
Towards Categorizing and Formalizing the JDK API

Choonghwan Lee
University of Illinois

Urbana, IL 61801, U.S.A.
clee83@illinois.edu

Dongyun Jin
University of Illinois

Urbana, IL 61801, U.S.A.
djin3@illinois.edu

Patrick O’Neil Meredith
University of Illinois

Urbana, IL 61801, U.S.A.
pmeredit@illinois.edu

Grigore Roşu
University of Illinois

Urbana, IL 61801, U.S.A.
grosu@illinois.edu

ABSTRACT
Formal specification of correct library usage is extremely
useful, both for software developers and for the formal anal-
ysis tools they use, such as model checkers or runtime mon-
itoring systems. Unfortunately, the process of creating for-
mal specifications is time consuming, and, for the most part,
even the libraries in greatest use, such as the Java Develop-
ment Kit (JDK) standard library, are left wholly without
formal specification. This paper presents a tool-supported
approach to help writing formal specifications for Java li-
braries and creating documentation augmented with high-
lighting and formal specifications. The presented approach
has been applied to systematically and completely formal-
ize the runtime properties of three core and commonly used
packages of the JDK API, namely java.io, java.lang and
java.util, yielding 137 formal specifications. Indirectly,
this paper also brings empirical evidence that parametric
specifications may be sufficiently powerful to express virtu-
ally all desirable runtime properties of the JDK API, and
that its informal documentation can be formalized.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing/Debugging

Keywords
Java, benchmark, formal specification, software engineering

1. INTRODUCTION
A formal specification defines behaviors that systems or

parts of systems must or are recommended to obey. An
example of a formal specification is a linear temporal logic
(LTL) formula, open→ 3close, where open and close repre-
sent creating a FileOutputStream object and calling File-

OutputStream.close(), respectively. This specification says

.

that an opened FileOutputStream object should be eventu-
ally closed. In spite of its simplicity, it is effective in finding
a common error: forgetting to invoke close() on a File-

OutputStream object of local scope in catch blocks.1

There is no doubt that formal specifications are very use-
ful, when available. They can be used, for example, for find-
ing actual or potential errors in programs, such as illegal
usage of the API like above, security vulnerabilities, perfor-
mance degradation, and so on. Despite their usefulness, the
reality is that formal specifications rarely exist in practice.
We do not attempt to elucidate why this is the case, but we
believe that the following could be some valid reasons:

1. They are not easy to produce, often requiring a deep
understanding of or even a duplication effort of the
implementation. This is particularly problematic when
the formal specifications are intended to capture the
full functional correctness of the implementation.

2. There is no clear formalism that we should use for
writing specifications. We want a formalism which is
both expressive and practical, so that one can express
all properties of interest and at the same time be able
to immediately use them for scalable software analysis.

3. There are no tools to systematically help us digest large
bodies of informal documentation, to categorize the
text in a way that reduces the likelihood to miss prop-
erties and that offers a measure of the effectiveness and
the coverage of the formalization effort.

In this paper we propose an approach to producing for-
mal specifications for the JDK API by addressing the above
three aspects as follows. First, we compromise by not at-
tempting to produce functional correctness specifications.
Instead, we only focus on API usage correctness properties,
more precisely on the subset of safety properties monitorable
at runtime. Second, we choose a specification formalism that
has been shown to be expressive and efficiently monitorable
by the runtime verification community over the last decade,
namely that of parametric specifications, supported in one
form or another by several runtime monitoring systems, e.g.,

1finalize(), invoked by the garbage collector, eventually
calls close() to release the resources, but such delayed ac-
tion can cause file corruption—it occurs because the mod-
ification is not visible to other file-handling objects or pro-
cesses until the buffer is flushed by close() or flush()—and
file operation failure—some file systems disallow moving or
deleting a file when the file is opened.

Technical Report http://hdl.handle.net/2142/29946, February 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4837862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

/**
 * {@description.open}
 * This class provides ...
 * {@description.close}
 * {@property.open formal:PipedStream_SingleThread}
 * Attempting to use both objects from a single
 * thread is not recommended ...
 * {@property.close}
 */
public class PipedInputStream ...

/**
 * This class provides ...
 *
 * Attempting to use both objects from a single
 * thread is not recommended ...
 */
public class PipedInputStream ...

Categorizing

Formalizing

PipedStream_SingleThread(...) {
 event create ...
 event write ...
 event read ...

 ere : create (write* | read*)
 @fail { ... }
}

Class PipedInputStream

This class provides …

Attempting to use both objects

from a single thread is not

recommended

[FORMAL SPECIFICATION] …

…

Method Summary

…

Class PipedInputStream

This class provides …

Attempting to use both objects

from a single thread is not

recommended …

…

Method Summary

…

Javadoc

PropDoc

Verification Tools

Java Source Code

API Specification

Augmented API Specification

Formal Specification

PipedStream_SingleThread(...) {
 event create ...
 event write ...
 event read ...

 ere : create (write* | read*)
 @fail { ... }
}

Figure 1: Categorizing and Formalizing the JDK API using PropDoc.

Tracematches [2], EAGLE [4], RuleR [5], and JavaMOP [14]
among others. Third, we have developed a tool for generat-
ing API documentation augmented with text categorization,
formal specifications, and coverage statistics.

A parametric specification (see, e.g., [14] for a recent and
formal definition) is a type of formal specification where
each parameter is bound to a concrete object instance at
runtime. For example, a parametric specification can ex-
press the following behavior: for each binding of parameters
〈PipedInputStream, PipedOutputStream, Thread〉 to con-
crete objects 〈i, o, t〉, if i and o are connected then t can-
not access both i and o (because that may deadlock t). In
contrast, a non-parametric specification cannot capture the
object bindings, forcing the pattern to be globally obeyed.
For example, accessing an unconnected pair of a PipedIn-

putStream object and a PipedOutputStream object, which
may happen from the same thread or not, would yield a false
warning. A parametric property does not have this problem,
since each binding is considered separately—for example, if
i1, o1 and respectively i2, o2 are connected, behaviors where
t1 accesses i1, o2 and t2 accesses i2, o1 are still permitted.

Parametric specifications can bind zero, one or more pa-
rameters. They directly generalize typestates [18], since a
typestate is a particular parametric specification with only
one parameter. Typestates can capture properties referring
to individual object instances, but they are inadequate for
expressing properties referring to two or more related object
instances. For example, the property above refers to three
different object instances and there is no way to flatten it
into a typestate referring to only one of them. We have
found that many properties in the JDK API cannot be ex-

pressed with typestates, which is why we adopted the more
general formalism of parametric specifications in this paper.

We have investigated a series of automatic specification
mining approaches, including [3, 10, 20, 9], and have even
developed a new one fit to our specific purpose [13]. Unfor-
tunately, our experience with automatic specification mining
techniques and tools was not very positive: in general they
tend to be hard to use, require significant user involvement,
yield overfit or overabstract specifications, and support only
very particular properties (e.g., alternating ones of the form
(a b)∗, etc.). Since the formal specifications resulting from
this project are made publicly available and are intended to
be used by formal analysis tool, their quality is of crucial im-
portance. Consequently, we decided to manually formalize
the specifications. We thoroughly inspected the documen-
tation of three packages and wrote a formal specification for
each text block that implies a desired or undesired runtime
behavior. Given that mature libraries have good documen-
tation, our approach is likely to achieve good coverage.

Figure 1 gives an overview of our approach and the Prop-
Doc tool. The informal Java source code documentation is
manually augmented with new tags, which allow to catego-
rize the text and associate formal specifications to it. Prop-
Doc then generates a more informative HTML documen-
tation (see http://fsl.cs.uiuc.edu/annotated-java/ for
the latest one), with highlighted text and in-place links to
formal specifications. The user can hide the additional in-
formation with the click of a button (top-right corner), thus
flipping between PropDoc and JavaDoc output.

Using PropDoc, we categorized all the documentation of
the widely used JDK[15] packages java.io, java.lang and

Technical Report http://hdl.handle.net/2142/29946, February 2012

http://fsl.cs.uiuc.edu/annotated-java/

java.util, and formalized all their documented runtime
properties. This way, we produced a total of 137 parametric
specifications. We then extensively evaluated them using
the JavaMOP [14] runtime verification system against the
DaCapo [6] and the SPECjvm [17] benchmark suites. Mon-
itoring each of 137 specifications, we found several bugs and
design flaws from open source, real world applications. For
example, in both suites, many serializable classes do not
have a version number declared; this can lead to improper
deserialization of objects. In DaCapo, the h2 benchmark
tries to register a shutdown hook thread during its shut-
down process, while jython does not properly synchronize a
thread-safe list.

Contributions This paper’s contributions are as follows:

• PropDoc, a publicly available tool for generating API
documentation augmented with text categorization, for-
mal specifications, and coverage statistics;

• The only comprehensive set of formal specifications for
three widely used packages of the JDK API. These
properties also serve as an extensive benchmark suite
for runtime monitoring systems, larger by more than
an order of magnitude than the previous ones.

Both the PropDoc tool and the formal specifications are
available at http://fsl.cs.uiuc.edu/annotated-java/.

The rest of paper is organized as follows. Section 2 high-
lights our approach to formalizing the JDK API, monitoring
its formal specifications, and generating more informative
documentation. Section 3 explains documentation catego-
rizing and formalizing in detail, and Section 4 shows a few
example specifications. Sections 5, 6 and 7 discuss experi-
ments, limitations and related work. Section 8 concludes.

2. APPROACH OVERVIEW
An API Specification describes all aspects of the behavior

of each method on which a caller may rely. For example,
the API specification for PipedInputStream states:

Typically, data is read from a PipedInputStream

object by one thread and data is written to the
corresponding PipedOutputStream by some other
thread. Attempting to use both objects from
a single thread is not recommended, as it may
deadlock the thread. The piped input stream
contains a buffer, decoupling read operations from
write operations, within limits.

This explicitly states behavior that a programmer should
avoid. A modern API specification is typically a set of
HTML pages that is available online or distributed as part
of the package, but it may be any sort of document.

A Java API specification is defined by documentation
comments embedded in the Java source code. The above
quote, for example, is embedded in PipedInputStream.java

in one of the comments. Each comment intended to be
part of the API specification starts with /** and ends with
*/ [11]. Java documentation comments are written in HTML
with a few extensions, such as the {@link} tag. Javadoc, a
tool included with the JDK, extracts these comments and
generates a full set of interlinked HTML pages describing
the features of the API.

As the source for the API specification, we used Open-
JDK 6, an implementation of the Java SE 6 specification.
We chose OpenJDK 6 because it is reliable, given that its
basis, OpenJDK 7, is based on Oracle’s JDK 7 and is the
official Java SE 7 Reference Implementation. In particular,
more than 96% of the class library has been released by Sun
Microsystems. Thus, almost all source code, including the
documentation comments, of OpenJDK 6 is identical to that
of Oracle’s official JDK 6.

Some parts of a documentation comment imply formal
specifications—we can infer a formal specification that warns
if a single thread performs both read and write operations
according to the above quoted text on PipedInputStream—
but other parts are descriptive: they merely explain what a
method does; e.g. the documentation comment for one of
PipedInputStream’s constructors is:

Creates a PipedInputStream so that it is con-
nected to the piped output stream src. Data
bytes written to src will then be available as in-
put from this stream.

We believe that it is imperative for programmers to pay
attention to specification-implying text in order to write
safe and reliable code. To provide a way to make a dis-
tinction between comments which imply specifications and
those which are merely descriptive, we introduce two pairs of
tags: {@property.open} and {@property.close} and {@de-

scription.open} and {@description.close}, respectively.
{@property.open} can take optional parameters for clas-
sifying and referring to formal specifications corresponding
to the surrounded text, which will be explained in detail
in Section 3.1.

Because it is written in plain English, specification-imply-
ing text is merely informative: one cannot check the implied
specifications against programs. To enable users to check
these specifications at runtime, we formalized them in such
a way that an existing Runtime Verification tool can use
them. Although we wrote all the specifications for the tool
JavaMOP in this paper, they can be easily translated into
other formats, such as Tracematches [2].

For example, we defined from the documentation com-
ment above the formal specification shown in Figure 2. At
line 1, we name the specification PipedStream SingleThread,
and specify three parameters from which JavaMOP gener-
ates code that creates a monitor for each distinct tuple of
objects bound to the three parameters. We define six events
at lines 2–18: the first four events, named create, represent
the creation of a connected pair of PipedInputStream and
PipedOutputStream, the write event represents a write()

method call on PipedOutputStream, and the read event rep-
resents a read() method call on PipedInputStream. At line
20, we specify, in extended regular expression (ERE), that a
thread should perform only writes or reads, once a connected
pipe is created. According to our definition, an occurrence
of an event triggers a transition of the internal state for each
related monitor, and a violation of the pattern triggers our
handler at lines 22–24. Detailed explanation of the Java-
MOP syntax can be found in [14].

To make the newly introduced tags and formal specifi-
cations more readable and accessible, we implemented the
tool PropDoc as an extension of Javadoc. PropDoc highlights
specification-implying and descriptive text with distinct col-
ors, in order to help differentiate them. It also provides

Technical Report http://hdl.handle.net/2142/29946, February 2012

http://fsl.cs.uiuc.edu/annotated-java/

1 PipedStream_SingleThread(PipedInputStream i, PipedOutputStream o, Thread t) {
2 creation event create after(PipedOutputStream o) returning(PipedInputStream i) :
3 call(PipedInputStream+.new(PipedOutputStream+)) && args(o) {}
4

5 creation event create before(PipedInputStream i, PipedOutputStream o) :
6 call(* PipedInputStream+.connect(PipedOutputStream+)) && target(i) && args(o) {}
7

8 creation event create after(PipedInputStream i) returning(PipedOutputStream o) :
9 call(PipedOutputStream+.new(PipedInputStream+)) && args(i) {}

10

11 creation event create before(PipedOutputStream o, PipedInputStream i) :
12 call(* PipedOutputStream+.connect(PipedInputStream+)) && target(o) && args(i) {}
13

14 event write before(PipedOutputStream o, Thread t) :
15 call(* PipedOutputStream+.write(..)) && target(o) && thread(t) {}
16

17 event read before(PipedInputStream i, Thread t) :
18 call(* PipedInputStream+.read(..)) && target(i) && thread(t) {}
19

20 ere : create (write* | read*)
21

22 @fail {
23 System.err.println("a violation was detected");
24 }
25 }

Figure 2: A JavaMOP specification PipedStream SingleThread

links from specification-implying text to the associated for-
mal specification, if one is provided (see Section 3.1).

3. CATEGORIZING AND FORMALIZING
THE JDK API

In this section, we explain the syntax of the new Javadoc
tags that we have introduced and how we used them to cat-
egorize the JDK API documentation. We then discuss cre-
ating formal specifications from the implied specifications in
the API documentation.

3.1 Syntax of Documentation Comments
A documentation comment for use with Javadoc consists

of two parts: a description and block tags. The former
is where both specification-implying and descriptive text is
placed, and the latter are a list of tags for explaining pa-
rameters, a return value, runtime exceptions, and so forth.
All of the new tags introduced for annotating comments are
applied to only the former.

As mentioned in Section 2, two pairs of tags were added
to make a distinction between two different types of text.
Any chunk of text in a description is to be marked as either
a @property block or a @description block.

Since a @property block needs further details, the tag
accepts a space-separated list of parameters to the {@prop-

erty.open} tag. Each parameter is either a string for fur-
ther classification or the name of the formal specification
that corresponds to the text betwen {@property.open} and
{@property.close}. Parameters specifying formal specifi-
cations are prefixed with “formal:”. For example, we used
the following tag at the beginning of the specification-implying
text quoted in Section 2 for referring to the specification
shown in Figure 2:

{@property.open runtime warning do-not-check
formal:PipedStream_SingleThread}

Here, the first three keywords represent the classes asso-
ciated with this specification. The runtime keyword indi-
cates that the specification can be monitored at runtime.

The other two keywords respectively mean that a violation
is not necessarily erroneous but potentially dangerous, and
that the underlying system does not check violations, as we
will explain in Section 3.4.

A @property block that explains some desired behaviors
can be vague and misleading. To resolve such problems by
adding further explanation, we introduce another pair of
tags: {@new.open} and {@new.close}. This pair is not top-
level; it is nested in a @property or @description block.

3.2 Categorizing Documentation Comments
Using the syntax mentioned in Section 3.1, we annotated

every documentation comment in java. io, java.lang and
java.util, and added further explanation if the text was
deemed to need clarification.

We marked each section of text as one of the two top-level
tag pairs: @property or @description. Although the crite-
rion of categorizing descriptions—text should be in @prop-

erty if it implies formal specifications; otherwise, it should
be in @description—seems clear, there are many fuzzy cases.

One such case is a description of a behavior that does not
have the specific and desired pattern. For example, FileIn-
putStream.available() is explained as follows:

Returns an estimate of the number of remaining
bytes that can be read (or skipped over) from
this input stream without blocking by the next
invocation of a method for this input stream.

This explains the consequence of calling read() when avail-

able() returns 0; it will block. Although it apparently de-
scribes the behavior of the input stream, we did not consider
it as a @property block because the desired behavior is not
clearly implied. One may be tempted to write a specifica-
tion that prevents calling read() in such case, but it can be
against the programmer’s intention. In fact, many multi-
threaded programs use blocking I/O. In contrast, we would
consider the following description from hasNext() of Iter-

ator as a @property block:

Technical Report http://hdl.handle.net/2142/29946, February 2012

Returns true if the iteration has more elements.
(In other words, returns true if next would re-
turn an element rather than throwing an excep-
tion.)

This looks somewhat similar to the description of avail-

able(), but it implies a desired pattern: check if hasNext()
returns true, before calling next.

Another case is a description of conditions that involve ex-
ternal environments. For example, the constructor of File-
OutputStream states:

If the file exists but is a directory rather than a
regular file, does not exist but cannot be created,
or cannot be opened for any other reason then a
FileNotFoundException is thrown.

Given that a runtime exception is to be avoided, one may
think this implies a specification: check if a directory exists,
or a file does not exist but a file cannot be created or opened,
before creating a FileOutputStream object. However, we do
not classify this as a @property block because the state of
the file system dynamically changes without notifying the
verification system and, consequently, it is impossible to re-
liably check whether a file can be created or opened. We
decided to mark a section of text with @property only if the
potentially implied specification solely relies on the internal
state of the monitored program.

It is difficult to formalize a specific set of rules that resolves
all of the fuzzy cases, but the rule of thumb during catego-
rization was that a section of text is specification-implying
only if a behavior is defined in terms of noticeable events,
such as class loadings, method invocations and field accesses.

While categorizing documentation comments, we added
explanation to vague or misleading sections of texts using
the @new tag. An example of vague explanation can be found
in the explanation of unread() of PushbackInputStream:

IOException - If there is not enough room in the
pushback buffer for the byte, or this input stream
has been closed by invoking its close() method.

Since it does not clearly state how the buffer size is deter-
mined, one cannot realize exactly when the buffer becomes
insufficient. Even worse, the entire documentation never
mentions the default size of the buffer when the constructor
with no arguments is used for creating an object. Since the
default size is 1 in OpenJDK 6, we clarified the condition by
inserting the following into the vague block:

{@new.open} The size of the pushback buffer is
fixed when an object is created. If the size is
provided, the buffer size will be as specified; oth-
erwise, it will be 1. {@new.close}

Some explanation is even misleading. The documentation
comment for mark() of PushbackInputStream states:

Marks the current position in this input stream.
The mark method of PushbackInputStream does
nothing.

Two sentences conflict: the first sentence states that this
method does mark the current position, but the second sen-
tence denies it. We clarified it as well by stating that the
method has an empty body and does nothing.

3.3 Writing Formal Specifications
We formalized @property blocks after categorizing docu-

mentation comments. Since we used a runtime monitoring
system in our work, we formalized only runtime-monitorable
specifications. Consider the following documentation com-
ments for Comparable.compareTo():

The implementor must also ensure that the rela-
tion is transitive:
(x.compareTo(y) > 0 && y.compareTo(z) > 0)

implies x.compareTo(z) > 0.

Since this apparently implies a specification, we marked it
as @property. However, checking if it holds is infeasible at
runtime. Not having a means of describing and checking,
we decided not to formalize such cases; we simply added the
static keyword to {@property.open}, indicating that it may
be statically checked for some cases.

Among runtime-monitorable specifications, there are a few
cases where runtime monitoring tools are incapable of ob-
serving necessary events. For example, the documentation
states the following for InputStream.available():

Note that while some implementations of Input-
Stream will return the total number of bytes in
the stream, many will not. It is never correct to
use the return value of this method to allocate a
buffer intended to hold all data in this stream.

It is ideal to keep track of uses of the return value of avail-
able() and check if any of them is used to allocate a buffer.
Apart from performance degradation it causes, most runtime
monitoring tools do not support local variable tracking. In
such cases, we added the uncheckable keyword and did not
attempt to formalize it.

Other cases that we did not formalize include those where
the specification is enforced by compilers. For example, the
documentation of InputStream states the requirement of a
subclass, as follows:

Applications that need to define a subclass of In-
putStream must always provide a method that
returns the next byte of input.

Java compilers enforce the requirement because read(), the
method implied by the comment, is an abstract method. We
used the enforced keyword in such cases. Another case of not
having formal specifications is when the involved events are
never exposed to clients; e.g., all the events in the implied
specification are private method invocations or field accesses.
We marked such cases as internal. Although many tools are
capable of monitoring them, we decided not to formalize
them because there is no benefit from a user’s perspective.

Except these cases, we formalized all the runtime-moni-
torable specifications using JavaMOP. As shown in Figure
2, a typical JavaMOP specification contains three parts: a
set of events, a desired behavioral pattern, and a handler for
violations. An event in our specifications is mostly a method
invocation, a field access, an end of an execution, or an ini-
tialization of an object. We expressed a pattern in either
an extended regular expression (ERE), a finite state ma-
chine (FSM) or a linear temporal logic (LTL) formula. De-
pending on the pattern, we tried to choose the most intuitive
formalism. Our handler simply outputs a warning message
in case of a violation, but one can easily alter this behavior

Technical Report http://hdl.handle.net/2142/29946, February 2012

since JavaMOP allows arbitrary code in the handler. How-
ever, there are some specifications where the occurrence of
a given event, in any context, indicates a violation. In such
cases, we omitted the pattern and the handler, and let the
events output messages, as will be shown in Figure 4.

3.4 Classifying Formal Specifications
The formal specifications implied by the JDK API docu-

mentation have many different characteristics. For example,
since a violation of a specification means either an actual
error, a potentially dangerous state, or a bad practice, one
may want to suppress all the messages, except the ones that
definitely indicate errors. To allow users to look up such
specifications and turn them off, we classified our specifica-
tions according to two criteria.

3.4.1 Severity
According to the severity of a violation of the desired be-

havior, we classified specifications into three groups: sug-
gestion, warning and error. We use suggestion if a violation
is merely a bad practice. StringBuffer SingleThreadUsage,
which will be discussed in Section 4.2, is one such specifica-
tion. If a violation is not necessarily erroneous but poten-
tially wrong, we use warning; e.g., Serializable UID (Section
4.3). We use the last group error if a violation indicates an
error; e.g., ShutdownHook PrematureStart (Section 4.4).

3.4.2 Guarantee of the underlying system
Another criterion is what the underlying system, includ-

ing the Java Virtual Machine and the Java Class Library,
guarantees. We classified specifications into three groups:
always-check, sometimes-check and do-not-check. One ex-
ample of the first group is that an FileOutputStream ob-
ject cannot perform write operations after the stream has
been closed. As mentioned in Section 1, the library can de-
tect write operations that occur after closing the stream;
thus, it is guaranteed that an invalid write operation is
always caught by the system. An example of the second
group is the fail-fast behavior of an iterator: a fail-fast it-
erator throws an exception if the underlying collection is
structurally modified, but there is no guarantee. Piped-
Stream SingleThread and StringBuffer SingleThreadUsage be-
long to the third group; the underlying system never warns
any potential danger.

3.5 Augmented API Specifications
We believe API specifications in HTML are the most fa-

miliar form for programmers to refer to, and our work should
be provided similarly. To this aim, we developed PropDoc
for generating API specifications that make a distinction be-
tween @property and @description blocks, and show formal
specifications in such a way that the augmentation does not
radically change the usual form.

PropDoc consists of two parts: a series of taglets[19], and
a driver. A taglet is a Java program that is attached to
the Javadoc tool and handles custom tags, such as {@prop-

erty.open}. The driver is a Perl script that takes package
names as input and generates a complete API specification,
as Javadoc does. It runs Javadoc with the taglets enabled,
so that Javadoc dispatches our taglets.

Our taglets highlight text in different colors according to
the category, in order to improve the readability. As men-
tioned in Section 1, the augmented documentation produced

1 StringBuffer_SingleThreadUsage(StringBuffer s) {
2 Thread th = null;
3 boolean flag = false;
4

5 creation event init after(Thread t)
6 returning(StringBuffer s) :
7 call(StringBuffer.new(..)) && thread(t) {
8 this.th = t;
9 }

10

11 event use before(StringBuffer s, Thread t) :
12 call(* StringBuffer.*(..)) && target(s) && thread(t) {
13 if (this.th == null) this.th = t;
14 else if (this.th != t) this.flag = true;
15 }
16

17 event endprogram after() : endProgram() {}
18

19 ere : init use+ endprogram
20

21 @match {
22 if (!this.flag)
23 System.err.println("a violation was detected");
24 }
25 }

Figure 3: A JavaMOP specification StringBuffer Sin-
gleThreadUsage

by PropDoc has a toggle button to turn on/off the highlight-
ing and to hide text added using the @new tag. Additionally,
the taglet for @property blocks adds links to the implied
formal specifications, if any are specified using “formal:”.

4. EXAMPLES
In this section, we explain a few examples among 137 for-

mal specifications. More specifications and the augmented
API specification can be found at our project website[12].

4.1 PipedStream_SingleThread
This specification, shown in Figure 2, warns if a single

thread attempts to use both a PipedInputStream object and
a PipedOutputStream object. It originates from PipedIn-

putStream’s comment, mentioned in Section 2.
The severity of this specification is warning as a viola-

tion does not always lead to deadlock—if the buffer is large
enough to hold the data to be written, write operations and
subsequent read operations will not block. That said, a vio-
lation implies a potential error because the size of the buffer
is system-dependent and can be small in some systems. The
underlying system does not check the behavior; thus, it be-
longs to the do-not-check group.

4.2 StringBuffer_SingleThreadUsage
StringBuffer SingleThreadUsage checks if a StringBuffer

object is solely used by a single thread. If this is the case,
it outputs a suggestive message stating that StringBuffer

can be replaced with StringBuilder for the performance
benefit, as the documentation states:

StringBuilder is designed for use as a drop-in
replacement for StringBuffer in places where
the string buffer was being used by a single thread
(as is generally the case). Where possible, it
is recommended that StringBuilder be used in
preference to StringBuffer as it will be faster
under most implementations.

Technical Report http://hdl.handle.net/2142/29946, February 2012

1 Serializable_UID() {
2 event staticinit after() :
3 staticinitialization(Serializable+) {
4 Signature initsig =
5 thisJoinPoint.getStaticPart().getSignature();
6 Class klass = initsig.getDeclaringType();
7

8 if (klass != null) {
9 try {

10 Field field =
11 klass.getDeclaredField("serialVersionUID");
12 int mod = field.getModifiers();
13 Class fieldtype = field.getType();
14

15 boolean isstatic = Modifier.isStatic(mod);
16 boolean isfinal = Modifier.isFinal(mod);
17 boolean islong = fieldtype.getName() == "long";
18

19 if (!isstatic) System.err.println("non-static");
20 if (!isfinal) System.err.println("non-final");
21 if (!islong) System.err.println("wrong type");
22 }
23 catch (NoSuchFieldException e) {
24 System.err.println("undeclared");
25 }
26 }
27 }
28 }

Figure 4: A JavaMOP specification Serializable UID

The formal specification is shown in Figure 3. For each
StringBuffer object, two monitor variables are defined at
lines 2 and 3: th remembers the thread that first accessed
it, and flag remembers if multiple threads have accessed
it. A use event is emitted for each method invocation on a
StringBuffer object and its advice sets the flag variable if
it detects multiple threads accessing an object (lines 13–14)
throughout its lifetime, which begins when a constructor is
invoked (i.e., an init event occurs), and ends when either the
object is garbage collected or the entire program terminates
(i.e., an endprogram event occurs).

We classified this specification as suggestion because a vio-
lation does not indicate any potential error; it merely results
in performance degradation. As the underlying system does
not check such behavior, it is classified as do-not-check.

4.3 Serializable_UID
This specification warns if a class that implements Se-

rializable does not declare the serialVersionUID field.
Since the lack of the declaration does not cause an imme-
diate error, we classified it as warning. We believe, for the
same reason, the underlying system does not check the vi-
olation. Nevertheless, declaring it is strongly recommended
according to the API specification:

If a serializable class does not declare a seri-

alVersionUID, then the serialization runtime cal-
culates a default serialVersionUID. However,
it is strongly recommended that all serializable
classes explicitly declare serialVersionUID val-
ues, since the default serialVersionUID com-
putation is highly sensitive to class details that
may vary depending on compiler implementa-
tions, and can thus result in unexpected Invalid-

ClassExceptions during deserialization.

The formal specification is shown in Figure 4. Unlike
other specifications, where the desired or undesired condi-

1 ShutdownHook_PrematureStart(Thread t) {
2 creation event good_register before(Thread t) :
3 call(* Runtime+.addShutdownHook(..)) && args(t)
4 && condition(t.getState() == Thread.State.NEW) {}
5

6 creation event bad_register before(Thread t) :
7 call(* Runtime+.addShutdownHook(..)) && args(t)
8 && condition(t.getState() != Thread.State.NEW) {}
9

10 event unregister before(Thread t) :
11 call(* Runtime+.removeShutdownHook(..)) && args(t) {}
12

13 event userstart before(Thread t) :
14 call(* Thread+.start(..)) && target(t) {}
15

16 ere : (good_register unregister)* (epsilon | userstart)
17

18 @fail {
19 System.err.println("a violation was detected");
20 }
21 }

Figure 5: A JavaMOP specification ShutdownHook
PrematureStart.

tion can be specified solely by the pattern of method invo-
cations or field accesses, more detailed information, such as
the modifiers and the type of a field, should be retrieved to
describe the undesired condition precisely. Thus, we placed
the precise condition check inside the staticinit event handler
(lines 3–27), emitted when a static initializer2 of a serializ-
able class is invoked. At lines 4–6, the enclosing class of
the static initializer (i.e., a serializable class) is assigned to
the klass variable. Then, the modifiers and type of the
serialVersionUID field are retrieved using reflection (lines
10–17). Three conditional statements at lines 19–21 verify
that the field is static, final and of type long, as stated in
the reference. If the field does not exist, a warning message
is printed at line 24.

4.4 ShutdownHook_PrematureStart
ShutdownHook PrematureStart warns if a shutdown hook

is either running at the time of registration or the user starts
it after the registration. A shutdown hook is a Thread object
for performing user-defined cleanup while the JVM is shut-
ting down, and it is to be started only by the JVM. That
is, the user needs to create a Thread object but should not
start it, as the API specification states:

A shutdown hook is simply an initialized but un-
started thread. When the virtual machine begins
its shutdown sequence it will start all registered
shutdown hooks.

Figure 5 shows the formal specification. A bad register
event (lines 6–8) occurs when a started thread is registered
as a shutdown hook, and a userstart event (lines 13–14) oc-
curs when the user starts the thread. The desired pattern
is that the user can start a previously registered shutdown
hook only after it is unregistered. Any violation of this pat-
tern, such as bad register or good register followed by user-
start, will result in a warning at lines 18–20.

The severity of this specification is error because a viola-
tion indicates that the cleanup operation has prematurely
started performing. Although the underlying system warns

2A static initializer of a class is executed during class ini-
tialization after class loading.

Technical Report http://hdl.handle.net/2142/29946, February 2012

java.io java.lang java.util
Total Text 41003 words 77813 words 101038 words

Description Text 37229 words 73503 words 91764 words
(90.5%) (94.5%) (90.7%)

Property Text 3774 words 4310 words 9274 words
(9.2%) (5.5%) (9.2%)

Undecided Text 0 words 0 words 0 words
(0%) (0%) (0%)

of Specifications 30 49 58

Table 1: Statistics on categorizing the JDK API and
the number of specifications from formalizing it.

if an already started thread is registered, it does not detect
the user starting the registered thread explicitly. Thus we
classified it as sometimes-check.

5. EVALUATION
In this section, we evaluate our categorizing and formaliz-

ing of the JDK API. We spent about four person-months to
categorize and formalize three main packages of the JDK:
java.io, java.lang, and java.util. The formal specifi-
cations from this can be used for any formal method (e.g.,
static analysis, dynamic analysis, runtime monitoring) on
any Java program using the three packages. In this evalu-
ation, we monitor each of formalized specifications on two
benchmarks, as an example of runtime monitoring usage.
Although finding bugs was not our main purpose in our ex-
periments, we found 4 violations of error specifications, 4
violations of warning specifications, and 12 violations of sug-
gestion specifications. A violation can be either a false alarm,
a potential bug, or a real bug. Where potential or real bugs
occur, we provide a discussion. Note that some specifications
may have false positives; especially when they belong to the
suggestion or warning group. To suppress false warnings,
users have the option to selectively disable specifications.

5.1 Experimental Settings
For our experiments, we used a dual Xeon 2.66GHz (8

cores) / 16GB RAM / CentOS 5.7 machine and version 9.12
of the DaCapo benchmark suite [6] and the SPECjvm 2008
benchmark suite [17]. DaCapo is a set of open source, real
world applications with non-trivial memory loads. The lat-
est version 9.12 contains 14 benchmarks. SPECjvm is a
benchmark suite for measuring the performance of a Java
Runtime Environment, containing several real world appli-
cations and benchmarks focusing on core Java functionality.
This benchmark suite contains 38 benchmarks. We used the
default data inputs and the default settings for all bench-
marks. While DaCapo provides its source code so that we
can manually inspect the code to check if violations repre-
sent real bugs, SPECjvm does not provide its source code.
Thus, we could not identify the violations from SPECjvm.
We used the Sun JVM 1.6.0 for the entire evaluation. The
AspectJ compiler (ajc) version 1.6.4 was used to weave the
aspects generated by JavaMOP. We also used the most re-
cent release version of JavaMOP, 2.3.2.

5.2 Results and Discussion
Table 1 shows statistics on categorization and the number

of specifications that we found from formalization. In total,
41003, 77813, and 100963 words, respectively, were reviewed

and completely categorized into either description text or
property text, resulting in 0% undecided text for every pack-
age. Among them, 3774, 4310, and 9445 words implied
specifications, respectively. Also, we formalized all runtime-
monitorable specifications as JavaMOP specifications, re-
sulting in 30, 49, and 58 formal specifications, respectively.

Table 2 shows the number of specifications for each cat-
egory of specifications: error, warning and suggestion; and
the number of violated specifications among those specifi-
cations for each benchmark in the benchmark suites. Some
specifications, including error specifications, are violated in
several benchmarks. After manually inspecting source code,
we have found several potential problems and many sug-
gestions for performance improvements. We discuss more
detail for each package.

5.2.1 java.io
One error specification, one warning specification and three

suggestion specifications from java.io are violated on bench-
marks in DaCapo. The error specification, Reader Manipu-
lateAfterClose is violated on all benchmarks but avrora. How-
ever, after analyzing the source code, we found that Sim-

pleCharStream intentionally performs a read operation af-
ter closing the stream for checking if the stream is closed or
not. Also, it handles thrown exceptions properly. There is
no bug in this class related to this specification, but this is
not a usual pattern of using the Reader class according to
the JDK API; the code should probably be changed.

The warning specification, Serializable UID is violated on
all benchmarks. According to the JDK API, a Serializable

class is strongly recommended to have its own version num-
ber called serialVersionUID to verify compatibility during
deserialization. The lack of a version number can cause a
problem when the implementation changes or different com-
piler is used. We found that many Serializable classes in
DaCapo do not have serialVersionUID.

Three suggestion specifications, Closeable MeaninglessClose,
Closeable MultipleClose, and File DeleteTempFile are violated
on a few benchmarks. In several Closeable classes, a close
operation has no effect and other methods can be called even
after a close operation (Closeable MeaninglessClose). Also,
closing a previously closed Closeable class instance has no
effect (Closeable MultipleClose). However, it is safer to call
the close method multiple times or even one time for the
classes that are not affected by it, than forgetting to call.
Therefore, we are neutral on these specifications. But, for
eclipse, we recomend deleting temporary files according to
the File DeleteTempFile specification.

In SPECjvm, one warning specification and one suggestion
specification are violated: Serializable UID and Closeable Mu-
ltipleClose, respectively. We could not investigate the source
code of SPECjvm as we mentioned, but we assume that sim-
ilar things happened in SPECjvm. Similarly to DaCapo, we
are neutral about Closeable MultipleClose, but the Serial-

izable classes need to have serialVersionUID.

5.2.2 java.lang
One error specification and eight suggestion specifications

from java.lang are violated on several benchmarks in Da-
Capo. One of benchmarks in DaCapo, h2 violates the error
specification ShutdownHook LateRegister, which states that
one cannot add/remove any shutdown hook once the shut-
down procedure has begun. After analyzing the source code,

Technical Report http://hdl.handle.net/2142/29946, February 2012

java.io java.lang java.util
error warning suggestion error warning suggestion error warning suggestion

Total # of specifications 19 6 5 24 11 14 44 11 3

avrora 0 1 0 0 0 2 0 0 1
batik 1 1 2 0 0 5 0 3 1
eclipse 1 1 1 0 0 4 0 2 1
fop 1 1 0 0 0 2 0 0 1
h2 1 1 0 1 0 2 0 2 1
jython 1 1 2 0 0 6 1 1 1

DaCapo luindex 1 1 0 0 0 2 0 0 1
lusearch 1 1 0 0 0 2 0 0 1
pmd 1 1 0 0 0 2 0 0 1
sunflow 1 1 0 0 0 3 0 0 1
tomcat 1 1 0 0 0 3 0 1 1
tradebeans 1 1 0 0 0 2 0 0 1
tradesoap 1 1 0 0 0 2 0 0 1
xalan 1 1 2 0 0 4 0 2 1
startup.* (17 benchmarks) 0 0 0 1 0 3 0 1 1
compiler.compiler 0 0 0 1 0 3 0 1 1
compiler.sunflow 0 0 0 1 0 3 0 1 1
compress 0 0 0 1 0 3 0 1 1
crypto.aes 0 0 0 1 0 3 0 1 1
crypto.rsa 0 0 0 1 0 3 0 1 1
crypto.signverify 0 0 0 1 0 3 0 1 1

SPECjvm derby 0 0 0 1 0 3 0 1 1
mpegaudio 0 0 0 1 0 3 0 1 1
scimark.* (9 benchmarks) 0 0 0 1 0 3 0 1 1
serial 0 1 0 1 0 3 0 1 1
sunflow 0 0 0 1 0 3 0 1 1
xml.transform 0 0 1 1 0 3 0 1 1
xml.validation 0 0 0 1 0 3 0 1 1

Table 2: The number of violated specifications for each benchmark (startup.* and scimark.* benchmarks
show the same violation pattern).

we found that a shutdown hook, org.h2.engine.Database-
Closer is executed during the shutdown procedure, it calls
the close() method of org.h2.engine.Database, and this
method tries to remove the shutdown hook, which is not
allowed. Although the exception is correctly handled, this
design could potentially cause problems.

Most of violated suggestion specifications are suggestions
on performance: to use faster constructors or to use faster
data types in a particular situation. Although these sug-
gestions are from the JDK API, some specifications might
not be useful to some users. When an inefficient data struc-
ture is very lightly used, the improvement is very subtle.
Despite small performance degradation, one may choose to
use the slower data structures for better readability or eas-
ier maintenance. Also, a thread-safe data structure is sug-
gested when multiple threads use it, but there might be
external synchronization. In those cases, suggestions from
violated specifications can be ignored. Nevertheless, it is
still a good chance to review the implementation and look
for possible improvements.

In SPECjvm, one error specification, System NullArrayCopy
and three suggestion specifications are violated. All sug-
gestion specifications are suggestions on performance, which
are discussed above. System NullArrayCopy says that one
should not use null in the source or in the destination when
calling System.arraycopy(). Again, we could not investi-
gate the source code of SPECjvm. Therefore, this violation
could be a false alarm.

5.2.3 java.util
One error specification, three warning specifications, and

one suggestion specification from java.util are violated on

benchmarks of DaCapo. An error specification, Collections
SynchronizedCollection, is violated on jython. After inspect-
ing the source code, we found that jython does not synchro-
nize on a thread-safe list when iterating over the list using
a thread-unsafe way, which can cause data races.

Three warning specifications, Dictionary Obsolete, Iterator
HasNext and StringTokenizer HasMoreElements, are violated
on a few DaCapo benchmarks. The Dictionary Obsolete spec-
ification, which states that the Dictionary class is obsolete
and not to be used, is violated because some of its subclasses
are actually used. Two benchmarks violate Iterator HasNext,
but it turned out that the violations do not indicate ac-
tual errors because it is legal to consecutively call Itera-
tor.next() if it is assured that the next element exists. The
StringTokenizer HasMoreElements specification is violated by
three benchmarks because they assume at least one token is
always available. Although the assumption may be valid in
some cases, it is recommended to first check whether or not
a token is available.

A suggestion specification, Enumeration Obsolete, is vio-
lated on all benchmarks. Using Enumeration is not erro-
neous, but the specification warns because the documenta-
tion recommends Iterator, which can replace Enumeration.

In SPECjvm, only two specifications, Dictionary Obsolete
and Enumeration Obsolete, are violated. Thus, there is no
potential bug related to API usages of java.util.

6. LIMITATIONS & LESSONS LEARNED
A few drawbacks stem from the fact that we manually

inspected documentation comments. Manual inspection is
time-consuming, although it gives sophisticated and precise
specifications that other automated tools would not infer.

Technical Report http://hdl.handle.net/2142/29946, February 2012

We estimate that about four person-months were spent for
categorizing 219854 words and writing 137 formal specifica-
tions in three packages of the JDK.

Another drawback is that some inconsistency may exist
in categorization of documentation comments and we may
have overlooked specification-implying text. Categorization
is a subjective process because specification-implying text is
often implicit in JDK’s API specification, like any other doc-
umentation written in natural languages. For example, we
found the quoted text in Section 4.2 specification-implying,
but others may think it is descriptive.

The fact that we completely rely on JDK’s API speci-
fication can be another source of missing formal specifica-
tions. Unlike dynamic approaches, which infer specifications
from frequently observed behaviors, our work fails to pro-
vide specifications that the documentation fails to mention.
For example, a dynamic specification mining tool, such as
jMiner[13], could infer from program executions that when
an OutputStream (or its subclass) object is built on top of
an underlying ByteArrayOutputStream object, it should be
flushed or closed before the underlying object’s toByteAr-

ray() is invoked. This behavioral pattern is indeed desired—
because failing to fulfill the requirement may cause toByteAr-
ray() to return incomplete contents—but manual inspection
would miss it as documentation does not mention it.

7. RELATED WORK

Providing augmented documentation Some works have
been done to provide more informative documentation. One
of them is eMoose[7], an eclipse[8] plugin. This tool helps
users notice directives, which are similar to our @property

blocks, by highlighting them when the documentation ap-
pears. It also identifies all method calls whose targets have
directives and makes them easily noticeable from the source
code editor. Unlike our work, eMoose does not formalize
directives; thus, one cannot check them against programs.

Java Modeling Language (JML)[16] is a behavioral inter-
face specification language for Java, and allows one to specify
method contracts and invariants. Its JmlDoc tool generates
the API specification from JML-annotated Java files. The
generated documentation shows contracts and invariants for
each method and class, if available. Since JML is not de-
signed to categorize documentation comments, it does not
highlight specification-implying text.

Formalizing desired behaviors Various ways of formal-
izing behaviors have been also proposed. Monitoring Ori-
ented Programming (MOP)[14], a runtime verification frame-
work, defines its own syntax for expressing specifications to
be verified. In MOP, one can define events, such as method
invocations, and specify the desired or undesired behavior
over the events using logical formalisms with actions for
handling violations or validations of the specified behavior.
Another formalization approach is presented by JML[16],
which allows one to add contracts and invariants for each
method and class. Although behaviors are described differ-
ently, many of them can be formalized in both MOP and
JML. For example, one can formalize the following descrip-
tion in both MOP and JML:

Once the stream has been closed, further read(),
available(), reset(), or skip() invocations will

throw an IOException. Closing a previously closed
stream has no effect.

In JavaMOP, the Java instantiation of MOP, one can define
an event for each method, and then specify the undesired
behavior using the following ERE:

close+ (read | available | reset | skip)+

When any of four manipulation methods is invoked after
close, the pattern is matched, and JavaMOP invokes the
user-defined handler, which can contain arbitrary Java code.
In JML, one can define a model field of type boolean, called
isOpen, which is set when a stream is created and unset
when it is closed. One can then specify a precondition on
the four manipulation methods to ensure isOpen is true.

Inferring specifications Since formalizing behaviors re-
quires much human effort, many approaches to specification
mining have been proposed. Daikon[9] observes program
executions and infers pre- and post-conditions and invari-
ants, at every public method entry and exit of a class, in
JML and other formats. Although the inferred information
is useful, it does not explicitly describe behavioral patterns.
Ammons et al. [3] propose another dynamic approach that
infers FSMs over functions, which show patterns explicitly.
This can infer arbitrarily complex FSMs, but requires expert
knowledge, such as functions of interest. jMiner[13] also in-
fers arbitrarily complex FSMs, but it is capable of inferring
methods of interest from unit test cases as well, eliminating
necessity of the expert knowledge.

Rather than inferring arbitrarily complex FSMs, several
techniques detect methods that behave as specified in the
pre-defined patterns. Perracotta[20] infers all pairs of meth-
ods that satisfy the alternating pattern, (ab)∗, from execu-
tion traces. Gabel and Su [10] extend Perracotta; it con-
siders an additional pre-defined pattern (ab∗c)∗, known as
resource usage pattern.

There have been a number of static specification mining
techniques as well. Unlike dynamic techniques, static ones
do not need clients that can be rare, unless the target library
is widely used. Many techniques infer specifications from
the source code[1, 21], but some infer them from comments
using natural language processing (NLP); e.g., Zhong et al.
[22] propose an automated technique to infer the resource
usage specifications from API specifications.

Verifying specifications Numerous static and dynamic
techniques have been proposed to verify formal specifica-
tions. ESC/Java2[16] statically verifies a subset of JML an-
notations, although it is neither sound nor complete. MOP[14]
synthesizes from formal specifications monitors that can dy-
namically check specifications at runtime. Being executed
along with the target program, runtime monitoring can cause
performance degradation. Although various optimizations
have been devised, the performance benefit from them has
been hard to compare due to the lack of an extensive bench-
mark suite—comparison has been made among only several
specifications in the literature. We believe our work can be
a useful benchmark suite for runtime monitoring systems.

8. CONCLUSION
One of hurdles in developing reliable software is the lack of

formal specifications. We believe that one reason why doc-
umentation does not contain formal specifications is that

Technical Report http://hdl.handle.net/2142/29946, February 2012

no logical formalism provides a means of expressing all the
various types of requirements that clients should obey. As
a result, the requirements are informally written in plain
English. Since these informal requirements are mixed with
other descriptions, readers may not notice the existence of
requirements. Another consequence of not having formal
specifications is that potentially dangerous code is not re-
vealed in early stage of development.

In this paper we show that many implicit requirements can
be actually formalized and the inferred formal specifications
can be utilized by existing runtime verification tools. As
our experiments show, they were useful enough to provide
suggestions and warnings, and even reveal flaws in mature
software. Additionally, our extensive set of specifications
can be used to compare performance among monitoring sys-
tems and possibly stimulate performance improvement.

References
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API

patterns as partial orders from source code: from usage
scenarios to specifications. In FSE, 2007.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hen-
dren, S. Kuzins, O. Lhoták, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to AspectJ. In OOPSLA, 2005.

[3] G. Ammons, R. Bod́ık, and J. R. Larus. Mining speci-
fications. In POPL, 2002.

[4] H. Barringer, A. Goldberg, K. Havelund, and K. Sen.
Rule-Based Runtime Verification. In VMCAI, 2004.

[5] H. Barringer, D. Rydeheard, and K. Havelund. Rule
systems for run-time monitoring: from EAGLE to
RULER. J. Logic Computation, November 2008.

[6] S. M. Blackburn, R. Garner, C. Hoffman, et al. The
DaCapo benchmarks: Java benchmarking development
and analysis. In OOPSLA, 2006.

[7] U. Dekel and J. D. Herbsleb. Improving API docu-
mentation usability with knowledge pushing. In ICSE,
2009.

[8] eclipse. http://www.eclipse.org/.

[9] M. D. Ernst, A. Czeisler, W. G. Griswold, and
D. Notkin. Quickly detecting relevant program invari-
ants. In ICSE, 2000.

[10] M. Gabel and Z. Su. Symbolic mining of temporal spec-
ifications. In ICSE, 2008.

[11] How to Write Doc Comments for the Javadoc
Tool. http://www.oracle.com/technetwork/java/

javase/documentation/index-137868.html.

[12] C. Lee, D. Jin, P. O. Meredith, and G. Roşu.
Annotated Java API. http://fsl.cs.uiuc.edu/

annotated-java/.

[13] C. Lee, F. Chen, and G. Roşu. Mining parametric spec-
ifications. In ICSE, 2011.

[14] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and
G. Roşu. An overview of the MOP runtime verification
framework. International Journal on Software Tools for
Technology Transfer (STTT), pages 1–41, 2011.

[15] OpenJDK. http://openjdk.java.net.

[16] E. Poll, P. Chalin, D. Cok, J. Kiniry, and G. T. Leavens.
Beyond assertions: Advanced specification and verifica-
tion with JML and ESC/Java2. In FMCO, 2005.

[17] SPECjvm 2008. http://www.spec.org/jvm2008/.

[18] R. E. Strom and S. Yemini. Typestate: A program-
ming language concept for enhancing software reliabil-
ity. IEEE Transactions on Software Engineering, 12:
157–171, January 1986.

[19] Taglet. http://docs.oracle.com/javase/6/docs/

technotes/guides/javadoc/taglet/overview.html.

[20] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das.
Perracotta: mining temporal API rules from imperfect
traces. In ICSE, 2006.

[21] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei. MAPO:
Mining and recommending API usage patterns. In
ECOOP, 2009.

[22] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring
resource specifications from natural language API doc-
umentation. In ASE, 2009.

Technical Report http://hdl.handle.net/2142/29946, February 2012

http://www.eclipse.org/
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://fsl.cs.uiuc.edu/annotated-java/
http://fsl.cs.uiuc.edu/annotated-java/
http://openjdk.java.net
http://www.spec.org/jvm2008/
http://docs.oracle.com/javase/6/docs/technotes/guides/javadoc/taglet/overview.html
http://docs.oracle.com/javase/6/docs/technotes/guides/javadoc/taglet/overview.html

	Introduction
	Approach Overview
	Categorizing and Formalizing the JDK API
	Syntax of Documentation Comments
	Categorizing Documentation Comments
	Writing Formal Specifications
	Classifying Formal Specifications
	Severity
	Guarantee of the underlying system

	Augmented API Specifications

	Examples
	PipedStream_SingleThread
	StringBuffer_SingleThreadUsage
	Serializable_UID
	ShutdownHook_PrematureStart

	Evaluation
	Experimental Settings
	Results and Discussion
	java.io
	java.lang
	java.util

	Limitations & Lessons Learned
	Related Work
	Conclusion

