


UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA-CHAMPAIGN
BOOKSTACKS



Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/recurrentnewtona93139kuan





Faculty Working Paper 93-0139

330 STX
B385

1993:139 COPY 2

THE LIBRARY OF THE

JUL 3 1993

UNIVERSITY OF ILLINOIS

lipnAMA-f 1— * ' "*'

A RECURRENT NEWTON ALGORITHM AND
ITS CONVERGENCE PROPERTIES

Chung-Ming Kuan
Department of Economics

Bureau of Economic and Business Research

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign





BEBR
FACULTY WORKING PAPER NO. 93-0139

College of Commerce and Business Administration

University of Illinois at CIrbana-Champaign

June 1993

A RECURRENT NEWTON ALGORITHM AND
ITS CONVERGENCE PROPERTIES

Chung-Ming Kuan
Department of Economics





A RECURRENT NEWTON ALGORITHM AND
ITS CONVERGENCE PROPERTIES

Chung-Ming Kuan

Department of Economics

University of Illinois at Urbana-Champaign

June 17, 1993

f The author thanks Tung Liu for very useful comments and suggestions.





Abstract

In this paper a recurrent Newton algorithm for an important class of recurrent neural

networks is introduced. It is noted that a suitable constraint must be imposed on recurrent

variables to ensure proper convergence behavior. The simulation results show that the

proposed Newton algorithm with the suggested constraint perform uniformly better than

the back-propagation algorithm and the Newton algorithm without the constraint, in

terms of mean-squared errors.





1 Introduction

It has been recognized that feedforward neural networks may have difficulty in represent-

ing certain sequential behavior of a target sequence, [1]. This deficiency hampers the

applications of feedforward networks in the fields, such as signal processing and dynamic

control, in which temporal structure plays an important role. Researchers are therefore

motivated to study the so-called recurrent networks, e.g., [l]-[8]. A recurrent network can

be obtained from a feedforward network by permitting additional, internal feedback chan-

nels, hence is capable of capturing more dynamic characteristics than does a feedforward

network.

Owing to the existence of internal feedbacks in recurrent networks, learning algorithms

for feedforward networks are not directly applicable. Kuan, Hornik, & White [9] propose

a recurrent back-propagation (BP) algorithm and establish its almost sure convergence

property under the condition that feedback connections are suitably constrained. Because

the recurrent BP algorithm also performs a gradient search in the parameter space, it,

as other gradient-based learning algorithms, converges very slowly. However, it is well

known in system identification literature that a Newton algorithm is computationally

and statistically more efficient than gradient-search algorithms. In this paper, we first

introduce a recurrent Newton algorithm for an important class of recurrent networks and

then sketch its almost sure convergence property. Similar to the recurrent BP algorithm,

the recurrent variables must be constrained suitably in the recurrent Newton algorithm to

ensure meaningful convergence. Our simulation results strongly indicate that the recurrent

Newton algorithm with the suggested constraint yields better convergence results than the

recurrent BP algorithm and the Newton algorithm without the constraint.

This paper is organized as follows. We first introduce a class of recurrent networks

in section 2. The recurrent Newton algorithm and the constraint needed for recurrent

variables are discussed in section 3. Simulation results are reported in section 4. The

paper is concluded by Section 5. An example of the Newton algorithm is given in the

Appendix.



2 Recurrent Network

Let 0, H , X, and i? denote column vectors of m network outputs, q hidden unit acti-

vations, n network inputs, and p internal feedbacks, respectively. The elements of these

vectors are denoted using corresponding lower cases. At time t, a recurrent network with

a single hidden layer and delayed internal feedbacks can be represented in the following

generic form:

t
= *{b + fl'H t ),

H
t

= Vic + f'Xt + S'Rt), (1)

where $ and $ are vector- valued. functions, and

R t
= A{Xt-i,Rt-i;W), (2)

with A also a vector- valued function and W the /.'-dimensional vector of network connection

weights 6, /3, c, 7, and 6. If Rt is chosen to be Ot-i, (1) is a network with output feedbacks,

Jordan [1]; if R t
is chosen to be Ht-i, it is a network with hidden-unit activations feedbacks,

Elman [8]. When R t
= 0, this network simply reduces to a feedforward network. The

fully- recurrent network of [7] can also be defined in a similar way with suitably defined

R t
entering all the units. In this paper, however, we will confine ourselves to the class of

recurrent networks described in (1) and (2).

Let Yt denote the vector of m target variables. In a dynamic environment with time

series data, important temporal structures are embedded in lagged targets Yt-i, Yt-2, etc.

Thus, it is quite typical to use lagged targets as inputs for feedforward networks to capture

dynamics. Clearly, networks with too few lagged targets will not be able to capture certain

temporal structures that depend on a long history of targets. On the other hand, storing

all the past information in memory is practically implausible. This situation is similar

to building a linear AR (autoregressive) model in which a suitable number of AR lags

is typically difficult to determine. This difficulty can be circumvented if a network has a

"memory" device to store past information compactly. Recurrent networks by construction

have this property. To see this, note that by recursive substitution,

Rt = A(Xt-uRt-uW)

= A(X
t
- U \(X t _ 2 ,R t _ 2 ;W);W)



= £(X<-\WO, (3)

where AT'
-1 = {Xo,X\, . . . , At_i} is the collection of all previous inputs. As R t

depends

on the entire history of inputs and all the connection weights in a complex manner, intro-

ducing recurrent variables to a feedforward network is somewhat similar to adding "moving

average" terms to AR models. (In what follows, we also write R t
as R t

{W) to signify its

parameter dependence.) Thus, recurrent variables serve to summarize past information

in a compact form, in terms of network outputs or hidden-unit activations. A recurrent

network may therefore be interpreted as a parsimonious network model which incorporates

all the past network inputs without storing all of them in memory. It is this property that

makes recurrent networks attractive in dynamic applications.

From (1) and (2) we can write the output of a recurrent network as

t = ${b + f3'V(c + yX t + 6'R t
(W)))

= : F{Xu R t
(W)-W)-

or by (3), Ot —'. /(A*; W) is also, a function of the entire history of network inputs.

Given the mean-squared error (MSE) objective function, the parameters of interest are

W* which minimize

lim E(yt -/(X t;W))a

t—>oo

= lim TE(Yt
- JEiYtlX'))

2 + lim E(IE(rt |

A'*) - /(A (

; W))
2

; (4)
t—*oo t—»oo

here, the limit is taken to permit system feedbacks. Observe that the first term on the

right-hand side of (4) is an intrinsic error which does not depend on W . Hence, W*

minimizes the limit of the approximation error: IE( IE( V^l
A"

£

)
- f{X t\W))2

in (4). It is

well known that IE(y^|A (

) is the best Z/2-predictor of Y
t
given the a-algebra generated by

X f
, denoted as a{X l

). As r£(}^|Aj) is measurable with respect to <r(A'
f

),

JE(Y
t
- E(y,|A e

))
2 < ]E(Y

t
- lE(Y

t
\X

t ))
2

.

Therefore, a recurrent network may characterize the behavior of Y
t
better by approximat-

ing the conditional mean function E(y
(
|A <

), whereas a feedforward network with input

Xt can only approximate E(yi|A«).



3 A Recurrent Newton Algorithm

It should be clear that any learning algorithm (on-line or off-line) obtained from the

objective function (4) must take into account the fact that R
t
(W) depends on network

connection weights. Let Et be the network error, i.e., E t
= Y

t
— F(Xt , R t

(W); W), which

also depends on W directly and indirectly through the presence of R t (W). The derivatives

of E with respect to W are, by chain rule,

VEt
= -Fw(Xu R t

{W)-W) - VRt(W) FR(Xt ,R t
(W);W),

"> v ' v v ' S v '

kxm kxp pXm

where Fw and Fr are matrices of the first order derivatives of F with respect to W and

R, respectively. Because the BP algorithm for feedforward networks contains only the

term Fw , it is clear that it does not follow a correct gradient direction when recurrent

variables R t(W) are present. Therefore, it is extremely important for an algorithm in

recurrent networks to incorporate the additional term, V

R

t
(W) Fr, so as to maintain a

correct search direction. A learning algorithm that ignores this term need not converge

to a MSE minimizer. In light of (3), it is evident that computation of VR
t
(W) requires

all the past inputs. Hence, such computation becomes practically formidable because all

the past inputs must be stored in memory and because computation will increase with t.

This problem can be circumvented by recursively approximating VR
t
{W) via

VR
t
(W) = Aw{Xt-uRt-i{W);W) + VR

t
. x
{W) AR(X t _ u R t

_
x
(W)-\V),

" V ' * V '
V

V '

kxp kxp pXp

where Aw and Ar are matrices of the first order derivatives of A with respect to W and

R, respectively. This observation motivates the recurrent BP algorithm studied in [9].

As a gradient descent algorithm, the BP algorithm for feedforward networks converges

very slowly and is statistically inefficient, see e.g., [10]. The recurrent BP algorithm

therefore has the same disadvantage. In numerical optimization, better convergence results

can be obtained from the Newton method with a search direction based on the second-order

derivatives (the Hessian matrix). When the objective function is quadratic, the Newton

method converges to the minimum of the objective function in one iteration. To ensure that

the search direction always points "downhill", it is also typical to use a positive-definite

matrix, such as the outer product of the gradient vector, to approximate the Hessian



matrix. In view of this, a natural extension of the recurrent BP algorithm is an algorithm

analogous to the Newton method in numerical optimization. This type of algorithms is well

known in system identification literature, e.g., Ljung & Soderstrom [11]. It is shown in [10]

that the stochastic Newton learning algorithm for feedforward networks is computationally

and statistically more efficient than the BP algorithm; in particular, it is asymptotically

equivalent to the nonlinear least squares estimator under very general conditions. In

what follows, a variable is written with the "hat" symbol if it is evaluated at parameter

estimates. Bearing the issue of taking gradients correctly in mind, a straightforward

Newton algorithm is as follows.

E, = Yt -F(Xu Rt;Wt ), (5)

VEt
= -Fw{Xu Rf,Wt)- bt FR(Xu Rt;Wt ), (6)

Wt+l = Wt
-

Vt G;^(VE t Et ), (7)

Gt+i = Gt + Vt{VEt VE't -Gt), (8)

Rt+1 = A(Xt,Rf,Wt ), (9)

A+i = Aw(Xt ,R t
;W

t ) + Dt AR(XuRuWt ). (10)

where {77*} is a sequence of learning rates of order l/t, and D
t

is used in lieu of VR t
.

Clearly, if R is not present in the network, a recurrent network is just a feedforward

network, and the recurrent Newton algorithm simply reduces to the Newton algorithm for

feedforward networks, [10]. In contrast with the recurrent BP algorithm, the recurrent

Newton algorithm contains an additional updating equation (8) which recursively updates

the outer product of VE
t
so as to provide an approximate Newton direction for (7).

There are some basic difficulties associated with the proposed algorithm. First, (7)

involves matrix inversion which is not desirable in a recursive algorithm. Second, G t

must be a positive definite matrix to assure correct search direction. In practice, some

modifications are needed to avoid these difficulties. Let Pt+ \ — r)
t G~[+ x

and v
t
— ( 1 —

Vt)Vt-i/Vt- Then by a matrix inversion formula,

Pt+1 = -(P
t
-P

t
VE

t
(VE'

t
PtVE t + u

t r l VE'
t
P

t ).

For the network with a single output (i.e., m = 1) so that VE
t

is k x 1,

P
tVEtVE'tPt

\

VE'
t
P

tVEt + v
tl

(ID



which does not involve matrix inversion. For the network with multiple outputs (i.e.,

m > 1), we follow the approach of Bierman [12] and compute P
t
using a sequence of

single-output algorithms in which no matrix inversion is needed. This leads to a modified

algorithm which contains (5), (6), (9), and (10) in the original version but substitutes the

updating equations below for (7) and (8):

Wt+l = W
t
-Pt+l(VEt Et ), (12)

P&\ = Pu (13)

ti-i) _ Hi-i
l)VE

j,tVE'j,tP&
1)

VE'
Jit Pli-

l)VE]tt + v
t

A+ i = /#?/«*. (15)

Pi+i, if Pt+ i
- elk is p.s.d.,

-n+i — S - (lo)
Pt+i + Mt+i, otherwise,

where VEht is the j-th column of VE
t , "p.s.d" stands for positive semidefinite, f is a

small positive constant, and M
t+\ is chosen to make Pt+\ — eh a p.s.d. matrix. Note

that in (13)—(15), Pt+i is updated as each output unit is added sequentially, and that

(16) implements a correction ensuring Pt
to be a p.s.d. matrix. This modified version is

analogous to the Newton algorithm considered in system identification literature; for more

details and related numerical issues of the Newton algorithm we refer to [11, Chap. 6]. A

simple example of this modified algorithm is given in the Appendix.

Let 9 := [W (vec /*)']' be the s-dimensional column vector of parameters, where the

vec operator stacks all columns of a matrix into a column vector, and 8
t
be its estimate.

To prevent 6
t
from diverging to infinity, it is also standard to impose a projection device

k on these estimates. Given a compact parameter space 0, if 9
t 6 0, x{9

t ) = 9
t ; if 9

t $ 0,

x(9 t ) takes a value in 0. The recurrent Newton algorithm proposed in this paper is the

modified algorithm discussed above together with a truncation device on 9
t

. In practice,

we choose large truncation bounds for b
t , t , c t , jt , and P

t
so that the behavior of these

estimates is virtually not affected; to ensure proper convergence behavior, however, some

restrictive bounds on the estimates of recurrent connection weights, 6
t , are needed. These

bounds are discussed below.

The almost sure convergence property of 9
t
can be proved by combining the results

in Kuan & White [10, 13], which are based on the compactness approach of the ODE

6



(ordinary differential equation) method due to [14]; see also [9]. To reduce technicality,

we do not provide a formal theorem but only sketch this convergence property. Write

Zt (9) = [Y
t

' X{ R t (9)' (vec D
t
(9))'}'

and Zt
= Z

t (9 t )- Then the updating equations
(
12)—( 16) can be written compactly as

Ot+x =0t + VtQ(ZfJ t ). (17)

Let

Q(0)= limIE[Q(Zt (0);0)];
t—>oo

note that it is just the first order condition of (4). Under very general conditions on

the data Yt and Xt and network functions $ and #, if the recurrent function A is a

contraction mapping in R (i.e., for each x and 0, |A/?(x,.;#)| < «o < 1), it can be shown

that 9
t
eventually behave like the solution path of the ODE 9 = Q{9) and converge with

probability one to the set of all locally asymptotically stable equilibria in for this ODE.

If this set contains only finitely many point, t
converges to one locally asymptotically

stable equilibrium, hence a local minimum of (4).

Typically, the aforementioned convergence property holds when $ and # are continu-

ously differentiate of order two; most of commonly used network functions, such as the

logistic or hyperbolic tangent functions, satisfy this property. On the other hand, the

contraction mapping condition on A is crucial and is not satisfied automatically. In view

of (3), Rt could "explode" if A is not a contraction mapping, because the effects of x
t

would accumulate very rapidly. Even when A is a bounded (or squashing) function, this

condition is still needed; otherwise, R t
would be approaching to the upper or lower bound

of A in a short learning period. For example, given an Elman network so that A = $, if $

is the logistic function, then hidden unit activations would be close to zero or one if 9 is

not a contraction mapping in lagged hidden-unit activations. This causes "exaggeration"

of the behavior of hidden units and invalidates the learning results. If A is a contraction

mapping, the recurrent variables in fact implement an exponentially forgetting memory

of the data sequence and are well behaved essentially. (We note that the contraction

mapping requirement of A is similar to the "invertibility" condition for time series models



with moving average terms.) Let M$ = supe $'(e) and My = sup u $'(«). From [9], the

contraction mapping property for the Jordan network is satisfied when

2iWii<(^Miri
,

where |.| stands for Euclidean norm, and for the Elman network, it is satisfied when

That is, the connection weights must be suitably constrained during the learning process

so as to ensure proper convergence behavior. Note that in the Jordan network the con-

nection weights /3's must be restricted; hence the representability of the Jordan network

is unavoidably affected by this constraint. In the Elman network, however, only recur-

rent connections are subject to the constraint so that feedforward part of the network

is not affected. Thus, as far as the representation capability of a network is concerned,

the Elman network seems to be more desirable since less network connection weights are

restricted. It is straightforward to verify that some sufficient conditions ensuring the con-

traction mapping property in the Elman network are that \6ij\ < 4/q for all i and j if #

is the logistic function and that |£,j| < \/q for all i and j if ty is the hyperbolic tangent

function. We stress that such restrictions are not only of theoretical interest but also of

practical importance, as shown in the simulation results below.

4 Simulations

To evaluate the performance of the proposed Newton algorithm, we conduct the following

simulations. The target variables yt, t = 1,. ..,T, are generated from three models: (1) a

bilinear model:

y t = QAyt-i - 0.3^-2 + 0.5yt-i€t-i + u,

where €t are independent ./V(0, 1); (2) a Henon map:

x t
= 0.3yt _i,

yt = 1 + x
t _i - 1.4y

t

2
_ l5



where yo = —lxu and j/_i = 0.5 x u, u is the uniform random variable on [0, 1]; (3) a

SETAR (self-exciting threshold autoregressive) model:

f 0.9t/t -i + Q, |ft-i|<l,
yt = <

[ -0.3yt_!+Q, |y ( _!| > 1,

where e
t
are independent iV(0, 1). In the first two models y t

depend on its own past values;

in the SETAR model y t
depends only on yt-\- We include the third model to see how

the algorithms perform when a recurrent network is not really needed. In the simulations,

the sample size T is 1000, and the number of replications is 200. The network inputs are

lagged target variables y t-\ and yt-?- The network activation function $ is the identity

function and $ is the logistic function. We estimate the Elman network with 4-6 hidden

units using four algorithms: the BP and Newton algorithms, each with and without the

constraint \6{j\ < 3.995/^, where q is the number of hidden units. The initial feedforward

connection weights (/?'s and 7's) are generated from ./V(0,1) and recurrent connection

weights (<S's) are generated from 10 X A(0, 1). This allows us to assess the effectiveness of

the proposed constraint more easily.

In the simulation MSE at each recursive step is recorded and averaged over 200 repli-

cations. The averages of MSE's from the last 500 recursive steps and the last MSE's in

the final (1000-th) recursive step are summarized in Table 1. We observe from this table

that:

1. For all cases considered, the Newton algorithm with the suggested constraint yields

lowest average and last MSE, and the BP algorithm without the constraint yields

the highest average and last MSE. The Newton algorithm without the constraint

performs even better than the recurrent BP algorithm with the constraint.

2. The average and last MSE of the (Newton and BP) algorithms without the constraint

may be increasing with the number of hidden units. Except for the SETAR model,

the average and last MSE of the algorithms with the constraint decreases with the

number of hidden units.

The first result shows that the Newton algorithm with the suggested constraint performs

uniformly better than the other three algorithms in terms of MSE's. It is also interesting

to note from the second result that adding more hidden units need not result in lower MSE



if a learning algorithms is used without the constraint. In the SETAR model, a recurrent

network is not really needed; hence the Newton algorithm with the constraint results in

similar final MSE regardless of the number of hidden units. However, the MSE of the BP

algorithm with the constraint actually increases with the number of hidden units. We also

observe from the simulation results that, after some recursive steps, the MSE's of the four

algorithms have the following relationship:

Newton with the constraint

< Newton without the constraint

< BP with the constraint

< BP without the constraint.

To conserve space, we only plot those MSE's for the networks with 6 hidden units in

Figures 1-3; the MSE's of the BP algorithm without the constraint are not included in

the figures because they are too large relative to MSE's from other algorithms. From

these figures, it can be seen that the Newton algorithm without the constraint behaves

unstably and may produce very large errors during the learning period. It can also be

seen that both the Newton and BP algorithms with the constraint are well behaved, but

the Newton algorithm results in much lower MSE and converges much quickly than does

the BP algorithm. These results clearly show the superiority of the proposed algorithm.

5 Conclusions

In this paper we propose a recurrent Newton algorithm which extends the recurrent BP al-

gorithm introduced earlier to allow for a Newton search in the parameter space. To ensure

proper convergence behavior, a constraint must be imposed to prevent recurrent variables

from "exploding". The simulation results demonstrate that the proposed algorithm with

the constraint performs uniformly better than other algorithms in terms of MSE.

10



Appendix

An Example of the Recurrent Newton Algorithm: For notational simplicity, we

consider a single-output Elman network with $ the identity function and $ the logistic

function:

t = b + (3'H
t = ft + ELiAfc*.

ha =
l+expi-Ci-YiXt-S'iHt^)

In this case, R = H , A = ty , and

W = [bP'cll [
...cql

'

q
6[ ... S'J.

The updating equations ( 12)—( 16) can be easily computed from the following information.

Let Xt
= [1 X%\', $ = [b /?']', and 7,- = [c

t
-)[]'. The network error in (5) is computed as

E, = Yt -(bt + Y,
q
i=Jithit ),

hit =
1 + exp(-ct <

- Ylt
X t

- SuHt-i)

In (6), the vector Fw contains the following sub-vectors:

Ffi = [lH'
t
]',

F^ = $ithit(l - hit)Xu

Fs
x

= Pit'hitil - hit)H t -i,

for i = 1, . .
. , q; and the vector F// is

Fh = V=Jithit(l-hit )6it .

The recurrent variables of (9) are ha. In (10), the matrix V\v contains the following

submatrices:

*jj = 0,

*^ = d\zg[hu(l-h lt )X t
h qt(l-h qt )X t ],

V s = diag[Ml -&„)#,_, ••• h qt(l- h qi )H t
_ x

}-

and the matrix $// is

%H = hu (l - h lt )S lt h qt (l - h qt )Sqt

11



The following values may be used to initialize the algorithm: the elements of W\ are ran-

domly generated from some random number generator, G\ — si with s = 100/(^ t Vt/T)

and / the identity matrix, fin = 1/2 for all i, and D\ = 0.

12



References

[1] M. Jordan, "Serial order: A parallel distributed processing approach," ICS Report

8604, Institute for Cognitive Science, University of California, San Diego, 1986.

[2] M. Jordan, "Constrained supervised learning," Journal of Mathematical Psychology

,

vol. 36, pp. 396-425, 1992.

[3] L. B. Almeida, "A learning rule for asynchronous perceptrons with feedback in a com-

binatorial environment," in Proceedings of the IEEE First International Conference

on Neural Networks, 1987, pp. II: 609-618.

[4] F. J. Pineda, "Generalization of back-propagation to recurrent neural networks,"

Physical Review Letters, vol. 59, pp. 2229-2232, 1987.

[5] M. Gherrity, "A learning algorithm for analog, fully recurrent neural networks," in

Proceedings of the IEEE International Joint Conference on Neural Networks, 1989,

pp. I: 643-644,

[6] B. A. Pearlmutter, "Learning state space trajectories in recurrent neural networks,"

in Proceedings of the IEEE International Joint Conference on Neural Networks, 1989,

pp. II: 365-372,

[7] R. J. Williams and C. Zipser, "A learning algorithm for continually running fully

recurrent neural networks," Neural Computation, vol. 1, pp. 270-280, 1989.

[8] J. L. Elman, "Finding structure in time," Cognitive Science, vol. 14, pp. 179-211,

1990.

[9] C.-M. Kuan, K. Hornik and H. White, "A convergence result for learning in recurrent

neural networks," Neural Computation, forthcoming, 1993.

[10] C.-M. Kuan and H. White, Artificial neural networks: An econometric perspective,

Econometric Reviews, forthcoming, 1993.

[11] L. Ljung and T. Soderstrom, Theory and Practice of Recursive Identification, Cam-

bridge, MA: MIT Press, 1983.

13



[12] G. J. Bierman, Factorization Methods for Discrete Sequential Estimation, New York:

Academic Press, 1977.

[13] C.-M. Kuan and H. White, "Adaptive learning with nonlinear dynamics driven by

dependent processes," Working Paper, Department of Economics, University of Cal-

ifornia, San Diego, 1993.

[14] H. J. Kushner and D. S. Clark, Stochastic Approximation Methods for Constrained

and Unconstrained Systems, New York: Springer- Verlag, 1978.

14



Table 1. Summary of Simulation Results.

Model Hidden Newton with Const. Newton w/o Const. BP with Const. BP w/o Const.

Average Last Average Last Average Last Average Last

Units MSE MSE MSE MSE MSE MSE MSE MSE

Bi- 4 1.825 1.824 1.900 1.839 2.181 2.154 2.547 2.533

linear 5 1.820 1.811 1.902 1.852 2.139 2.111 2.579 2.564

6 1.802 1.789 1.924 1.867 2.109 2.078 2.634 2.615

Henon 4 0.125 0.125 0.176 0.162 0.329 0.324 0.491 0.488

Map 5 0.101 0.098 0.159 0.142 0.324 0.319 0.527 0.524

6 0.079 0.079 0.152 0.158 0.302 0.296 0.536 0.530

4 1.014 1.011 1.038 1.032 1.059 1.054 1.115 1.114

SETAR 5 1.015 1.011 1.037 1.030 1.066 1.060 1.118 1.114

6 1.017 1.012 1.042 1.033 1.072 1.066 1.191 1.182

15



MSE

1.8 2.0 2.2 2.4 2.6 2.8 3.0

Oo

oo

3
<—

5"
3
C/3

<^

00

DO Z z
•Tfl n> a>

3 3 3
«—1>

o o
3* 3 3
n ^ 3
o c^ 3-°

3 3* 3*
O
C n

&3 <-^- o
5 O 3

C/2^* o rT
3
C/3

&s

CD

da

CD

3

o

• •

ffl

p

CD

o

cr

On

i—»•

CD

c
I—»•<—
C/5



MSE

0.1 0.2

i

0.3

Oo

0.4

OQ
C
i-t

CD

K>

CD

O
3

4^OO

CD

3
<—

o"
P OnOO

00OO

OOO

DO z 'Z
*T3 CD a>

3 3̂̂
-

3
o o

tr p p
n 3 3
o 5^.* l-^-

p p* p*
o
c o

f» <—

h

o
P o p

C/3<— o i-^

p
on

03

£>

P
T3

O
Pu

• •

ffl

P

CD

O

K
D-
CD

C
3
c/o



MSE

1.05 1.10 1.15 1.20

_i

Oo

oo

"I

«-
*—

•

o
OnOO

00

03

3

n
o
3
C/5

3 3
o O
3 3
^ 3
i-^-

3" 3*
O
C n
r^- o
n 3

C/5o I—

3
OS

"1

02

CD

•

00
ffl

>

o
CD

ra

Z
CD

o
ft

On

X
Cl

CD

c
p.

C/3







HECKMAN 1—1
BINDERY INC. |§|

JUN95
B„u„J T» Fkn? N. MANCHESTER.

INDIANA 46962




