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Abstract:

In this paper, we consider the unconditional distributions of

market return and trading volume in the Tokyo Stock Exchange. We also

examine the relationship between price changes and trading volumes.

The problems considered are directed by findings in the U.S. market,

with a view to ascertain similarities and differences.

Daily market returns exhibit intra-week periodicity. Returns over

daily, weekly and monthly intervals are negativelv skewed and

leptokurtLc. While daily returns are slightly positively autocorre-

lated, the autocorrelations for weekly and monthly returns are

statistically insignificant. There is evidence against the stable

Paretian hypothesis for market returns; and the empirical results are

in support of market returns following a low order mixture of normal

distribution. Trading volume is highly positively autocorrelated.

This suggests that trading volume is not a good proxy for information.

Our results also show that the price-volume relationship is weak and

ambiguous.





1 . tnt roduct ion

Due to the steady growth of the Japanese economy and capital

market, together with the rapid appreciation of the Japanese yen

against the U.S. dolLar in the second half of the 1980s, the Tokyo

Stock Exchange (TSE) has emerged as the world's largest stock market

In terms of aggregate market capitalization. The First Section of the

TSE has a total market value of 462.90 trillion yens ($3.56 trillion)

as of the end of 1988, which is 1.45 times the total market value of

$2.46 trillion of the New York Stock Exchange (NYSE). Despite the

size and the obvious importance of the Japanese market, there is rela-

tively little academic research in English in this market. The

literature in this area, which has just started to grow, has been

largely motivated by topics of research interest and controversies in

the U.S. market, with an aim to provide insights and additional evi-

dence to resolve these controversies. Issues that have been studied

include: the size and periodicity anomalies (Jaffe and Westerfield

(1985b), Kato and Schallheim (1985), Kato (1988a, 1988b), Kato, Ziemba

and Schwartz (1989) and Ziemba (1989)), the multi-index model and the

arbitrage pricing theory (Elton and Gruber (1988) and Hamao (1988)),

general market characteristics (Hamao (1989)) and the Japanese market

in an international perspective (Hamao, Masulis and Ng (1989),

Gultekin and Gultekin (1983), Jaffe and Westerfield (1985a) and

Poterba and Summers (1988)).

This paper focuses on the structure of price and volume in the

TSE. We consider statistical descriptions of the stock market returns

and trading volumes. The relationship between the variability of
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returns and trading volumes is also investigated. Our study is

exploratory in nature and is directed by findings in the U.S. market,

with a view to ascertain similarities and differences. It is of

Interest as it examines the international robustness and generality of

the empirical results in the U.S. market.

Assumptions concerning the statistical distribution of asset

returns are of great importance to certain financial models, such as

the mean-variance portfolio selection theory and the pricing of deri-

vative securities. The mean-variance theory can be justified by

assumptions of risk aversion and normally distributed asset returns.

The celebrated Black-Scholes option pricing formula assumes that

returns of the asset upon which the contingent claim is based are nor-

mally distributed. Thus testing the normality hypothesis has been a

topic of much research interest. In one of the early studies in this

area, Fama (1965) found that stock returns have higher kurtosis

(fatter tails) than one would predict for a normal distribution. A

viable alternative using the stable Paretian distribution had been

suggested by Mandelbrot (1963), whose work led to further studies bv

Fama and Roll (1968, 1971). Although the stable Paretian distribution

may explain the "fat tail" findings of stock returns, it introduces

the problem of infinite variance in the distribution, except for the

?
special case of normality."

Later studies reported evidence that is not consistent with the

stable Paretian distribution. Officer (1972) found that the sample

standard deviation of daily market returns is a well-behaved measure
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of scale. Hsu, Miller and Wichern (1974) showed that the charac-

teristic exponent of the stable Paretian distribution of a sequence

of nonoverlapping suras of successive observations increases with the

3
sum size. This finding is inconsistent with the stable Paretian

hypothesis. Hsu et al. suggested a time-varying nonhomogeneous dis-

tribution as an explanation for the high kurtosis. This suggestion

was supported by Boness, Chen and Jatusipitak (1974), who put forward

a theory of changes in capital structure as an explanation for the

nonstationarity in prices. Blattberg and Gonedes (1974) compared the

stable law with the Student's t distribution. Both hypotheses were

derived from the framework of subordinated stochastic processes. In

particular, if the variance of a normal random variable follows an

inverted gamma distribution, then the posterior distribution is a

Student's t. The empirical results of Blattberg and Gonedes sup-

ported the Student's t distribution in preference to the stable

Paretian model.

Recently Kon (1984) considered a discrete mixture of normal

distribution (MND) as an explanation for the observed excess kurtosis

and positive skewness of stock returns in the U.S. market. He esti-

mated MND models for the daily returns of the 30 stocks of the Dow

Jones Industrial Index and three market indices. By fitting MND

models with orders up to five, he argued that the MND is considerably

more descriptive of the data generating process than the simple normal

model and the Student's t distribution. This finding is congruent

with a time-varying nonstationary return process. Periodicity anoma-

lies and varying financial and operating leverages were offered as
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explanat ions for the nonstati.onari.ty. Additional evidence in support

of the MND was provided by Harris (1986) and Hall, Brorsen and Irwin

(1989).

In comparison, empirical research in the distribution of trading

volume per se has been very scarce—volume has been of interest mainly

as a covariate in explaining the distribution of asset return. Clark.

(1973) assumed that asset return follows a subordinated stochastic

process in which the directing process is the cumulative volume. Thus

the volume in each nonoverlapping period was assumed to be indepen-

dently distributed. As a special case, Clark considered the log-

normal directing process and provided empirical evidence supporting

this assumption. Tauchen and Pitts (1983) suggested a mixing variable

model in which price change and volume are simultaneously determined.

These two variables are driven by a mixing variable which represents

the amount of information reaching the market. \s the mixing variable

is serially independent, both price change and volume are serially

independent. Tauchen and Pitts estimated the parameters of the price

and volume processes simultaneously under the assumptions that the

mixing variable follows a Poisson as well as a log-normal distribu-

tion.

In both the Clark and Tauchen-Pi t ts models trading volume is

serially independent. While the efficient market hypothesis requires

stock return to be serially uncorrelated , this restriction would seem

to be too stringent when imposed on trading volume. The restriction

may be violated when volume is an imperfect proxy for information or

when it is not directed by the mixing variable with the given structure,
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The earliest empirical examinations of the price-volume relation-

ship were conducted by Granger and Morgenstern (1963) and Godfrey,

Granger and Morgenstern (1964). Theoretical models explaining the

relationship were suggested by Epps (1975), with further developments

in Epps and Epps (1976). Since then, the research output on this

topic has become very substantial. The recent survey by Karpoff

(1987) provided an excellent review of the literature as well as an

extensive bibliography. In particular, he summarized the following

stylized facts regarding the price-volume relationship in the U.S.

stock, market: (i) volume is positively related to the magnitude of

the price change, and (ii) volume is positively related to the price

change per se .

The plan of the rest of the paper is as follows. In Section 2, we

briefly survey some features of the Japanese market. Section 3

describes the data. The market return is examined in Section 4. It

is found that the daily return periodicity has become more similar to

that in the U.S. market. Excess kurtosis occurs, but it cannot be

explained by the periodicity anomaly. Somewhat surprisingly, the

return is found to be negatively skewed. Its distribution can be ade-

quately described by a low order MND ; and there is evidence against a

stable Paretian distribution. In Section 5, we analyze the volume

distribution. Significant serial correlation is found in the trading

volume, which raises questions about the use of volume as a proxy for

information. The price-volume relationship is examined in Section 6.

The results suggest that volume is positively related to price change
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per s e, although the evidence is not very strong. Some concluding

comments are given in Section 7.

2 . The Japanese Market and Its Indicat ors

There have been a number of publications that describe and explain

the Japanese financial markets; a notable comprehensive introduction

is the book by Viner (1988). The articles by Hodder and Tschoegl

(1985), Haraao (1989) and Kato, Ziemba and Schwartz (1989) are also

useful references.

There are eight exchanges in Japan. Listings on the TSE represent

more than 95 percent of the total market value. The TSE is divided

into two sections: the First Section and the Second Section. The

First Section includes the top rated and most actively traded com-

panies and the Second Section, with less severe listing requirements,

consists of smaller stocks. As of the end of 1988, the First Section

consisted of 1135 stocks and contributed over 95 percent of the total

market value of the TSE.

Currently, the TSE trades five days a week, on Monday through

Friday. Historically, there was trading on all Saturdays until the

end of 1972. Then until July 1983, the exchange was closed on the

third Saturday, and later the second Saturday as well from August 1983

to July 1986. From August 1987 to January 1989 there was trading on

Saturday in the first and fourth weeks of the month (and on the fifth

if there was one)

.

The most prominent market indicator for the TSE is the Nikkei

Stock Average based on 225 issues (N225 hereafter). This index, which
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started in 1949, was created by the Dow Jones Company and was then

named Nikkei-Dow Average. Following the inauguration of the Tokyo

Stock Exchange Average (Topix) in 1969, the Nikkei-Dow Average was

discontinued in 1971. In 1975, the Nihon Keizai Shimbun Company

(NKS) reinitiated the Nikkei-Dow Average, and renamed it the Nikkei

Stock Average in 1985. Apart from the N225, the NKS also provides a

Nikkei Stock Average based on 500 representative issues (N500

hereafter), which has been calculated since 1972.

Both N225 and N500 are price-weighted indices. Their computation

is similar to that of the Dow Jones Industrial Average. Prices of the

component stocks (225 for N225 and 500 for N500) in the index are

added and their sum is divided by a divisor which is adjusted when

prices of component stocks move due to nonmarket factors, such as

stock splits and rights issues. Adjustments are also made when

constituents are deleted or added. While there have been few changes

in the identity of the 225 issues in N225, the 500 companies in N500

are reselected once a year. On February 28, 1989 the N225 index was

31985.60 and the N500 index was 1870.50.

Topix is a value-weighted index of all stocks listed in the First

Section of the TSE. Its methodology is similar to that of the S&P

500. The index was initially set at 100 on July 4, 1968, and its

value on February 28, 1989 was 2447.23. Although less popular than

the N225, the Topix is considered the most representative indicator of

the total market. In particular, the Topix is able to reflect changes

in the industrial structure and Ls less affected by price changes in a

handful of smaller companies' stocks trading at high prices.
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3 . The Data

The data used in this study were extracted from the NEEDS (Nikkei

Economic Electronic Database System) data base provided by NKS. A

description of this data base can be found in Roehl (1985).

Daily, weekly and monthly series for each of the Topix, N225 and

N500 indices were extracted. \s the weekly and monthly series of the

Topix index were given in arithmetic means over the interval (instead

of end of the interval), we did not use them in this study. Table I

summarizes the sampling periods of the data. The market indices were

converted to continuously compounded rate of return by calculating the

first difference of the logarithm. Trading volume series were also

extracted for the same sampling intervals and periods. We considered

three measures of volume:

VI = number of shares traded (in billions);

V2 = (VI x arithmetic stock price average)/( total market value at

end of interval);

V3 = (sales value during the interval) /( total market value at end

of interval).

Insert Table I About Here

V3 measures the sales as a proportion (in percent) of the total market

value. This is a better measure for the trading volume than VI, which

is positively trended due to the increase in the total number of

shares over time. However, as V3 was available only monthly, V2 was

calculated as a proxy for V3 for the daily and weekly data. The
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correlation coefficients of the three price series and the three

volume series are given in Table I.

The October 1987 crash created some discontinuity jumps in the

return series. The Topix index dropped by 15.8 percent on October 20

and recovered by 9.0 percent on October 21. Including these two

observations in the data created some anomalies. For example, when

the observations were included, the first order autocorrelation coef-

ficient of the return of the N500 index was 0.0037; and the skewness

and kurtosis coefficients were, respectively, -3.88 and 73.26. When

these observations were excluded, the autocorrelation coefficient

increased to 0.1165; and the skewness and kurtosis coefficients became

-0.32 and 10.20, respectively. Thus, the extreme return values due to

the crash bias the autocorrelation coefficient towards zero, leading

to the erroneous conclusion of insignificant autocorrelation, and

overstate the higher order moments.

As argued strongly by Greenwald and Stein (1988) in their comments

on the Task Force Report, the October 1987 crash should be regarded as

Q
a unique event. Thus, we excluded two observations in our data set

for all computations involving daily market returns. For weekly data,

we also excluded the observation for the week in which the crash

9
occurred. Examining the volume series, we found that there were no

abnormalities caused by the crash. Indeed, the trading volumes on

October 20 and 21 were below the average over the sampling period.

Thus, no observation was excluded for computations that involve only

the volume series.
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From Table 1, we see that the correlation for the daily data be-

tween Topix and N225 is higher than that between Topix and N500,

despite the fact that N500 is a bigger subset of Topix than N225.

For the monthly volume data, the correlation between VI and V2 is

higher than that between VI and V3, and V2 and V3. As V2 depends

directly on VI, the higher correlation between VI and V2 is perhaps

not unexpected. However, the fact that the correlation between V2 and

V3 is virtually the same as that between VI and V3 implies that V2 is

probably not a better proxy for V3 than VI,

4. Price

Table 2 summarizes the first four moments of the return series.

To examine the intra-week periodicity, we calculated the summary sta-

tistics for different days of the week. Monday was found to have

negative return, while returns for all other days were positive, with

the return on Tuesday being close to zero. Although trading on

Saturday was only for half day, the return was highest among all

days of the week. To test the hypotheses: (i) returns are equal

Monday through Saturday, and (ii) returns are equal Tuesday through

?
Saturday, we apply the Wald statistics, which are distributed as x~

•

At 5 percent significance level, the first hypothesis is rejected

while the second one cannot be rejected.

Insert Table 2 About Here

The above findings are different from others in the recent litera-

ture. Kato etal. (1989) pointed out that studies in the Japanese
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market since 1970 indicate typically small losses on Monday and

substantial losses on Tuesday. Compared with results in the U.S.

market on the day of the week effects (see, e.g., Dimson (1987)), the

shift from the "Tuesday effect" to the "Monday effect" found here is

more in line with the periodicity in the U.S. market. However,

earlier findings for the Japanese market in the 50s and 60s indicated

that the heaviest losses were on Monday (see Kato et al. (1989, Table

6)). Thus, it is unclear whether the present evidence should be

regarded as an indication of the narrowing of differences across

national markets, or of the period-specific nature of the intra-week

periodicity in the TSE.

Return distributions are negatively skewed and leptokurtic.

This finding is true for the daily, weekly as well as monthly data;

although the excess kurtosis is smaller for returns over longer inter-

val. The importance of skewness in the distribution of asset returns

to investors' decisions has been extensively studied (see, e.g.,

Arditti (1967, 1971) and Francis (1975)). As returns in the equity

market are bounded from below but not from above, it is likely that

market returns are positively skewed. Studies in the U.S. market

(see, e.g., Fielitz and Smith (1972), Fielitz (1976), Simkowitz and

Beedles (1980), and Kon (1984)) have ascertained positive skewness in

returns, a fact in contrast with the present finding for the TSE.

One explanation that has been postulated for the nonnormality of

daily market returns is the intra-week periodicity. Specifically, the

observed skewness and fat tail are caused by pooling different normal

1 ?
distributions characterizing different days of the week. If this
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hypothests is correct, we would expect the nonnormality to vanish for

returns categorized by day of the week.. However, evidence from

Table 2 shows that this hypothesis is not supported— the excess

kurtosis does not get smaller for returns thus categorized. If

nonnormality is caused by the mixing of distributions, the mixing

structure is more complex than a simple intra-week partition.

In Table 3, we summarize the results for testing for autocorrela-

tion in the return as well as the variance of the return. For each

return series, we calculated the deviation from mean, which is denoted

as e . Since it had been established that the mean return for Monday

was different from the rest of the week, we used a dummy variable to

take account of this difference in the daily return series. For each

residual series e we calculated the first and second order autocorre-

lation coefficients, denoted as r and r~, respectively, and the sta-

tistics for two tests for autocorrelation: the runs test and the

Box-Pierce portmanteau test. The same statistics were also calculated

2 13
for e as tests for autocorrelation in the variance.

Insert Table 3 About Here

For e , r. is significantly different from zero for the daily data

for all indices, although its magnitude is quite small in all cases.

Both the runs test and the Box-Pierce test show evidence of serial

correlation. As r and higher order autocorrelation coefficients (not

reported in the table) are insignificant, the daily return series

appear to be adequately described by a first order moving average
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14
process with a small moving average parameter. For data over longer

intervals, the residual returns behave like a white noise.

2
For e there is significant autocorrelation for the daily and

weekly data. From results not presented in the table, the autocorre-

lation coefficients are significantly different from zero even for

very high order lags. One possible explanation for the serial corre-

lation in variance is that the complete sampling period may consist of

subperiods of homogeneous distributions (Hsu et a l . (1974)) determined

by varying leverage structures (Boness et al . (1974)). Nonstationarity

in the variance is sufficient to explain the leptokurtosis of the

return distribution. A statistical model which may capture the struc-

ture of the serial correlation in the variance is the autoregressive

conditional heteroskedasticity (ARCH) model due to Engle (1982).

However, instead of pursuing the serial structure of the variance, we

now turn to the problem of modeling the unconditional return distribu-

tion.

There has been much empirical research in the unconditional

distribution of asset return in the U.S. market. The simple normal

distribution, stable Paretian law, Student's t distribution and mix-

l f\

ture of normal distribution have been considered, among others. The

conclusions that seem to have emerged can be summarized as follows.

The simple normal distribution is inadequate to describe the distribu-

tion of an asset return as it understates the kurtosis. The stable

Paretian hypothesis, which was at one time favored by some

researchers, has been found to be less descriptive than the Student's

t distribution (Blattberg and Gonedes (1974)). However, as emphasized
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by some studies (Fielitz and Smith (1972) and Fielitz (1976)), asset

returns are typically skewed—a fact that is inconsistent with the

Student's t distribution. A generalized version of the stable

Paretian law that allows for skewness has been proposed and estimated

(Simkowitz and Beedles (1980) and Akgi ray and Lamoureux (1989)).

Simkowitz and Beedles suggested that returns might be mixtures of

stable distributions. Kon (1984) compared the discrete MND with the

Student's t distribvition and argued in favor of the former. In view

of the above findings and the demonstrated skewness and kurtosis of

returns in the TSE, we consider the following unconditional distribu-

tions for the TSE market return: the stable Paretian law and the MND.

The full stable Paretian family that allows for asymmetric distri-

butions is characterized by four parameters. There have been some

variations in the definitions for the stable family, which at times

have led to confusion. We follow the definition proposed by Zolotarev

(1957) and adopted by McCulloch (1986), in which the log charac-

teristic function of a stable Paretian distribution has the form

•Kt) = log E(e
Ux

)

it6 - |ct| [l-iBsign(t) + tan — ] a * 1

= 1

it6 - |ct
|
[1 + iB- sign(t)log|t

|
] a = 1, (I)

where x is a stable Paretian variable, t is the parameter of the

?
characteristic function, i = -1 and a, 3, 5 and c are, respectively,

the characteristic exponent, the skewness parameter, the location

parameter and the scale parameter. The normal distribution is a
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special member of the stable family with a = 2, and is the only stable

distribution for which the variance exists. When a < 2, absolute

moments of order less than a exist, while those of order equal to or

greater than a do not.

The density and distribution functions of a stable distribution do

not exist in closed form, except for the normal (ct = 2) and Cauchy (a = l)

cases. However, infinite series expansions for these functions are

available. The lack of analytic expression for the density function

makes the estimation of the parameters by maximum likelihood method

very difficult. Fama and Roll (1968, 1971) suggested a fractile

method based on order statistics. This method was improved by

McCulloch (1986), who extended the Fama-Roll method to take account of

asymmetric distributions and a broader range of a. The small asymp-

totic biases in the Fama-Roll estimators were also eliminated.

McCuL loch's procedure involves the calculations of five sample quan-

1 8
tiles, with proper corrections for continuity. The stable distribu-

tion parameters are then obtained from tables by simple interpolation.

19
The results reported below were obtained by this method.

An important property of the stable Paretian law is that it is

invariant under addition. That is, a sum of independently identically

distributed stable variables with characteristic exponent a is stable

with the same exponent. This property has been used by Fama and Roll

(1971) as the basis for a test for the hypothesis that a random

variable is stable ParetLan. Hsu et al . (1974) and Hall et a l. (1989)

followed Fama and Roll in their studies in the behavior of the U.S

stock market and futures market returns. Hsu et al. showed that
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randomizing the stock market return series before summing up the

adjacent observations increases the power of the test—the shift in

the characteristic exponent is more prominently demonstrated for the

20
randomized series. This randomization procedure was adopted by Hall

et al . in their study in the futures market. Their results also

provided evidence against the stability of the characteristic ex-

ponent. In view of these findings, we estimated the stable Paretian

distribution for the randomized as well as nonrandomized return

series.

We considered two methods of forming sums of returns. First, we

arranged a returns series in chronological order and summed up adja-

cent observations k terms at a time to form a new series. We defined

this method as the chronological sampling scheme, denoted as C.

Second, we randomized the returns series and summed up adjacent obser-

vations again as above. This method was defined as the randomized

sampling scheme, denoted as R. As the summed series had to have suf-

ficient observations for estimation, the value of k was constrained.

For daily data, we considered k = 2, 4, 6, and 8; and for weekly data,

we considered k = 2. The stable Paretian distribution was estimated

for the original series as well as the summed series. Estimates of «

21
are presented in Table 4.

Insert Table 4 About Here

The results show very clearly that, for the randomized series, the

estimated characteristic exponent approaches two as the sum size in-

creases. The evidence is thus against the stable Paretian distribution,
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Similar to findings in the U.S. market, the chronological series fail

to detect shifts in a. This would be the case if shifts in return

distributions occur over stretches of homogeneous structures, or if

the shifts are serially correlated.

Having rejected the stable Paretian law, we now consider the MND

model as a description of the unconditional distribution of the TSE

market return. In the MND model, the market return is assumed to be a

random drawing from a set of m normal distributions. Specifically,

2
let x. be normally distributed with mean \i . and variance a., for i =

1, ..., m. Suppose {X.} represent a discrete probability function

defined on i = 1, .... m such that I > A. > and A, + ... + X = 1.— l — 1 m

Then y is said to be a mixture of normal random variable if y =

x. with probability X.. Thus, if we denote the density function of11
. 2

x. bv f(x. 9.) where 9. = (m.,o7)', then the density function of v is
i i i lii

given by

ra

g(y|8) = Z X.f(y|9.), (2)

i=l
L 1

2 2
where 9 = (y , , . . . ,u .a, a ,X ,,..., X ,)' is the vector of parame-

1 ml ml m— 1

ters with 3m-l elements. Assuming we have a sample with n independent

observations of y denoted by y , ..., y , we can write down the

likelihood function of the sample as

n

L(9;m) = II g(v |6)

t = l

n [ Z X f(y |8 )]. (3)

C=l i=l
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Thus , maximum likelihood estimates of 8 can be obtained by maximizing

L(8;m) (or log L(8;m)) with respect to 9 using nonlinear optimization

22
methods.

Kon (1984) estimated the MND model for the 30 component stocks

of the Dow Jones Industrial Index and three market indices. He con-

tended that the MND is a better description of the stock market return

than the Student's t distribution. In particular, he found that the

market indices follow a MND of order three. As for the 30 stocks,

their orders vary from two to four.

In Kon's study, the optimization procedure did not impose any

restrictions on X
. . In some cases, the conclusion about the order of
l

the MND model was weakened due to the failure of the numerical optimi-

23
zation procedure to converge to a well-defined distribution. To

overcome this difficulty, we use a reparameterizat ion of the quan-

tities representing the probabilities. Thus, we consider m-1 parame-

ters 5., for i = 1, ..., m-1, and define

m-1
X. = exp(6

. )/(! + I exp(6. )), (4)
l- l . , i

i=l

for i = 1, ..., m-1 and X =1/(1+ £ exp(6.)). Although 5. are
m l i

1 = 1

unrestricted, the transformation satisfies the restrictions I > X. >
i

and A, + ... + X =1. Maximum likelihood estimates of 9 can be
1 m

obtained by maximizing the likelihood with respect to 9 ..., 6 and
I m

5 , ..., 5 and then recovering X. from Equation (4). The estima-
1 m—

1

i

tion results for the Japanese market are summarized in Table 5.

Insert Table 5 About Here
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To determine the order of the MND model and test the variability

of the means and variances across the set of normal distributions, we

applied the following procedure. For each of the return series, we

fitted the MND model with increasing order until the increase in the

log likelihood was insignificant. The criterion for the stopping

point was the likelihood ratio statistic, i.e., twice the increase in

2
the log likelihood, which is distributed as Xv Thus, m was selected

2
as the smallest integer such that 21og(L(9 ;m+l ) /L(9 ;m) ) < x^ n n<

- ~

7.82. Of all the series considered, the MND models fitted are of very

low order. Specifically, the monthly N225 series is of order one, the

weekly N225 series is of order three and all other series are of order

two. The likelihood ratio statistics L = 21og(L(0 ;m+l ) /L(9 ;m)

)

and L
9

= 21og(L(6 ;ra)/L(0 ;m-l) ) are presented in Table 5. For the

daily data, the sharp drops from L to L are indicative of the unam-

biguous specification of m in these cases.

Once m was determined, we tested the following hypotheses separa-

2 ?6
tely: (i) y. are equal for all i, and (ii) a. are equal for all i.

"

Of ail the cases considered, the second hypothesis was always

rejected. The first hypothesis was rejected for the daily Topix and

N500 series. The estimates reported take account of the accepted

restrictions. To determine the goodness of fit of the final model for

each series, we computed the implied first four moments of the MND and

compared them with the sample quantities given in Table 2. These

results are given in the last four columns of Table 5, where the

figures in parentheses are the sample quantities. For most cases, the

agreement of the two sets of figures is surprisingly good. The only
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exceptions come from the daily Topix and N500 series, in which cases

imposing equality of means brings about discrepancies in the implied

and sample first moments. However, relaxing this restriction results

in poorer fit for the skewness and kurtosis.

To sum up, the market return in the TSE exhibits intra-week

periodicity. Monday has the lowest return, while returns on all other

days of the week are not significantly different from one another.

This finding shows a reversal to the periodicity during the 50s and

60s, and coincides with that of the U.S. market. Daily returns are

weakly positively autocorrelated and follow a moving average process

of order one. Serial correlations for returns over a week and a month

are statistically insignificant. Return data are negatively skewed

and leptokurtic. These features persist for returns calculated by the

day of the week. Thus, nonnormality cannot be explained by intra-week

periodicity. Finally, there is evidence against the stable Paretian

law as a description of the unconditional return distribution. A

better model is the MND , which fits the data adequately with low order

mixtures .

5 . Volume

There have been few studies in the statistical distribution of

stock market sales volume per se. Most studies in stock return and

volume focus on the distribution of return and use volume as a

covariate in the model. However, the statistical distribution of

volume may be of interest for two reasons. First, it is often argued

that volume is a proxy for information arrival. \s information



-21-

arrival is random, volume is expected to be serially uncorrelated.

Thus, the serial structure of volume may indicate whether volume is a

good proxy for information. Second, some models either postulate the

price-volume relationship jointly (Tauchen and Pitts (1983)) or

explain the return process as a subordinated process driven by a

directing process that can be proxied by volume (Clark (1973) and

Blattberg and Gonedes (1974)). Knowledge about the marginal distri-

bution of volume can be used to check the implications and assumptions

of these models.

Summary statistics of the three volume measures defined in Section

3 are presented in Table 6. Except for V3 , of which only monthly data

are available, volume statistics were calculated for daily (further

categorized by day of the week) , weekly and monthly data. The table

shows the first four moments and the first order sample autocorrela-

27
tion coefficients. We observe that volume distributions are positi-

vely skewed and slightly leptokurtic. However, as there are large and

statistically significant autocorrelations in the volume series, the

asymptotic tests for skewness and excess kurtosis conducted in Table 2

?8
are biased and hence are not used here." Point estimates of the mean

show that Saturday volume is lower than other days of the week, which

is expected because of the shorter trading time on Saturday.

Insert Table 6 About Here

To capture the autocorrelation structures of the volume series, we

fitted time series distributed lag regressions for the volume data.

Specifically, we considered the following model
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V = 3 + 8 V + 8 V + 8 t *

,

(5)
t 1 t-1 2 t-2 3 '

where V is the volume and t* is a time variable. For each series, we
t

estimated (5) starting with one lag term in V and proceeded to

include higher order terms if necessary. To examine the residual

autocorrelation, we calculated r and h, which is Durbin's statistic

for testing residual autocorrelation. The lowest order distributed

lag regression with insignificant residual autocorrelation was

selected. Insignificant regression variables were then discarded and

the model was reestimated. Table 7 summarizes the regression results.

Insert Table 7 About Here

For the daily series dummy variables that represent different

intercepts for different days of the week, were included. These dum-

mies were found to be statistically significantly different from one

another. To save space, results for the dummies and intercepts are

not reported. The time variable t* was scaled in such a way that 8-

represents the change in the volume per sampling interval over a

period of one year. For example, the first row in the table shows

that VI increases by 0.0377 billion shares per day over a year; and

the last row shows that V3 increases by 0.0027 percentage points per

month over a year.

It can be seen that volumes follow low order autoregressive pro-

cesses. Although t* is statistically significant for most cases, it

is economically insignificant for V2 and V3. By contrast, the rate of

increase in VI is economically significant. For example, the increase
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in VI per month over a year Is 16.2 percent (2.474 t 15.317) of the

average monthly volume over the sampling period. However, this

increase may be largely due to the increase in the number of shares

outstanding. The residual analysis shows that there are significant

positive skewness and excess kurtosis. This departure from normality

is significant for all cases except for the monthly V3 series.

To sum up, the volume series follow low order autoregressive proc-

esses with statistically significant time trends. The increase in the

sales ratio over time is economically insignificant; and, in the case

of the number of shares traded, the economically significant time

effect may be due to the growing number of shares outstanding. The

volume distributions are positively skewed and leptokurtic, except for

the monthly V3 series, which is not statistically different from a

normal distribution. As V3 is likely to be the best measure for

volume, this finding is notable.

6. Price-Volume Relationship

To find out if there is any empirical regularity in the relation-

ship between price changes and trading volumes in the TSE, we esti-

mated regressions of price changes on trading volumes. Measures of

2 , ,

price changes considered were: A logP
,

(A logP ) and |A logP |, where

P is one of the three market indices. All three volume measures

defined in Section 3 were used as regressors. As the results for dif-

ferent volume measures are qualitatively similar, only findings for

the regressions on V2 are reported. The estimated equations and resi-

dual diagnostics are summarized in Table 8. For the daily data, we
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included a dummy variable to take account of the different Monday

return. The dummy takes a value of one for Monday and zero otherwise.

Karpoff's (1987) asserted "stylized fact" for the U.S. market that

trading volume has effects on both AlogP and |AlogP is ambiguous

for the TSE. Volume is significant for the daily Topix and N225 indi-

ces when the dependent variable is AlogP ; and is also significant for

the weekly N225 index for all the three price-change measures con-

sidered. Otherwise, the effects of volumes on price changes are

insignificant. Thus, the results are not only dependent on the

sampling intervals, but also on the price indices. It is perhaps safe

to conclude that the relationship between price changes and volumes in

the market, if there is any, is weak. In Karpoff's review, most stu-

dies in the U.S. market examined individual stocks. The conflicting

results for different indices in Table 8 may be due to the aggregation

over different stock components. Also, as the volume measures apply

to all tradings in the First Section of the TSE, some data incom-

patibility may occur. In view of these difficulties, it would be

interesting to consider the price-volume relationship for individual

stocks, which would not be subject to the problems of aggregation and

data incompatibility. Future research in this area will be required

to ascertain any price-volume regularity.

7. Conclusions

We have examined the unconditional distributions of the market

returns and trading volumes in the Tokyo Stock Exchange, as well as

the relationship between price changes and volumes. Our results have
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deraonstrated some similarities and differences between the Japanese

and U.S. markets.

The intra-week periodicity in daily return in the TSE has shifted

from a previous Tuesday loss, as found by many authors, to a Monday

loss in the period under this study. Negative skewness and excess

kurtosis are found in daily returns; and this evidence of nonnormality

persists in data categorized by the day of the week. Daily returns

are slightly positively autocorrelated , while returns over a week or a

month are not significantly serially correlated. Although the returns

are characterized by fat tails, the stable Paretian hypothesis, which

was once postulated to account for this problem, is rejected on the

basis that the characteristic exponent is unstable under addition.

The mixture of normal distribution appears to be a better statistical

model. In particular, low order mixtures do sufficiently well to

describe the returns data.

We have measured trading volumes by three quantities and have

argued that the sales ratio is the best choice. Trading volumes exhi-

bit positive serial correlation and are unlikely to be good proxies

for information arrival. The volumes follow low order autoregress ive

processes with statistically significant time trends, although the

trends are only economically significant for volumes measured by sales

in numbers of shares.

The price-volume relationship in the TSE is weak and ambiguous.

However, the lack of a strong conclusion in this aspect may be due to

the use of aggregate market returns and the incompatibility of the

volume measures. Further studies using company data are required to

ascertain any regularities of this relationship.
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Footnotes

In this paper, return is defined as the continuously compounded
yield, computed as the first difference in the log price. We shall
use the terms price structure and return structure interchangeably.

2
Normal distribution is a special case of the stable Paretian

family. See Mandelbrot (1973) for a discussion of the problem of

infinite variance.

3
Hsu et _al. used a randomized sequence to uncover the shift in the

characteristic exponent.

4
See Appendix A. of Blattberg and Gonedes (1974) and Raiffa and

Schlaifer (1961 , § 7.9).

The MND model was earlier suggested by Faraa and Roll (1971). A.

Poisson mixture of normal distribution was considered by Press (1967).

The term "price change" here may be interpreted as price change
relative, or continuously compounded rate of return.

As shown in Table 2 below, the average daily return is only 0.1 I

percent with a standard deviation of 0.99 percent.

Q

Greenwald and Stein (1988, p. 16) concluded that "the stock
market crash of October 1987 was fundamentally a unique event, wholly
different in character from normal market behavior." If this conclu-
sion is accepted, observations of the crash event should be regarded
as outliers.

9
The drop in this week for the N225 index was 12.37 percent. From

Table 2 below, the mean weekly return is 0.49 percent with a standard
deviation of 1.80 percent.

It is recalled that N225 and N500 are price-weighted, while

Topix is value-weighted.

A distribution is said to be leptokurtic if its kurtosis coef-

ficient is greater than three, which is the kurtosis value for a nor-
mal distribution. Tests for symmetry and no excess kurtosis are

conducted in Table 2; and significance is indicated by an asterisk.
These tests assume independent sample observations. As shown in Table

3 below, the daily return series are slightly positively autocorre-
lated. This implies that the significance of the tests may be

overstated. However, for the kurtosis test, this problem is unlikely
to affect the results qualitatively, as the kurtosis coefficients are

quite large.

12
See Kon (1984) for discussions of this hypothesis and other

possibilities of nonstat ionarity in the mean and variance.
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13 2
The distribution of the Box-Pierce statistic for e was

established by McLeod and Li (1983).

14
Hamao et al. (1989) also used a moving average process of order

one to correct for residual autocorrelation in their study in inter-

national market links.

See Engle and Bollerslev (1986) for a survey of the ARCH litera-

ture.

Some authors considered mixed diffusion-jump processes. See

Akgiray and Booth (1986) for more details.

Fama and Roll (1968, pp. 818-819) provided expressions for these

convergent series.

1
The quantities required are the 0.05, 0.25, 0.50, 0.75 and 0.95

sample quantiles. These quantiles are different from those used by

Fama and Roll. The continuity corrections are critical for obtaining
good estimates of 8.

19
Al alternative method is the iterative regression procedure of

Koutrouvelis (1980, 1981). See Akgiray and Lamoureux (1989) for a

comparison of the two techniques.

The procedure suggested by Fama and Roll is not a significance
test in the usual sense. Conclusion is drawn by observing whether
there is any "obvious" shift in the estimates of a. Thus, the terms
"power" and "test" used here should not be interpreted strictly
s tat ist ically

.

? 1

Due to insufficient observations, monthly data were not con-
sidered in this exercise. Although we also estimated 8, the results
are not reported here, as our main objective is to test for the stabi-
lity of a and thus the acceptability of the stable Paretian law. '\s

pointed out by Akgiray and Lamoureux (1989), estimates of 8 are not

robust to small perturbations in the sample and their standard errors
are very large. Furthermore, as a approaches two, 8 loses its effects
on the distribution (see McCulloch (1986, p. llll)).

22
The optimization subroutine used in this study is DIJMTNF of the

1MSL library. Standard errors were calculated by numerically dif-
ferentiating the Hessian matrix using the DFOHRS subroutine. As the
daily return series are autocorrelated, the standard errors computed
may be downward biased. However, in view of the small magnitude of

the autocorrelation coefficient, this problem is unlikely to be

serious.

9 3
The failure resulted from reiterating on values of A^ straying

outside the feasible space. For example, Kon reported that when m =

3, only 15 of the 30 stocks reached well-defined optimum
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24
This transformation is a particular case of the choice probabi-

lity of a multinomial logit model (see, e.g., Ameraiya (1985, Chapter
9)). Using this transformation, we did not encounter any noncon-
vergence for all cases considered.

25
As is apparent from the L2 statistic, rejection of m = 1 against

m = 2 for the monthly N500 series is only marginally significant at 5

percent. Also, rejection of ra = 2 against ra = 3 for the weekly N225

series is significant at 5 percent but not at 1 percent.

26
Note that when ). are equal for all i, the MND is symmetrical.

27
For volume classified according to day of the week, r^ is

calculated for the subseries. Although there are gaps in the volume

subseries, r^ is still moderately large and statistically significant.

78
Some correct test results are presented in Table 7 below.

?9
If there is no residual autocorrelation, h is distributed asymp-

totically as a standard normal.
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Table I

Data Description and Correlation Coefficients

Sampling Correlation Number of

Interval S ampling Period3 Variables Coefficient Observations

b

Panel A: Prices

Daily 86/1/4 - 89/2/28 (Topix, N225) 0.9529 861

(Topix, N500) 0.9124 861

(N225, N500) 0.9455 861

Weekly 83/7/31 - 89/2/19 (N225, N500) 0.8666 288

Monthly 83/8 - 89/2 (N225, N500) 0.8766 66

Panel 3: Volumes^

Daily 86/1/4 - 89/2/28 (VI, V2) 0.9796 864

Weekly 83/7/31 - 89/2/19 (VI, V2) 0.9754 290
Monthly 83/8 - 89/1 (VI, V2) 0.9743 66

(VI, V3) 0.9241 66

(V2, V3) 0.9297 66

a
For weekly data, a week is designated by the date of the first day

(Sunday) of the week.

For daily data, the returns on October 20 and 21, 1987 are excluded.
For weekly data, the returns over the week beginning October 18, 1987 are
excluded.

c
The correlation coefficients calculated are for the first difference in

the log price, i.e., the continuously compounded rate of return. The prices
refer to the end-of-interval (day, week or month) records.

VI = number of shares traded (in billions) during the interval;

V2 = (VI x arithmetic stock price average) ./( total market value at the end
of the interval);

V3 = (sales value during the interval) ,/( total market value at the end of

the interval).

V3 is the sales as a proportion of the total market value. For daily and
weekly data, this series is not available and is approximated by V2. Both V2

and V3 are measured in percent.



Table 2

Summary Statistics of Returns

Data Meana
Standarda

Deviation
Skewness"
Coefficient

Kurtosis c

Coef f icient
Number of

Observations(n)

Panel A: Topix

All Days 0.106 0.992 -0.065 7.702*

Monday -0. 127 0.986 -1.231* 6.964*

Tuesday 0.019 0.894 -0.174 6.980*
Wednesday 0.171 1.060 0.732* 10.247*

Thursday 0.213 0.930 -0.083 4.871*

Friday 0. 180 1.093 0. 168 7.4 5 5*

Saturday 0.232 0.905 -0.321 4.398*

861

153

154

155

156

155

88

Test mean returns are equal Monday through Saturday, X c = 14.514".

Test mean returns are equal Tuesday through Saturday, x 7 = 4.120e .

Panel B: N225

All. Days 0. 112 0.940 -0.347* 7.4 80*

Mondav -0. 159 0.948 -1.317* 7.210*

Tuesday 0.027 0.8 50 -0.563* 6.385*

Wednesday 0.210 0.978 0.239 8. 509*

Thursday 0.215 0.914 -0. 102 4.538*
Friday 0.180 0.996 -0.20 7 9.649*

Saturday 0.2 54 0.866 -0.293 3.833

Weekly 0.4 90 I. 795 -0.38 5* 4.092*
Monthly 1.890 4.486 -0.2 82 4.002

861

153

154

155

156

155

88

288
66

Test mean returns are equal Monday through Saturday, Xc = 20.776d .

Test mean returns are equal Tuesday through Saturday, x, = 5.001 e .



Table 2 (continued)

Data Meana
Standard 3

Deviat ion

Skewness °

Coefficient
Kurt os is c

Coefficient
Number of

Observat ions(n)

Panel C: N500

All Days 0.078 0.84 5 -0.316* 10.199*
Monday -0.156 0.856 -1.886* 11.666*

Tuesday 0.007 0.764 -0.821* 7.585*

Wednesday 0. 154 0.867 0.821* 12.237*
Thursday 0. 157 0.840 -0.093 5.034*

Friday 0.150 0.908 0.086 12.050*

Saturday 0.211 0.740 -0.318 5. 519*

Week.lv 0.361 1.717 -0.309* 3.886*
Month Iv 1.280 4.453 -0.635* 4.564*

861

153

154

155
156

155

88

288
66

Test mean returns are equal Monday through Saturday, Xr = 18.989".

Test mean returns are equal Tuesday through Saturday, x7 = 4.487e .

Mean and standard deviation are given in percent.

Skewness coefficient is the third sample central moment divided by the

third power of the sample standard deviation. An asterisk denotes a case
where the skewness coefficient differs from zero by more than twice the

standard error, which is approximated by (6/n)l'2
#

Kurtosis coefficient is the fourth sample central moment divided by the

square of the sample variance. An asterisk denotes a case where the kurtosis
coefficient differs from three by more than twice the standard error, which
is approximated by (24/n)'- 2.

M.0.05 ' ll - 07 '-

'"J.O.OS ' 9 - 488 -



Table 3

Autocorrelation la Returns 3

e
t

2
e
t

Sampling Runs Runs
Interval Index r

,

b r b
2

Test c Q(24)d
'l"

r b
2

Test c Q(24)d

Daily Topix 0.13

(0.03)

-0.01

(0.03)

-3.82 57.9 0.13

(0.03)

0.23

(0.03)

-5.45 176.3

N225 0.13
(0.03)

-0.02
(0.03)

-1.91 51.2 0.20
(0.03)

0.31
(0.03)

-6.77 306.0

N500 0.12
(0.03)

-0.02

(0.03)

-2.33 64.7 0.20

(0.03)

0.34

(0.03)

-5.02 378.1

Weekly N225 0.01

(0.06)

0.00

(0.06)

-0.05 8.6 0.10

(0.06)

0.27

(0.06)

-0.56 57.5

N500 -0.01

(0.06)

0.03

(0.06)

-0.10 11.0 0.00
(0.06)

0.08

(0.06)

0.93 40.9

Monthly N225 -0.04

(0.12)

0.00
(0.12)

0.39 18.8 -0.04

(0.12)

0.13
(0.12)

-1.89 6.3

N500 0.07 0.06 -0.87 19.7 -0. 10 0.00 1.04 9.0

(0.12) (0.12) (0.12) (0.12)

This table summarizes tests for autocorrelation in the residual (deviation

from mean) returns, denoted by e t . Tests for both e c and e c are presented. For

daily data, the differential return on Monday as against the rest of the week, are
accounted for. The residuals are obtained from the following regressions:

Topix: y c
= 0.157 - 0.284d c + e c

N225: y t
= 0.170 - 0.330d t + e t

N500: y t
= 0.129 - 0.285d t

+ e t

where d
t

= 1 for Monday and zero otherwise.

v\ and r2 are, respectively, the first and second order sample autocorrela-

tion coefficients. Figures in parentheses are the standard errors.

c
"The runs test statistic is asymptotically distributed as a standard normal

if there Is no autocorrelation.

Q(24) is the Box-Pierce portmanteau test statistic for autocorrelation, which

is asymptotically distributed as a chi-square with 24 degrees of freedom. At 5

percent significance level, the critical value is 36.4.



Table 4

Es timat es of the Charaeterls tic Exponent (a) o f the

Stable Paretlan Distribution for Market Returns3

Sampling Sum Sizes (k)

Index Scheme"3 12 4

1.584 1.388 1.749 1.586
1.559 1.729 2.000 2.000
1.758 1.470 L. 706 1.371

1.538 1.686 1.708 2.000
1.671 1.798 2.000 1.698

Panel A: Daily Data

Topix C 1.544
R

N225 C 1.558

R

N500 C 1.606
R 1.869 2.000 1.852 1.905

Number of

Observations: 861 430 215 143 107

Panel B: Weekly Data

N225 C 1.471 1.619
R 2.000

N500 C 1.526 1.626
R 2.000

Number of

Observations: 288 144

Estimates were calculated using McCulloch's (1986) method. Due
to Insufficient observations, monthly data as well as weekly data with
sum size greater than two were not considered.

C denotes chronological sampling and R denotes randomized
sampling.



CU

_
10

E-

50

c
Li

3

0)

Oi

CU
_•
u
to

_•
i-i

Ij

4-1

50

t-l

c

(0

E
l-i

o
z

1-1

r
0)

50

C

to •H
1-1 u
CO 1-1

o U-l

4J iu
u u
a c
^ u

4-1

T3 c
50 tu
4_) 50 1-1

c 09 (J

0) 0> •y->

e c U-J

o S U-4

z: 0) tu

M c
T3 w CJ
CU
^J
.—1 c
a TJ o
b1 l-i —

1

>—

i

to u
T) rfl

C 1-1

to >
M d)

tfl a

c
to

1)

2

a
o o
O O 50C i-1 4-1

i-l 4-1 50
i—

I

to CU

a> _ H
_•

CM M3 co uo <r
co l-H m _ o

CM • • • • »

>J qo oo o ON <r
<r en o> —

i

_
50

L-i

CU

4-1

CU

e
to

M
(0

CI-

TS
CU

CM
3.

4)

T3
C

SO —I
c to
1-1 >
_. k-1

Q. CU

E 4-1

<0 C
5/5 i—

i

00 CM O O —

<

OO
10 O * (C c c*— pi 0O <T CO —

'

r- pi vO n O o

-T CM <T V40

r~~ cr iT 3C
c^ O cr OC

m _ pi vO
vD 00 <r 1—

1

C c <r m c r^

c C
1

C
1

c
l

o C
1

cm cm o o in uo
o> ct> <r <r <r -a

-

cr> oo o^ a- oo oo

c c o o o o

P-- *£> CM CM 00 00
CM O —i —i O Pi_____ o

• •••••
C C O O o o

<l >j -J n

co uo o oo
<T 00 OO O
<T CO CM CO

• • • •

o c o otill

-< Irt vf N
oo a\ _ —

.

pi pi pi pi

O O —

i

—

•

OO CT\ v£> vO
i3- <r co co

• • • •

o o o o

_ n o
CO CO o
00 00 o>

U0 CM —
" <T CO CM

oo o uo oo no <r
oo —

<

pi —

i

cr> cm

—

•

o —
• o — o

o no oo uo
00 CO U0 CO
^O O ^D O

pi vO
O CM
vO O

o o o o o o

UO co
On 00

o o

pi oo cm ~> oo <r
CM CM I— CO O CM_ o — o — o
o o o o o o

o
CM
UO

CO M0
CM OO CM

• •_ O

CM _
—> CM

CM O

CO UO
UO UO
vO _

• •

O O

co o
CO Pi
O CM

CU

X CU
1-1 UO O
a CM o

CM UO
H Z Z

to

UO o
CM O
CM UO
z z

cu

CU

3

CM O <TO — vO
O O V40 UO

• • • •

co .j- <r it

CM V40 UO
00 CO CO

O CM Pi vD
• • • •C O O C

I I I

CM V4d O CO
uo oo —i uo< «I <f -J

• • •

<r -a* <r <r

o o c o
OO 0> 00 00
00 00 CM CM

00

<r 00 CM O oo —1 uo
O oo Pi CM CM o 00

• • • • • • •

UO UO mD — o o- CM

OO
CM
o

vD pi
uo <j-

Pi CO
• •

co o

CM Pi 00 UO
UO 00 CM 00
»T CO Pi O

• • • •

iT O — —

'

pi <r
OO pi

o SO D CM
OO <T CM pi.

oo in m CO
• • • •

^H o CM —t
'

1

'

SO
in o
CM o
CM m
z z

o



Table 5 (continued)

The estimates were obtained using maximum likelihood method.
Mixture of normal distributions (MND) were estimated with increasing
order until there was no significant increase in the log-likelihood,

as indicated by the likelihood ratio statistic. Then the accepted MND
model was tested for (i) equality of mean, and (ii) equality of

variance, separately. The results reported take into account the

acceptance (or otherwise) of these hypotheses. Of all models esti-
mated, no nonconvergence was found. A.part from the weekly N225
returns (which follow a third order MND) and the monthly N225 returns
(which follow a simple normal distribution), all other returns are
described by a second order MND.

Figures in parentheses are standard errors. A
i

is recovered from
Equation (4). The mean and standard deviation are given in percent.

c
L[ is the likelihood ratio statistic of testing against a MND of

one order higher. L2 is the likelihood ratio statistic of testing for
the acceptability of a MND of one degree lower. Both statistics are

2
distributed as x^> with critical value at 5 percent being 7.82.

d
These are the moments implied by the estimated MND. Definitions

of the skewness and kurtosis coefficients are given in footnotes b and
c of Table 2. Figures in parentheses are the sample results extracted
from Table 2.

e
For these cases, the hypotheses Hq : \i

^
= U 9 was not rejected at

5 percent level. When this constraint was relaxed, closer fit for
the mean was obtained, although this was achieved at the expense of

poorer fit for the skewness and kurtosis.

The weekly N225 data follow a MND of third order. The parameter
estimates and their standard errors are given below:

v
l

U
2 »

3
°

{

o
2

a
3

\
{

X
2

-5.701 0.437 0.795 0.127 1.964 0.801 0.010 0.674
(0.079) (0.165 (0.165) (0.054) (0.151) (0.154)

Tests of the hypotheses (i) Ui = U9 = u 3 and (ii) 0, = a? = <? 3 were
rejected at 5 percent level.

gc
L„ is not defined in this case.



Table 6

Summary Statistics of Volumes

Skewness Kurtosis , Number
Standard Coef- Coef- r of Obser-

Data Mean Devia tion L4£i®Jl£!L f icient a vat ions

Panel A: Vl c

All Days 0.902 0.482 1.100 4.264 0.693 863

Monday 0.720 0.344 0.627 3.027 0.460 153

Tuesday 0.885 0.459 0.922 3.586 0.509 155

Wednesday 1.048 0.538 0.964 3.455 0.597 156

Thursday 1.006 0.486 0.966 3.840 0.555 156

Friday 1.039 0.503 1.021 4.038 0.479 155

Saturday 0.565 0.268 1.230 5.129 0.264 88
Weekly 3.558 2.200 1.125 3.315 0.797 289

Monthly 15.317 8.329 0.998 3.404 0.733 65

Panel B: V2d

All Days 0.294 0.150 1.153 4.547 0.674 863

Monday 0.234 0.105 0.556 2.898 0.411 153

Tuesday 0.287 0.142 1.046 4.133 0.462 155

Wednesday 0.341 0.166 1.010 3.804 0.577 156

Thursday 0.328 0.154 1.119 4.331 0.5 20 156

Friday 0.337 0.153 1.006 3.886 0.438 155

Saturday 0.136 0.082 1.290 5.800 0.201 88

Weekly 1.239 0.647 1.162 4.402 0.741 289

Monthly 5.296 2.351 1.216 4.421 0.649 65

Panel C: V3 d

Monthly 4.746 1.544 0.804 2.804 0.593 65

Definitions of the skewness and kurtosis coefficients are given

in footnotes b and c of Table 2. In view of the large and highly
significant autocorrelation coefficients, tests for significant dif-
ference from the normal quantities based on the (uncorrected) asymp-

totic standard errors (see Table 2) were not conducted. See Table 7

for the correct test results.

b
t\ is the sample first jrder autocorrelation coefficient. Al

1

estimates (except for V2, Saturday) are significantly different from
zero.

c
VI is the sales in billion shares.

V2 and V3 are the sales as a percentage of the total market

value. See footnote d of Table 1.



Table 7

Estimates of the Equation3

V
c

- 6 +8 lVl + Vt-2 + 8
3
e *

npling
:erval Data^

Estimates
Skewness
Coef-
ficient

Residual Analysis
Kurtosis
Coef-
ficient

Lly

>kly

VI 0.705
(0.023)

V2 0.709

(0.023)

VI 0.667

(0.044)
V2 0.653

(0.045)

ithly VI

V2

V3

0.634 -0.286
(0.125) (0.127)

0.595 -0.268
(0.126) (0.128)
0.454

(0.115)

0.0377
(0.0130)

0.2911

(0.0608)
0.0007
(0.0002)

2.4794
(0.6496)
0.0060
(0.0019)
0.0027
(0.0012)

1.046
(0.083)
1.057

(0.083)

0.819

(0.144)
0.699
(0.144)

0.708
(0.302)
0.848
(0.302)
0.255

(0.302)

5.920
(0.167)
6.040

(0.167)

5.563

(0.287)
5.197

(0.287)

6.091

(0.595)

6.463
(0.595)
3.298

(0.595)

-0.015

-0.007

-0.054

-0.055

0.027

0.016

0.049

-0.606

-0.293

-1.376

-1.431

1.639

1.569

0.947

Volume variables were regressed on their lagged values and a time trend. The
ported equations were selected based on the following criteria: (i) the residuals
ss the autocorrelation test, and (ii) all regression parameter estimates are signifi-
ttt.

See footnote d of Table 1 for the definitions.

For daily data five dummy variables representing different mean values were
eluded. All intercepts and dummies were statistically significant. Furthermore, the

ramies were statistically different from one another. The results for the intercepts
d dummies are not reported. The time variable was rescaled in such a way that Bo
presents the change in volume over one year. For example, the daily volume as

asured by VI increases by 0.0377 billion shares per day in one year and the weekly
lurae as measured by V2 increases by 0.0007 percent per week in one year.

d .

h is Durbin's h-statistic for testing residual autocorrelation. It is approxima-
ly distributed as a standard normal if there is no autocorrelation.



Table 8

Regressions of Return on Volnne

Price Dependent
Variable

Regression Estimates*1 Diagn
DW

OS t LCS^
Index Constant Dummy Volume r

l

Panel A: Daily Data

Topix AlogP -0.153 -0.211 I. 01 1 1.628 0. 135
t

(AlogP )
2

(0.078) (0.089) (0.226)*
1.042 -0.026 -0. L46 1.764 0.118

t
(0.205) (0.232) (0.591)

lAlogPj 0.707 -0.031 0.015 1.546 0.227
(0.057) (0.064) (0. 163)

N225 AlogP -0.084 -0.270 0.831 1.740 0. 129
t

2
(0.074) (0.084) (0.214)*

(Alogp r 1.021 -0.002 -0.426 1.609 0. 196
t

(0.179) (0.203) (0.516)
|AlogP

|
0.707 -0.022 -0.082 1.465 0.267

c
(0.053) (0.060) (0.153)

N500 AlogP 0.033 -0.262 0.313 1.7 54 0. 122
t

9
(0.067) (0.076) (0.194)

(AlogP)" 0.900 -0.004 -0.615 1.622 0.189
L

(0.173) (0. 195) (0.499)

|AlogP
|

0.655 -0.025 -0.200 1.487 0.2 57
t

(0.049) (0.055) (0. 141)

Panel 1\: Weekly Data

N225 AlogP^

2

-0. 161

(0.225)
0.526

(0. 161)*
2.023 -0.012

(AlogP )- 1.932 1.226 1.916 0.041
t

(0.701) (0.502)*
AlogP 0.9 75 0.368 1.880 0.059

t
(0. 148) (0. 106)*

N500 AlogP
t

2

0.202

(0.219)

0. 129

(0. 156)

2.027 -0.013

(AlogP ) 3.04 7 1.018 2.072 -0.037
t

(0.630) (0.451)
lAlogPj 1.22 7 0.095 2. 148 -0.07 7

(0. 143) (0. 103)



Table 8 (continued)

Price Dependent
Index Variable Constant

Regression Estimates 3

Dummy Volume
Diagnostics

"

DW n

Panel C: Monthly Data

N225 AlogP 0.554
C

- (1.389)
(AlogP ) 13.917

(11.227)
|AlogP

|
3.036

(0.937)

N500 AlogP 1.732

2
(1.388)

(AlogP ) 19.364

(11.015)
AlogP, 3.849

(0.950)

0.254 2.097 -0.051

(0.240)
1.852 2. 168 -0.085

(1.940)
0. 149 2.229 -0.116

(0.162)

-0.079 1.841 0.074
(0.240)
0.400 2.281 -0.143

(1.904)
-0.067 2.342 -0.184

(0.164)

V2 was used as the measure of volume in the regressions. In

accordance with the results of Table 2, a dummy variable to take
account of differential mean return was added in the regression for

daily data. The dummy is defined as one for Monday and zero other-
wise. Estimates of the volume coefficient that are significant at 5

percent level are marked by an asterisk.

DW is the Durbin-Watson statistic and r is the sample first
order autocorrelation coefficient.
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