

V dt / \ dA dB ' \ dt /

dB dB \ t dt (A-33)~~ dE^dE^ 8Ei dE, \ _Mi §_E_L } \ _d£i J
>

dA dB dA dB ^ dA dA / \ dt /

d<t>\ dE\ d<j>\ dE\ d<f>2 dE2 d<j>2 dE2
since here, =

, = , =
, and = .

' dA dA' dB dB ' dA dA' dB dB

dE\ dEi dE2 dE\
The matrix inversion performed above is always valid since

'

-—— ^~r~^7T >
dA dB dA dB

(Using Property 3, Appendix B).

It can be easily shown that

,
(A-34)*M = t = h«A>B^ a<h a2^ a2

,=,' ~aT
=
~aW

= w u{A
'
B

>
T)

r=t

where u(A,B,t) is the salesperson's expected utility for devoting r under compensation

plan [A,B).

Since u(A,B,t) attains a strict maximum at t = r, we must have

** and ^<0. (A-35)
dt dt

v ;

Combining (A-33) & (A-35) and simplifying,

"a|f • (A-36)

dA /

Using (A-35) & (A-36) together with Properties 2 & 3, Appendix B, we have —— < 0,

dB dA dB—— > 0. Property 2 & Property 3, Appendix B, also ensure that —- and —— are finite i.e.

dt dt dt
A and B are differentiate functions of t.
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J

dt J
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dA dB
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Finally, expressing Z as Z(A,B,t), we have,

dZ_ dZ_ dZ_dA dZ dB

~dt ~ ~dt
+

dA~dt
+

~dB~dt' ^
A"37

^

Since A > and B > 0, (A + Bx) a
is strictly increasing in x. Using Theorem MLR2

(Appendix C), we have

~p = f{A + Bx) a
ftdx > 0. (A-38)

Using (A-36) and simplifying,

dZ_dA dZ_dB_ _ ,3^, f ^a~ jf ~ Wtf 1 ^ n / A oQ x

using (A-35) together with Properties 3 & 5, Appendix B.

From (A-38) &: (A-39), —- > 0. Also, Properties 2, 3 and 5 of Appendix B and assumption
at

(m) jointly imply that —— is finite i.e. Z is differentiable in t.

at

QED

A.4 Proofs of Propositions 5 & 6. We will first establish some results which will be

used to prove the propositions.

Restating assumptions (n) & (o), we have,

™ = it)^©'~V,lM '' (A-40)

g(t) =h + kf11 and V(i) = dP2
. (A-41)

Result 1. From (A-40), it can be easily shown that if > 0,

Result 2. Differentiating both sides of (A-42) and simplifying, it can be easily shown that
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Result 3. Combining (A-42) and (A-43),

jxPfdx g

Result 4. From (A-41), it can be easily shown that

Y!i m (**)r»-n + 3»v. (A-45)

Result 5. Since V is strictly convex in t (assumption c), it follows from (A-45) that if

72 > 7i + 1, then —£• is a strictly convex function of t.

Result 6. ¥-? is a strictly increasing function of t. This result follows directly from

assumption (o).

We will now use the results obtained above to prove propositions 5 &: 6.

Proposition 5. There exists < tm < oo such that the optimal solution to (A-l) - (A-3)

is an interior solution if t < £m , and a boundary solution if t > tm . tm is strictly increasing

in m or a.

Proof. The optimal solution to the firm's problem defined by (A-l)-(A-3) is interior if and

only if

~ m
> &'-" + ^'^ (A"46)

using (A-44) & (A-45) and simplifying.

Since 72 > 7i (from assumption (p)), t'l7
~'

11 is a strictly increasing function of t.

Also, since ^ is strictly decreasing in a and a < y^j, -^ 1 > for any a G [l, jzi\

if

—Pi- 1 > <=> 6 < l2
. (A-47)

Therefore, from assumption (p), the RHS of (A-46) is a strictly increasing function of t.

Also, the RHS of (A-46) is if t = 0, and it goes to 00 as t —* 00. Since it is also a

continuous function of t, there is a unique solution < tm < 00 to the equation

m =
V CtOKS)^ + (A- 1

)
K (A-48)

28



We have an interior optimum if t < tm and a boundary optimum if t > tm .

If m increases, (A-48) will be satisfied for a larger t. If a increases, the RHS of (A-46) is

reduced for any given f, implying that (A-48) will be satisfied for a larger t.

QED

tm for the linear compensation plan is always lower than tm for the agency theoretic com-

pensation plan. It is interesting to note that tm does not depend on q.

Proposition 6. If t > tm , Z(t) is a strictly convex function of t.

Proof. From equation (A-30), the optimal compensation plan for t > tm is (0, B), where

B
6V

f xa6 ft dx

^7 T(q) V'g

T(q + ad) ag'

Tf

<;>•

r(<? + a)

V
9'

}

(A-49)

(A-50)

using (A-43).

The salesperson's expected income is

using (A-42) & (A-49) and simplifying.

V'g i
Therefore, Z(t) can be expressed as K[—— )* , where K is strictly positive and does not

depend on t.

Using results (5) & (6), ^-p- is a strictly increasing convex function of t. Since | > 1, it

follows that Z(t) is strictly convex in t.

QED
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APPENDIX B : Properties of Partial Derivatives of Z, Ei and E2

As defined in section (3),

Z = fs{x)fdx =
J
{A + Bx) a

fdx,

Ei = fu{s{x))fdx = -1{A + Bx) a6
fdx,

dx.

Differentiating under the integral sign, we have,

dZ_

dA

dZ_

dB

dE x

and

dEi

dB

dA

A

dE2

dA

dE2

= a I (A + Bx) a - l
fdx,

= a f x{A + Bx) a - l
fdx,

= a ( {A + Bx) a8- l
fdx,

= a
J
x{A + Bx) a6- l fdx >

= a f{A + Bx) a6- l

ft dx,

0,

dB
a I x(A + Bx) a6-\ ftdx

B-l

B-2

B-3

B-4

B-5

B-6

B-7

B-8

B-9

In the discussions that follow we will assume that A > 0, B > 0, and at least one of A and

B is strictly positive, since these conditions will hold in all cases we are interested in.

Property 1. ff , Jf , ^, flj-, fo and $£ are all finite.

This property follows directly from assumption (m).

Property 2. ff, ff , ^", ^%-, and ^ are all strictly positive.

Proof. f{x\t) = if i < (assumption 1), and in cases we are interested in, (A + Bx) >

if < x < oo. An inspection of the right hand sides of (B-4), (B-5), (B-6), and (B-7) shows

that in each case, the integrand is positive for x > 0. Therefore, ff , ff , iriS and ^^- are
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all strictly positive. Also, it can be easily shown that x(A + Bx) a6 1
is strictly increasing

in x for < x < oo. Using Theorem MLR2 (Appendix C), we have,

0.
dB

= a
J

X
(
A + Bx

)

a6~ l

ftd* >

QED

dEx %
E
j} %

E?
Property 3. —± - dB

d J
A > 0.

Proof. Combining (B-6), (B-7), (B-8), and (B-9),

¥£ fx{A + Bz)*<-ift dz f[x(A + Bx)° s-if} tfdx r L

fx{A + Bx)"'-ifdx ~ f[x(A + Bx)«6-if]dx "
J

9l[X)
f

**' l
*~ 1UJ

- i - %^M - /**** <»>

dB

S{A + Bx) a6- l
ft dx

where

x(A + Bx)°*-'/ M + Bx)°f-'/
9,W =

/x(A + Bx)«<->/dx
and 92(l)

-/(A + flx)-«-i/i»-
(B_12)

Since, for < x < oo, <7i(x) > 0, 02(2) > 0, and / gi(x)dx = JQ g 2 {x)dx — 1, gi(x) and

g2{x) can be used as probability density functions defined for < x < 00.

gi(x)——- is a strictly increasing function of x, being equal to a positive constant times x. Also,
02 (x)

— is a strictly increasing function of x. Therefore, using Theorem MLR1 (Appendix C),

8E± dEi
dA

f

J 9l (x)jdx >
J

g

2 (x)^dx *=> H >

since ^ > 0, ffi > 0, and £§ > (property 2.)

££l dA
3B dA

dEt dEi
dB 3A >

(B-

0,

13)

dE->
dB

Property 4. If a < 1/(1 - 6) and B > 0, then — dB
gJ

>A > 0.

QED

dB

dE x dZ dE x dZProperty 5. > .' dA dB dB dA
The proofs of properties 4 & 5 are similar to that of property 3, and are omitted.
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APPENDIX C : Monotone Likelihood Ratio Theorems

This paper makes an extensive use of probability density functions which satisfy the Mono-

tone Likelihood Ratio (MLR) property. The specific results used in the paper are presented

below (without proof) as two theorems. The interested reader may refer to the text by

Lehmann (1959, pages 68-75) for a more general discussion of the concept.

In the following, we only consider continuous probability density functions which are strictly

positive if x > and if x < 0.

Theorem MLR1 Let fi{x) and /^(x) be probability density functions defined on < x <

oo such that is a strictly increasing function of x, and let g(x) be a function defined

for < x < oo.

Then :

1. If g(x) is a (strictly) increasing function of x, then

/•OO /-OO

/ h(x)g(x)dx (>) > / f2 (x)g(x)dx. (C-l)
Jo Jo

2. If g(x) is a (strictly) decreasing function of x, then

/OO /•OO

/ fl (x)g(x)dx (<) < / f2 (x)g{x)dx. (C-2)
Jo Jo

3. If g(x) is a constant, then

/•OO /«oo

/ fl {x)g(x)dx = / f2 (x)g{x)dx. (C-3)
Jo Jo

Theorem MLR2. Let f(x\t) be a probability density function defined on < x < oo such

that — is strictly increasing in x, and let g(x) be a function of x defined for < x < oo.

Then :

1. If g(x) is (strictly) increasing in x, then

>oo

ftg(x)dx (>) > 0. (C-4)
/'0

2. If g[x) is (strictly) decreasing in x, then

'OO

/
ftg{x)dx {<)< 0. (C-5)

./o

3. If g(x) is constant, then

L

oo

ftg{x)dx = 0. (C-6)
o
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Figure 1

Finding t?, the best t for t > tm .

e is a prespecified small positive number.

C
START

V

Compute *

No

Find t3 > tm
auch that ^{t2 ) < 0.

N/

Set t = £i±£2
2

Compute x'f*)

Set ti = t

(ts >

>

*2 = *m

^

+

No

Set tx = t

>•

'\
-^

( STOP

Set tX = fr"2 — tm

/^

* — strictly speaking, the right-sided derivative of *
(
t) at tm is used rather than ^{tm).
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Figure 2

Finding the interior optimum (A, B) for a given t.

[ci, €2 are prespecified positive numbers.

A

AM and BM satisfy EX {AM,Q) = ^(0, BM) =m + V.

C START

<-

\/

)

Compute

AM, BM

V
Set

Ai = 0,

A2 = AM.

V
Set

A = j4i + X2

>/

Compute B
such that

Ei{A,B) = m + V
L

V
Compute

E7(A,B)

KEaCA.BJN.
> V"? /

Yes

C START

\/

Set Bx = 0,

B2 = BM

Set

s= gi + ff2

2

Compute

£i(A,B)

}

DETAIL OF STE

Set Bx = B

No sEM,B)

-4\^ > m + v ?

y

v

Yes

Set B2 = B

-f

No
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Table 1

Study Design

5= 1/3 6 = A 6 = .5 <5 = .6 6 = 2/3

rri! 50 70 130 180 230

m? 55 80 150 200 250

qi 2 2 2 2 2

92 10 10 10 10 10

hi

fca 4000 4000 4000 4000 4000

*i 4000 4000 4000 2500 2500

*2 5000 5000 5000 3000 3000

(7i)i .5 .5 .5 .5 .5

(7i)a .6 .6 .6 .6 .6

d, 1 1 1 1 1

d2 1.5 1.5 1.5 1.5 1.5

Mx 2 2 2 2 2

(72)2 2.5 2.5 2.5 2.5 2.5

Cl

C2 .2 .2 .2 .2 .2

For every parameter, subscript 1 represents the low level, and subscrip 2 the high level.
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Table 2

Summary of Comparative Statics Results For The Agency Theoretic Plan.

Effect on Optimal

Effect of

Profit

Salary

Effort Parameter

t A

Commission

Rate

Parameter 5

Expected

Income

Z

Salary/

Expected

Income

m| 1
tl,2

f I
1 '3

<?T T T

T

T

i

io4

ct 1 1

1 —» inconsistent with BLSS.

2 — t observed only for 8 — 2/3.

3 — t observed only for 6 = 1/3.

4 —* observed only for 6 = 1/3.
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Table 3

Summary of Comparative Statics Results For Linear Plan

Effect on Optimal

Effect of

Profit Effort

t

Salary

Parameter

A

Commission

Rate

Parameter B

Expected

Income

Z

Salary/

Expected

Income

m| V to2
T

1

T to2

fft to2 102
I

1

I
1 JO2

M i 10 1 1 10

fcT to2 |02
I
3 to 10

ct 102 TO2 io2 io2 TO2

1 — inconsistent with BLSS.

2 — similar to BLSS but weaker.

3 —> I observed only for & = 1/3.

39



Table 4

(Effect of) 6 = 1/3 6 = .4 6 = .5 6 = .6 6 = 2/3

&0 .9926 .9758 .9433 .8607 .7321

&1 (m) .0052 .0144 .0207 .0196 .0156

&2 (?) -.0052 -.0195 -.0430 -.0753 -.0768

&3 (*) -.0033 -.0078 -.0152 -.0199 -.0231

&* (7l) -.0020* -.0057 -.0132 -.0268 -.0355

&S (72) .0034 .0090 .0211 .0451 .0674

ae M .ooie* .0038 .0072 .0112 .0128

«7 W .0046 .0103 .0181 .0288 .0325

as (<0 -.0063 -.0169 -.0265 -.0535 -.0559

d 12 (m*g) .0050 .0133 .0162 .0055

di3 (m * A:) .0020* .0034 .0030

«5l4 (*"*7i) .0016* .0023* .0027

5l5 (m*72 )
-.0023 -.0043 -.0053 -.0041

dl6 (m*d)

5l7 (m * /i) -.0034 -.0039 -.0030

dig (m * c) .0049 .0093 .0053 .0019*

d23 (7**) -.0029 -.0072 -.0114 -.0053 .0011*

d24 (<7*7i) -.0020* -.0051 -.0092 -.0039 .0046

d25 (<7 * 72) .0028 .0079 .0154 .0122

d26 fo*d) .0035 .0049 .0028

d27 fo./l) .0043 .0095 .0140 .0079

d28 (<7«c) -.0056 -.0156 -.0217 -.0240 -.0081

&34 (**7i) -.0025 -.0023

CC35 (**72 )
.0025* .0046 .0048 .0018

C*36 (**(*)

<»37 (***) .0015* .0028* .0026

C«38 [k*c] -.0028 -.0034 .0020* .0051

d4s (ll *72) .0021* .0051 .0093 .0063

d46 (7i * d) .0020* .0023*

d47 (7x * fc) .0027 .0030

d48 (7i * c) -.0020* -.0028* -.0024* -.0021* .0024

dse (72 * <*) -.0028 -.0039 -.0024

C«67 (72 * h) -.0018* -.0031 -.0050 -.0066 -.0023

C«58 (72 * c) .0028 .0054 .0056 .0078 .0014

C«67 [d*h)

C«68 (d.c) .0015* -.0029

C«78 (h.c) .0042 .0058 .0042 .0021* -.0021

Adjfl2 .6153 .8539 .9630 .9781 .9960

sift) .0225 .0490 .0779 .1204 .1309

t
—*P<-1,*—»P< -05, p < .01 otherwise. —» insignificant parameter.

s{Ri) is the sample standard deviation of R t .
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Table 5

(Effect of) 6= 1/3 8 = A 6 = .5 6 = .6 6 = 2/3

h .9995 .9980 .9936 .9808 .9481

h (m) .0003 .0013 .0030 .0038 .0049

h (?)
-.0001* -.0012 -.0042 -.0115 -.0213

h (*) -.0002 -.0008 -.0024 -.0044 -.0086

h (71

)

-.0002 -.0008 -.0026 -.0071 -.0166

h W .0002 .0009 .0030 .0085 .0200

h M .0001 t .0004 .0012 .0026 .0050

$7 W .0003 .0010 .0026 .0057 .0106

b W -.0003 -.0011 -.0025 -.0059 -.0059

0\2 (m*g) .0002 .0011 .0024 .0021 .0013

013 (m*Jb) .0002* .0005 .0009 .0006 .0004

fu (m*7i) .000 1* .0005 .0010 .0012 .0010

h* (m *
Tf3 )

-.0002* -.0006 -.0012 -.0014 -.0013

0\e (m*<i) -.0003* -.0004* -.0004* -.0002*

0n (m*/i) -.0002 -.0006 -.0010 -.0008 -.0004

As (m * c) .0002 .0008 .0009 -.0004

023 (g*fc) -.0001* -.0007 -.0019 -.0024 -.0022

024 (?*7l) -.0001* -.0006 -.0019 -.0038 -.0040

P2b (?*7a) .0001* .0007 .0023 .0046 .0049

P26 (**<*) .0004* .0009 .0014 .0012

027 («•*) .0002 .0008 .0021 .0032 .0027

P\s (g*c) -.0003 -.0011 -.0023 -.0041 -.0021

P3A (*-7i) -.0003* -.0009 -.0014 -.0020

P36 (fc*72 )
.0004* .0011 .0017 .0024

P36 {k*d) .0005* .0004

037 \k*h) .0001* .0004* .0008 .0010 .0009

038 {k*e) -.0002* -.0004 -.0005* .0008

A. (7i *7a) .0004* .0013 .0034 .0065

A« (7! * «*) .0005* .0011 .0016

0K7 (7i * h) .0001* .0004* .0009 .0018 .0024

P<8 (7i * c) -.0001* -.0004 -.0007 -.0011 -.0003

056 (73 * d) -.0006 -.0013 -.0019

057 (73 * A) -.0001* -.0004 -.0011 -.0022 -.0030

058 (73 * c) .0002* .0005 .0009 .0014 .0004

Pei [d*h) -.0004* -.0006 -.0005

Pes (d*c) -.0005

P78 [h*e) .0002 .0006 .0007 .0004* -.0009

Adjfl2 .4251 .7113 .8831 .9834 .9977

,(R2 )
.0013 .0046 .0109 .0220 .0394

f—*p<.l, *—»p< .05, p < .01 otherwise. —» insignificant parameter.

3(J?2 )
— sample standard deviation of R?.
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Table 6a

[ Only the estimates of rjo, . .
.

, r)& are presented.
]

(Effect of) 5=1/3 6 = .4 6 = .5 6 = .6 6 = 2/3

170 .0321 .1194 .3370 .7883 1.4940

fj x (m) -.0231 -.0699 -.1147 -.0854 -.0488

r}2 (q) .0272 .1094 .3067 .6546 1.0503

f)3 (k) .0158 .0434 .0947 .1114 .1035

fj4 (7l )
.0110 .0389 .1039 .1959 .2801

T7s (72) -.0144 -.0432 -.1195 -.2218 -.2988

rj6 (d) -.0073 t -.0216 -.0430 -.0619 -.0566

fj7 (h) -.0202 -.0515 -.1012 -.1293 -.1072

i7s (c) .0261 .0700 .1017 .0662 -.1115

Adj(i?2
)

.6150 .8405 .9448 .9756 .9972

s{R3 )
.1027 .2478 .4906 .8089 1.1833

I
— p < .1, *—»p< .05, p < .01 otherwise. — insignificant parameter.

5(^3) is the sample standard deviation of R3 .

Table 6b

[
Only the estimates of i/o> • • • 1 fs are presented.]

(Effect of) 6 = 1/3 6 = A 6 = .5 6 = .6 6 = 2/3

.0087 .0372 .1279 .4018 .9940

-.0052 -.0244 -.0567 -.0653 -.0645

.0050 .0300 .1101 .3406 .7589

.0036 .0150 .0444 .0769 .1174

.0028* .0130 .0456 .1195 .2311

-.0033 -.0155 -.0547 -.1443 -.2810

-.0076 -.0216 -.0441 -.0660

-.0047 -.0181 -.0500 -.0984 -.1399

.0054 .0237 .0535 .1109 .0533

.4542 7544 .9097 .9817 .9947

s(R4 ) .0263 .0897 .2239 .4933 .9190

t
— p < .1, *—* p < -05, p < .01 otherwise. — insignificant parameter.

a(i24 ) is the sample standard deviation of i?4 .

*0

0i (m)

O2 (?)

0z (*)

0k hi)
H M
0e id)

Or W
fi% (c)

Adj(tf2
)
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