
Pattern-based Composition and Analysis of Virtually Synchronized
Real-Time Distributed Systems

Abdullah Al-Nayeem, Lui Sha
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
{aalnaye2, lrs}@illinois.edu

Darren D. Cofer, Steven P. Miller
Advanced Technology Center

Rockwell Collins Inc.
Cedar Rapids, IA 52498, USA

{ddcofer, spmiller}@rockwellcollins.com

Abstract—Designing and verifying distributed protocols in a
multi-rate asynchronous system is, in general, extremely diffi-
cult when the distributed computations require consistent input
views, consistent actions and synchronized state transitions. In
this paper, we address this problem and introduce a formal,
complexity-reducing architectural pattern, called Multi-rate
PALS system, to support virtual synchronization in multi-rate
distributed computations. The pattern supports a component to
be virtually synchronized with other components in different
instantiations of this pattern. We present an application of
a hierarchical control system to show that the composition
of these instantiations can be used to achieve desired system-
level properties, such as distributed consistency and distributed
coordination. We verify the logical synchronization guarantee
of this pattern which holds as long as the pattern assumptions
are satisfied. We also discuss the correctness analysis necessary
to validate these assumptions and provide a tool support to
perform this analysis automatically on the AADL models.

Keywords-Design patterns; virtual synchronization; complex-
ity reduction

I. INTRODUCTION

The size and complexity of the onboard software of cyber-
physical systems, e.g. aerospace, automobiles, have grown
exponentially in recent years [1][2]. If this growth continues,
the cost and time of software development and verification
will become the primary barrier to the development of
future systems. In [3], we addressed this problem and pro-
posed a model-based design methodology where complexity-
reducing, formal architectural patterns are treated as first-
class objects. In this approach, the system architecture is
composed from libraries of architectural patterns that have
been formally proven to reduce unnecessary complexity and
coupling between components. The use of these patterns
with formally specified components and easily verifiable
compositional analysis ensures that new system designs are
developed rapidly in a correct-by-construction manner.

In this work, we apply this design principle and develop
a complexity-reducing architectural pattern to support archi-
tectural composition and analysis of virtually synchronized
cyber-physical systems. We note that these systems are com-
monly implemented as networked real-time control systems

consisting of a network of distributed devices controlled
by a hierarchy of distributed controllers. These systems
often require distributed synchronization to coordinate the
hierarchical computations and guarantee consistency among
the replicated computations. For example, in a fly-by-wire
aircraft, the control surfaces such as ailerons, rudder, and
elevator are each locally controlled by higher-level super-
visory controllers operating at different rates. To initiate a
turn, the actions of these control surfaces are coordinated by
the synchronous changes of their setpoints generated from
the supervisory controllers. Theoretically, the adjustment
of these setpoints need not be synchronous since each of
the elements under control is an analog device. However,
asynchronous local actions increase coordination errors and
thus, are undesirable. In addition, ensuring the consistency of
input events to distributed controllers is important, especially
when controllers replicated for fault-tolerance.

Developing synchronization protocols to guarantee consis-
tency and coordination between the real-time computations
in an asynchronous architecture is, in general, extremely
difficult. Because of the clock skews, even a subtle timing
difference in the execution and communication delay can
lead to distributed race conditions and many serious, often
non-reproducible, bugs. Consider the case of a triplicated
redundant control. To guard against physical accidents, these
3 redundant controllers could be distributed at different pro-
cessors. Because of the non-zero clock skews, one controller
could be in period k+1, while the other two still be in period
k. If a new setpoint is received by replicated controllers at
different periods, one controller’s command could be voted
out resulting in an invalid failure detection. Same input for
different periods or different inputs for the same period at
3 controllers violates consistency and thus, is unacceptable.
The problem becomes more complex when these computa-
tions interact at different rates and concurrently participate
in more than one distributed synchronization, such as leader
election protocol and set-point synchronization.

In our earlier works on Physically-Asynchronous
Logically-Synchronous (PALS) systems [4][5][6][7], we ad-
dressed this problem for real-time distributed computations

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4837802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with same period. The PALS system is a formal architectural
pattern for optimal real-time virtual (or logical) synchro-
nization on top of asynchronously executing tasks. It allows
engineers to design, verify and implement the distributed
protocols as if the systems were driven by perfectly syn-
chronized clocks. The pattern formally guarantees the same
synchronous behavior that no further changes are required in
the asynchronous system. As a result, it greatly benefits the
software development and verification process since the state
space of the synchronous design is often orders of magnitude
smaller than that of an asynchronous system. For example, in
a case-study of a dual-redundant avionics system, we found
that model checking of the asynchronous design took over
35 hours even to discover a counter-example, whereas it
finished in less than 30 seconds for the PALS design [4].

While the original PALS system is useful for some
common fault-tolerant applications (executing at the same
rate), it needs to be extended to support synchronization
between multi-rate computations. In this paper, we ex-
tend the original PALS system and propose a complexity-
reducing architectural pattern, called Multi-rate PALS sys-
tem, to support virtual synchronization pattern with multi-
rate (both harmonic and non-harmonic) computations. The
Multi-rate PALS system guarantees that a group of multi-
rate distributed computations in a real-time asynchronous
system have same behavior as the same set of computations
in a synchronous system driven by perfectly synchronized
clocks. We verify this guarantee by showing that the pattern
always establishes it if the system architecture satisfies
the pattern assumptions. We discuss these assumptions in
Section IV-B.

We also provide an architectural analysis to support com-
position of multiple instances of this pattern. For example,
this pattern can be applied at different levels of the hierarchi-
cal control systems for consistent coordination of different
computations. Our analysis framework assists the system-
level verification of this system by validating different timing
and environmental assumptions.

In this paper, we define the architectural annotations and
specification of this pattern in AADL, an industry-standard
architectural description language. These annotations and
rules are used in the analysis tool to check the correctness of
the pattern instantiation against any incorrect modifications
during the system design.

II. RELATED WORK

Virtual synchronization is a well-studied topic in dis-
tributed systems and theory [8][9]. The classical virtual
synchronization is based on a communication service to
guarantee consistent delivery of events to distributed pro-
cesses using Lamport’s vector clock. These synchronization
techniques however do not satisfy hard real-time guarantees.
Real-time versions of these communication services have
been proposed in [10][11]. Although very useful in many

contexts, these works are more suitable to synchronize repli-
cated state machines (which commonly execute in the same
rate). The Multi-rate PALS pattern based virtual synchro-
nization supports different layers of application synchroniza-
tion executing at different rates. A distributed middleware
supporting the PALS systems is discussed in [12].

Our work is also related to another body of works that
implement semantics preserving implementation of syn-
chronous model onto different asynchronous architectures,
e.g. Loosely Time-Triggered Architecture [13][14], Asyn-
chronous Bounded Delay network [15]. Although correct-
ness is achieved in spite of unpredictable communication
delays and clock skews, these approaches do not provide
the hard real-time guarantee required for synchronization
and consistent views in networked real-time systems. In the
absence of such guarantees, coordinating devices operating
at different rates in a networked control system may be very
complex even in a harmonic rate group. Coordination errors
may be very large depending on the difference in controller
periods and random variations of message arrival times.

The architectural assumptions of bounded end-to-end de-
lay and clock skew is similar to Time-Triggered Architecture
(TTA) [16]. Caspi et al. [17] gives a model-based approach
for translating synchronous model onto TTA. J. Rushby [18]
shows the formal verification of the algorithms for mapping
of an asynchronous system onto a synchronous system for
time-triggered architecture. In general, these solutions de-
pend on a global schedule for distributed synchronization of
applications through a tight node synchronization enforced
by specialized hardware. On the other hand, our approach
does not require any global schedule for synchronization,
which itself can be very hard to maintain and compute
for multi-rate distributed computations. We use the system
parameters, e.g. end-to-end delay and clock skews, as the
abstraction of the underlying architecture to define the
constraints on applications’ execution and synchronization
periods. This abstraction works for the virtual synchroniza-
tion in any real-time network architecture, whether it is time-
triggered or event-triggered.

Our use of assumptions to define valid pattern instances
and preserve the pattern guarantees is similar to the ba-
sic principle of assume-guarantee compositional reasoning
[19]. For a realistic analysis, this approache decomposes a
large, complex system into different subsystems and perform
modular verification on each subsystem in the context of its
environment interface. There is a fair amount research done
on the topic of specification of assumptions and guarantees,
automated assumption learning and abstraction refinement
[20], [21]. Despite the advances in compositional reason-
ing, the validation and verification of real-time distributed
systems is still subject to the state-space explosion problem.
Complexity-reducing design patterns as ours can provide the
necessary abstractions, such as the synchronous abstraction
by the PALS patterns, which can simplify much of the

verification efforts. We believe that more research still needs
to be done to integrate these patterns and their analysis in
existing formal verification frameworks.

III. AN ILLUSTRATIVE EXAMPLE

In this section, we present an example of a hierarchical
control system to illustrate the basic concepts of the Multi-
rate PALS pattern.

A. Problem description

In networked control systems, multiple devices must be
coordinated in a timely and synchronized manner to achieve
desired operation of the system. For example, in practice,
ailerons and rudders are used together to turn an aircraft.
Ailerons, attached to the left and right wings of an aircraft,
coordinate with each other to roll an aircraft about the lon-
gitudinal axis by changing the lift on two wings. Since these
ailerons move in different directions (upward or downward)
to create a differential lift on the wings, they also cause
a difference in the drag on the wings. This unwanted side
effect, commonly known as adverse-yaw, produces a yawing
motion in a direction opposite to the desired roll. One of the
commonly applied techniques to counteract this undesired
yawing motion is to use the rudder attached to the vertical
stabilizer of the aircraft. Proper, synchronized coordination
of both ailerons and the rudder at the right speed is important
for the safety of the aircraft. Otherwise, improper turn of the
rudder or the ailerons may result in undesired and dangerous
sideways movement, known as sideslip.

The coordination of these control surfaces is accomplished
by a fault-tolerant, hierarchical control system, in which
replicated supervisory controllers are responsible for coor-
dinating the set-points of the position, velocity of ailerons
and rudder at a desired speed based on the flight mode. The
local servo controllers of each control surface, which are
also replicated, use the set-point commands, compute local
tracking errors with respect to the set-points, and generate
actuator commands at the acceptable rate for the devices.

In order to prevent any incorrect device coordination
and any single-point failure as a result of inconsistent
actions at the replicated local controllers, the design must
satisfy the system-level properties that (1) the replicated
servo controllers receive the supervisory controller updates
approximately at the same time as other device controllers
and (2) a consistent view of inputs is guaranteed at the
replicated controllers irrespective of the input data rates.

B. Multi-rate PALS protocol

The proposed Multi-rate PALS pattern can be applied
to guarantee a logically synchronous coordination of these
devices and prevent any inconsistency. The system would
operate in the same way as it would do in a synchronous
distributed system (with zero clock skew).

For illustration purposes, we assume that the ailerons
are controlled at 66.67Hz (15ms), the rudder is controlled
50Hz (20ms)1. For simplicity, we only show the active-
standby replication for the rudder control, where two servo
controllers execute at the same rate. While both controllers
receive the sensor data and supervisory commands, only the
active controller sends the actuator command to the rudder.

Logical synchronization period: In a perfectly syn-
chronous distributed system, the synchronous changes in
the set-points of the local control applications can happen
only at the hyper-period boundary, i.e. at an interval equal
to the LCM (least common multiple) of the local control
periods. This is unavoidable in a synchronous design since
there is no simple scheduling solution to change the setpoints
at the same time with a smaller synchronization period. A
smaller synchronization period may also potentially result in
asynchronous actions, such as ailerons changing their set-
points or other discrete commands first before the rudder,
and vice versa. Such asynchronous changes are not desired
as they could potentially lead to adverse-yaw during the
aileron-rudder synchronization.

To preserve the same synchronous semantics in a Multi-
rate PALS system, the supervisory synchronization period
of these devices is also set to the LCM of the periods. In
this example, the rudder and aileron servo controllers receive
the setpoint updates at a period of 60ms. The supervisory
controller itself may execute at a faster or slower rate.
However, if it needs to receive synchronous updates of the
status of the device controllers, it can do so at 60ms.

We also note that harmonic rates have been traditionally
favored for hierarchical control in industrial systems, as
they simplify the scheduling. However, the rates offered in
such design may not be the best from a control perspective
(considering the difference in the physical dynamics of
the devices). On the other hand, picking locally optimal
control periods may result in a very long LCM and slow
the supervisory control. Therefore the trade-off between lo-
cal, optimized control computations and longer supervisory
control period needs to be considered when designing this
hierarchical control. A key benefit of using our proposed
pattern is that it provides the simplicity of the synchronous
design and does not require the devices to operate in a
strictly harmonic rate since there are no direct communica-
tion between them. Thus, engineers can address this trade-off
and explore an extended design space with our approach.

Synchronization interface: In order to ensure the super-
visory control synchronization in a period of 60ms, the
pattern defines a synchronization interface, called multi-rate
synchronizer for each servo controller. These synchronizers
execute periodically at 60ms. They execute at a higher
priority than the control application so that commands of the

1In a commercial aircraft, the ailerons are controlled at 30-100 Hz, and
the rudder is controlled at 30-50 Hz.

Supervisory

control.1

Aileron

control.1

Rudder

control.1

synchronizer

controller

60ms 60ms

period j-1 period j

period j-1 period j

period j-1 period j

Rudder

control.2

period j-1 period j

synchronizer

controller

synchronizer

controller

synchronizer

controller

(60ms)

(20ms)

(15ms)

(15ms)

(a) Supervisory set-point commands going downward the hierarchy

60ms 60ms

period j period j+1

period j period j+1

period j period j+1

period j period j+1

Supervisory

control.1

Aileron

control.1

Rudder

control.1

synchronizer

controller

Rudder

control.2

synchronizer

controller

synchronizer

controller

synchronizer

controller

(60ms)

(20ms)

(15ms)

(15ms)

(b) Device controller status going upward the hierarchy

Figure 1. Logical synchronization in the hierarchical control system

supervisory controller of the synchronization period j−1 can
be consistently processed by the device controllers during
the synchronization period j.

Figure 1(a) shows the equivalent logically synchronous
execution of these controllers. In this figure, the aileron
and the replicated rudder controllers obtain synchronous
updates of the set-point commands in every 60ms pe-
riod. Since there are many executions of a servo con-
troller in each synchronization period, the same set-point
is used during these executions. In this example, there
are 4 executions of the rudder servo controllers and 1
execution of the supervisory controller in each synchro-
nization period j. Suppose that the setpoint generated
by the supervisory controller in its execution period p
for the rudder is given by Supervisor.SetpointoutR (p)
and the setpoint used by the rudder controller in its
execution period q is given by Rudderi.Setpoint

in
R (q),

i = 1, 2. The logically synchronous supervisory con-
trol of the rudder controllers can then be shown by
Rudder1.Setpoint

in
R (4.j+k) = Rudder2.Setpoint

in
R (4.j+

k) = Supervisor.SetpointoutR (j − 1), k = 0..3 for each
synchronization period j. (It can similarly be shown for the
aileron controllers). In the asynchronous system, the system
clock of each node has bounded clock skew of ε. The pattern
abstracts the impact of the clock synchronization errors and
produces an equivalent execution, which happens within an
interval 2ε (as bounded by the clock skew).

Similarly, the aileron and the rudder controllers send their
status to the supervisory controller2. These responses flow
upward in the hierarchy as shown in Figure 1(b). It shows
that the status at each synchronization period j is propagated
to the supervisory controller in the same synchronization
period. Based on these inputs, the supervisory controller may
take any correction necessary to coordinate these devices.
While there are many executions of each control application
during a synchronization period, only the update from the
last execution matters for the coordination. We show this

2The multi-rate synchronizer may be omitted for the supervisory con-
troller unless it operates in a different rate and requires synchronous
updates. We use it for uniformity of the design.

communication with a solid line in the figure. However, the
status from previous executions (as shown by the dashed
lines) may be relevant depending on the application re-
quirements, e.g. debugging. If they are transmitted, then the
synchronization interface of the supervisory controller may
be responsible to deliver the correct input. In this paper, the
Multi-rate PALS pattern assumes that outputs from other
executions are also delivered, but the synchronizer filters
the outputs to deliver only the last one.

C. Pattern composition

A particular benefit of using the Multi-rate PALS pattern
is that it allows designers to form logical synchronization
groups where a component may participate in different
groups. Thus the components have the flexibility to receive
their messages logical synchronously at different rates. For
example, in addition to the Multi-rate PALS synchronization
for supervisory control, the replicated rudder servo con-
trollers participate in another synchronization group with
the sensors and the actuator. In this instantiation, these
servo controllers receive the sensor data and perform discrete
mode changes, e.g. changing the mode to standby upon the
failure of the active controller, logically synchronously.

We show a Multi-rate PALS pattern instantiation for the
rudder servo control later in Figure 2. (We will explain the
structural specifications later in the paper). This instantiation
for rudder servo control is a special case of this pattern
with each task operating at 20ms. In this case, the logically
synchronous interaction is simple. For the rudder sensor data
(RSD), the pattern guarantees that Rudder1.RSDin(j) =
Rudder2.RSD

in(j) = Sensor.RSDout(j − 1) in each
20ms synchronization period j.

From compositional verification perspective, the pattern
greatly simplifies the system verification process. In this
example, designers can reuse the formal pattern guarantee
of virtual synchronization with respect to the input data,
such as rudder sensor data (RSD) and supervisory setpoint
command (SetpointR), to show that the servo controllers
operate consistently by receiving identical inputs despite
the differences in the rates. The only overhead for validat-
ing this system-level property of consistency is that these

instantiations indeed follow the pattern requirements. In
Section VI, we discuss how the pattern requirements can
be mechanically validated.

IV. THE MULTI-RATE PALS PATTERN

The Multi-rate PALS pattern is a formal architectural
transformation that transforms an input system model to a
new system model with guaranteed properties. In this sec-
tion, we give a description of the Multi-rate PALS pattern’s
behavior as well as how a developer would use the pattern
in a AADL system design specification3. We also describe
the assumptions that must be satisfied before the pattern
can be applied. These assumptions include constraints over
the system architecture model, e.g. timing constraints, struc-
tural requirements for the relevant components and their
connections. Later in Section V, we prove its logical syn-
chronization guarantee for multi-rate real-time distributed
systems. The key property of this pattern, as well as other
formalized architectural patterns [3], is that this verification
effort is amortized over all valid pattern instances. Analysis
of system-level behavior can subsequently make use of the
proven pattern guarantees without having to reprove them.

A. Pattern parameters

The pattern is applied to a group of periodic, distributed
computation components, M1, ...,MN modeled as AADL
threads or thread groups4. They execute at a period of
T1, ..., TN respectively. The hyper-period, denoted by Thp,
is equal to the LCM of these periods. These compo-
nents form a synchronization group defined by a property,
PALS ID after the pattern application. A set of (output
port, input port) pairs, i.e. AADL port connections, used
in the multi-rate synchronization is also provided as the
parameters of this pattern. These connections are annotated
by the property called PALS Connection ID. The value of
PALS Connection ID is equal to PALS ID.

B. Assumptions

The assumptions of the pattern are classified into three
categories: system context (any requirements on the initial
system model), timing, and external interface constraints.
This detailed list of assumptions does not mean that the
pattern is very restrictive. They rather provide the basis for
the structural analysis relevant to this pattern. The other
constraints, such as those based on physical properties of
the controlled devices are out of scope of this pattern.

System context: This pattern is applicable in hard real-
time, networked systems with following characteristics:
• Bounded local clock skew. Each node i has access to

an approximation of the true global time t via a local

3The pattern can similarly be specified and implemented in other pro-
gramming environments, e.g. PTIDES [22], with a similar set of analysis.

4In AADL, a thread group gives the component abstraction for logically
organizing threads and other thread group within a process

clock Ci(t), where the maximum skew of each local
clock is ε, i.e., |Ci(t)− t| < ε.

• Monotonic local clocks. Each node may adjust its clock
rate, but it may never decrease the local clock value.

• Bounded computation time. The computation of a com-
ponent completes within a specified time. Typically this
is the scheduling deadline of a thread, αmax

i .
• Bounded message delivery. Messages from Mi, i =

1 . . . N , are reliably delivered to their destinations with
a latency µi

5, where µmin
i ≤ µi ≤ µmax

i .
• Node fault assumptions. Nodes are crash-stop and may

recover later. The output of a crashed component is
assumed to be ‘null’. A failed node must not be able
to send extra erroneous messages during a period. This
could result in nodes receiving different messages, even
though the network delivered each message correctly.

Timing constraints: The following constraints relating sys-
tem parameters of each computation must be also satisfied.
We show in next section that these constraints are required
to satisfy the requirement that messages generated during
the logical synchronization period j − 1 are consumed by
their destination nodes in the synchronization period j.
• Computation period constraint. The period of this com-

putation gives the upper bound on the worst-case end-
to-end delay from a component. A message must not be
sent after its deadline so that the receiving nodes receive
them before the next dispatch of this component.

Max(eouti) < αmax
i ≤ Ti − µmax

i − 2ε (1)

eouti denotes the execution time range when a compo-
nent i delivers a message. Max(.) gives the upper bound
of the time range.

• Causality constraint. In order to account for the clock
skews, messages should not be delivered too early
which might violate the causality.6

Hi ≥ max(2ε− µmin
i , 0) (2)

Hi is earliest time during the execution of a component
i. max(a, b) returns the larger value of a and b.

The initial system model must define necessary properties
for period, deadline, output time, latency, and clock skew
for these periodic components. In the AADL model, these
can be specified by standard AADL properties e.g. Period,
Deadline, Output Time, Latency, and Clock Jitter.

External interface constraints The last set of assumptions
is associated with external inputs that are received from any
component outside the PALS synchronization group, but are
used in a multi-rate synchronization. The pattern assumes

5The values must be normalized to take into account the minimum and
maximum clock drift rate as suggested in [23].

6This constraint can be relaxed by using timestamps to prevent causabil-
ity violation. It however increases the message size and requires message
buffers at the receivers.

that the components consume these external inputs, such as
a user input that changes the global system mode, in the
same synchronization period.

These external connections are identified by the annota-
tion property PALS Connection ID, which is provided as
part of the pattern parameters. However the source compo-
nent of these connections do not either define the PALS ID
property or has a different value than the identifier of this
synchronization group.

C. Guarantees

As illustrated in Section III, the pattern guarantees logical
synchronization between multi-rate asynchronous compu-
tations at a period of Thp. Suppose that A is a sending
component (period=Ta) and it sends messages to other com-
ponents, B and C of period Tb and Tc respectively. There are
na = Thp/Ta, nb = Thp/Tb and nc = Thp/Tc executions
of A, B and C during a synchronization period Thp. The
pattern guarantees that the receiving components receive all
na = Thp/Ti messages from A during the synchronization
period j − 1, based on the timing assumptions (see Lemma
1 in Section V). The pattern filters these received messages
(identically at both B and C) and delivers the selected
message to the computation components of B and C during
the period j. If the last received message is selected, then
the pattern ensures that

B.in(j.nb + kb) = C.in(j.nc + kc) = A.out(j.na − 1);

where kb = 0 . . . nb−1, kc = 0 . . . nc−1.. Here A.out(i′),
B.in(j′) and C.in(k′) corresponds to the input and output
port data of the corresponding components in their execution
period i′, j′, k′.

This logically synchronous interaction in the asyn-
chronous system is equivalent to a group of perfectly syn-
chronized nodes executing at the same rates, as long as the
pattern assumptions are satisfied.

D. Pattern instantiation

In order to guarantee logical synchronization, the pat-
tern attaches a multi-rate synchronizer, Mi,syn at each
component Mi that serves as a synchronization interface
and manages only the input data used during the multi-
rate synchronization (annotated by the connection property,
PALS Connection ID). It does not affect other inputs that
are not used in this instantiation.

The pattern models the synchronizer as an AADL thread
component and binds it to the same processor as Mi. We
use a set of pre-defined properties to model the expected
scheduling and communication characteristics, which can
later be used to validate the pattern instantiations:
• PALS Synchronizer Type: This is used to distinguish a

thread as a multi-rate synchronizer. The values are set
to Multi Rate Synchronizer.

• Dispatch Protocol, Period: The synchronizer is a
Periodic thread, with its Period being set to Thp.

• PALS Period: This is the synchronization period of
this group. Its value is set to Thp. The period of the
synchronizer must be equal to this value, too.

• Priority: As discussed in the example section, the
thread priority of the multi-rate synchronizer is set to
a higher value than that of Mi.

In addition to these properties, other standard AADL prop-
erties, such as Output Time (the interval during an execution
when output is transmitted) and Deadline, must be defined
for this thread. The pattern also defines the message selection
criteria of the input data ports of the synchronizer with
a property, called PALS Synchronizer Operation. Currently,
its value is set to Last Message Only to indicate that the
synchronizer only propagates the last message it received in
this port during a synchronization period. It can be changed
to model other alternatives, such as delivering a vector or as
a function of the received messages.

Composition of Mi and Mi,syn: In order to facilitate the
use of this component in subsequent pattern instantiations,
the pattern forms a new AADL thread group, M ′i with the
computation component, Mi and the multi-rate synchronizer
Mi,syn as its subcomponents. This newly formed thread
group has exactly the same input-output interface as the
original component, Mi. The pattern defines the internal
connections of its subcomponents with its input/output ports.
The input ports of M ′i are connected to the input ports of
Mi,syn if they are relevant to the current pattern instantiation
(as identified by the PALS Connection ID), otherwise these
input ports are connected with corresponding input ports of
Mi. The outputs of Mi are directly propagated through the
corresponding outputs of M ′i .

The pattern also annotates M ′i with AADL properties:
Period, Deadline, Computation Time, Output Time,
Priority, and PALS ID. These property values capture the
timing characteristics of the combined execution of these
two components and are derived from the properties of Mi

and Mi,syn. In this case, the Period, Deadline, Priority of
M ′i are set to same values as Mi since the computations of
this new thread group do not change with this composition.
However, adding a multi-rate synchronizer to generate
the new system model adds some small computation
overhead for the first execution of Mi in a synchronization
period. We therefore update the Computation Time and
Output Time with this added overhead. M ′i .Output T ime
is set to the time range Min(Output T imei +
Output T imei,syn). . .Max(Output T imei +
Output T imei,syn) to denote the time range when
this combined computation sends the message. Finally we
set the connection property, PALS Connection ID of the
incoming connections to Mi,syn with the synchronization
group identifier so that they can be differentiated in
subsequent pattern applications.

Local servo control synchronization (PALS ID=“Rudder Control”, PALS Period=20ms).

RCT RCT

RST

RAT

Sensor

Data

Setpoint_R

Setpoint_R

Rudder Sensor

Rudder Control.1 Rudder Control.2

Rudder Actuator

Control2Control1

Sensor

Data

Heartbeat1

Heartbeat2
Status

Status

(a) Input model

RCT

RST

RAT

Control1

Setpoint_R

Syn Syn RCT

Syn
Control2

Setpoint_R

Rudder Control.1 Rudder Control.2

Rudder Sensor

Rudder Actuator

Sensor

Data

Sensor

Data

Heartbeat1 Heartbeat2

Status
Status

(b) Multi-rate synchronizer (Syn) is added

RCT_Gr RCT_Gr

RST

RAT_Gr

Heartbeat1

Heartbeat2

Rudder Sensor

Rudder Control.1 Rudder Control.2

Rudder Actuator

Sensor

Data

Sensor

Data

Control1 Control2

Setpoint_R

Status

Status

Setpoint_R

(c) Computation grouped in a thread group

Supervisory control synchronization (PALS ID=“Supervisory Control”, PALS Period=60ms).

RCT_Gr

SCT_Gr

Sensor

data

Control1

Setpoint_R

Rudder Control.1

RCT_Gr

ACT_Gr

Setpoint_A

Aileron Control.1

Supervisory Control.1

Rudder Control.2

Status Status

Status

Heartbeat1

Heartbeat2

Heartbeat2

Heartbeat1

Sensor

data

Control2

Control

Sensor

data

Setpoint

_R

(d) Input model

Rudder Control.1

ACT_Gr

Aileron Control.1

Rudder Control.2

SynRCT_Gr Syn

RCT_Gr

Syn

SCT_GrSCT_Gr

SynSyn

Supervisor Control.1

Sensor

data

Control1

Status Status

Status

Heartbeat1

Heartbeat2

Heartbeat2

Heartbeat1

Sensor

data
Control2

Control

Sensor

data

Setpoint_R Setpoint_A

Setpoint

_R

(e) Multi-rate synchronizer (Syn) is added

RCT_Gr’’

SCT_Gr’’

Rudder Control.1

RCT_Gr’’

ACT_Gr’’

Aileron Control.1

Supervisory Control.1

Rudder Control.2

Sensor

data

Control1

Status Status

Status

Heartbeat1

Heartbeat2

Heartbeat2

Heartbeat1

Sensor

data

Control2

Control

Sensor

data

Setpoint_R

Setpoint

_R

Setpoint_A

(f) Computation grouped in a thread group

Figure 2. Composition of Multi-rate PALS pattern instances

Alternative implementation: Some of the suggested im-
plementations may have alternative modeling solutions with
equivalent results. In particular, with respect to the multi-rate
synchronizer, instead of defining the multi-rate synchronizer
as a separate thread element, this synchronizer may be
modeled as a middleware subprogram that reads new data
from the port at the specified period in the same computation
thread. Even in this case, the effect of implementing the
subprograms must be included in the pattern modeling and
analysis, particularly the same computation overhead and
the support for reusable message selection logic. Simi-
larly, another standard property, called Timing on the port
connection can be used instead of the thread priorities to
define the scheduling order. In any case, the compositional
analysis should be extended for these alternative solutions
for preserving the synchronous semantics.

External input synchronization: The pattern assumes that
inputs arrive logically synchronously. Here we discuss a
related concept for synchronization of external inputs. In
this case, the sources of these external inputs are not part
of the synchronization group. In order to guarantee that
external inputs arrive logically synchronously, we extend the
concept of environment input synchronizer of the original
PALS system [5].

An environment input synchronizer, Menv is a component
that follows the timing constraints of Equation 1 and 2. It
requires an additional constraint on its period Tenv such

that the synchronization period Thp is perfectly divisible by
Tenv . With this solution, the original source component can
execute at any period asynchronously with respect to the
receiving components of the given synchronization group.
The source component transmits its outputs asynchronously
to an environment input synchronizer (which may also be
replicated, if needed). The input synchronizer then delivers
the messages to the receiving nodes logically synchronously.
To use this concept in the analysis, the pattern requires
the environment input synchronizer be annotated with the
property, PALS Synchronizer Type with the value being set
to Environment Input Synchronizer.

E. Exemplar model

Figure 2 gives simplified AADL diagrams of the pattern
instantiations for local rudder servo control synchronization
and supervisory control synchronization. The code snippet
of this example is given in the appendix. In this figure,
we only show the distributed process elements of different
subsystems and the threads inside them. It does not show the
distribution of these processes in dedicated system models
with the hardware specification.

In the first synchronization in Figure 2(a)2(b)2(c), two
replicated rudder controller threads (RCT) receive sensor
data from the rudder sensor thread (RST) and propagates
their actuator commands to the actuator thread (RAT). They
also exchange the heartbeat messages to each other as part of

the active-standby replication protocol. After the pattern is
applied, multi-rate synchronizers (denoted by a short name,
Syn) are added to the processes. These synchronizers affect
only the input data that are relevant to this synchronization
instantiation. In this instantiation, the setpoint commands
from the supervisory controllers are not directly involved
so they are not passed through the multi-rate synchronizer.
After this, we create an AADL thread group component,
e.g. RCT Gr at the servo controller composing both the
controller thread (RCT) and the synchronizer (Syn).

In the second synchronization in Figure 2(d)2(e)2(f),
the system models obtained after the previous instantiation
are used for the supervisory control synchronization. In this
case, two rudder controller and an actuator controller receive
the setpoint commands from the supervisor. The pattern
instantiation follows the same rule as above without affecting
the non-participating inputs of a component.

V. VERIFICATION OF THE MULTI-RATE PALS PATTERN

This section describes the timing model of this pattern
and uses this model to prove the virtual synchronization
guarantee based on the assumptions given in Section IV-B.

A. Multi-rate PALS timing model

Each node in the pattern has two components involved in
the pattern instantiation: Mi (computation component) and
Mi,syn (multi-rate synchronizer). Mi and Mi,syn are driven
periodically by two local logical clocks or timers, Ci and
Ci,syn executed at a rate of Ti and Thp = ni.Ti respectively.

We assume that the jth synchronization period at each
node begins at the local system clock time j.Thp. Since each
node has access to the global clock with a maximum clock
skew of ε, in true time, the period j may begin in any time
between (j.Thp − ε) and (j.Thp + ε), given by tij,0.

Both Mi and Mi,syn execute on the same processor. Thus,
their logical clocks Ci and Ci,syn may be derived from
the same system clock so that they start at the beginning
of a synchronization period. This also ensures that the jth

execution of Mi,syn coincides with the j.nthi execution of
Mi, since there are ni executions of Mi in a synchronization
period. The other ni − 1 executions of Mi happen at
j.Thp+k.Ti or in true time at tij,k ∈ [j.Thp+k.Ti−ε, j.Thp+
k.Ti + ε), k = 1..ni − 1.

Figure 3 shows a timeline of the computation and commu-
nication in a Multi-rate PALS pattern instance. The deadline
of Mi is given by αmax

i ; thus it must be scheduled to
complete its execution by tij,k+α

max
i ; for k = 0 . . . ni−1.

Let the output message be delivered after at least an interval
of Hi ≥ eouti,syn + eouti. (eouti and eouti,syn denote the
execution times of Mi an Mi,syn at which they send an
output message.) This output is propagated to the multi-rate
synchronizer of a receiving node after a latency of µi and
is expected to arrive at tij,k +Hi + µi.

Syn
hronization period j

j

2j 2j + 1

Mi,synperiod=Thp

Miperiod=Ti

Sele
ted messageof period j − 1
eouti,syn

eouti

µi µi

S
heduling delay

Message availableat re
eiving sidesyn
hronizer Message availableat re
eiving sidesyn
hronizer

tij,0 tij,1 tij+1,0

Deadline, αmax
i

Outputmessage OutputmessageOutputtime, Hi

Time

2ǫ 2ǫ2ǫ

Figure 3. Multi-rate PALS timeline for ni = 2

Lemma 1: In a multi-rate asynchronous system, when a
non-failed component Mi sends its messages to the multi-
rate synchronizers Mr,syn of receiving components Mr,
these synchronizers receive exactly ni = Thp/Ti messages
in each synchronization period j if the timing constraints
αmax
i ≤ Ti − 2ε− µmax

i (Equation 1) and Hi ≥ max(2ε−
µmin
i , 0) (Equation 2) are satisfied. In other words, messages

generated during the synchronization period j are received
by the receiving sides in the same synchronization period j
if these timing constraints are satisfied.

Proof : There are exactly ni executions of Mi in each
synchronization period j. We prove this lemma by show-
ing that the first and nthi messages generated during the
synchronization period j are indeed received in the same
synchronization period at the receiving node.

The first execution of Mi during the synchronization
period happens at tij,0 and the message is expected to arrive
at a receiving synchronizer at least after tij,0 + Hi + µi

where Hi ≥ eouti+eouti,syn and µi is the message transfer
latency. This can happen as early as j.Thp+Hi+µi−ε in true
time. Given the minimum latency, µmin

i , the earliest message
arrival time is j.Thp + Hi + µmin

i − ε. At the receiving
node, due to the clock skew, the execution of the multi-rate
synchronizer can be delayed as late as j.Thp + ε during the
synchronization period j. Since Hi ≥ 2ε− µmin

i ,

j.Thp +Hi + µmin
i − ε ≥ j.Thp + ε.

It implies that this message is indeed received in syn-
chronization period j, which happens after the dispatch of
Mr,syn in this period.

The nthi execution, i.e. the last execution, of Mi in the
synchronization period j occurs at tij,ni−1 or in true time
between j.Thp + (ni − 1).Ti ± ε. Since the output of this
execution must be sent before its deadline αmax

i and the
worst-case message transfer delay is µmax

i , the latest output

arrival time is given by tarr, i.e. tarr < j.Thp+(ni−1).Ti+
ε+ αmax

i + µmax
i . The synchronization period j + 1 in the

receiving component may begin as early as at (j+1).Thp−
ε = j.Thp + ni.Ti − ε. Given that Ti ≥ 2ε+ αmax

i + µmax
i ,

it is easy to show that

tarr < j.Thp + ni.Ti − ε,
This implies that the nthi message is received in period j.

The proof immediately follows since outputs of the re-
maining (ni − 2) executions are received in FIFO order
between the 1st and nthi executions.

Theorem 1: The proposed pattern specification satisfies
the same message communication guarantee as the perfectly
synchronous system.

Proof: The proof is very simple. Based on Lemma 1,
the receiving multi-rate synchronizers receive the same set
of messages at a synchronization period j. The logic of
the synchronizers are same at the receiving nodes. Since
the multi-rate synchronizer Mr,syn executes always before
Mr at the beginning of synchronization period and they
select the same message, such as the last received message,
the receiving nodes Mr apply the same input during its
executions in a synchronization period, in the same ways
as it would do in a perfectly synchronous system.

VI. COMPOSITIONAL ANALYSIS

In order to preserve the original Multi-rate PALS pattern
guarantees in an evolving system architecture, we provide an
analysis framework to validate its assumptions and structural
specifications. We have implemented a prototype tool in OS-
ATE (the Eclipse-based AADL development environment)
to perform this analysis automatically. The tool reads the
system model instances and performs static analysis of the
AADL components and connections. Once the model is
validated, designers can safely use the pattern guarantees.

A. Analysis procedure

Table I lists the main analysis rules used to validate the
pattern specifications rules, the timing and external input
assumptions for different Multi-rate PALS instantiations.
(We do not however list other trivial rules, e.g. sanity checks
of identifier, message selection properties, or the properties
of the pattern-added thread groups etc.)

Explanation of the notation symbols: We consider that
system AADL configuration, G = (Comp,Conn) consists
of the set of all thread and thread group components
Comp = {Mi} and the set of all port connections, Conn =
∪i,jConn(Mi,Mj), where Conn(Mi,Mj) is the set of all
connections from component Mi to Mj . The set of all con-
nections to a component Mj is also given by Conn(∗,Mj).
For each connection Cn, we assume that Cn.Dst provides
information on the destination port. We use some data enu-
merating functions, such as PALS Id(G), which gives all

synchronization group identifiers in G, with the synchroniza-
tion period of PALS Period(id) and CompP (G, id), which
gives the list of components Mi with PALS ID property
being set to id. If id = ∗, then all components with a
defined PALS ID are returned by CompP (G, ∗). For each
component, we use the notation Mi.P roperty to give the
values of an AADL property ‘Property’ of a component Mi.
As shown earlier, a thread group Mi is formed from a com-
putation component and its multi-rate synchronizer. Here,
they are denoted by Mi.Sync and Mi.Comp respectively.
In this system model, all three components are assumed to
a member of Comp.

Sanity check of the Multi-rate PALS specifications
R1. ∀id∈PALS Ids(G)∀Mi∈CompP (G,id)

PALS Period(id) = (Mi.Sync).P eriod
R2. ∀Mi∈CompP (G,∗)

(Mi.Sync).P riority > (Mi.Comp).P riority
R3. ∀Mi∈CompP (G,∗)(Mi.Sync).P rocessor =

(Mi.Comp).P rocessor
R4: ∀Mi∈CompP (G,∗)∀Cn∈Conn(Mi.Sync,Mi.Comp)

Cn.PALS Connection ID =Mi.PALS ID
R5. ∀Mi∈CompP (G,∗) ∀Cn∈Conn(∗,Mi)

Cn.PALS Connection Id =Mi.PALS ID →
(∃Cn′∈Conn(Mi.Sync,Mi.Comp)Cn.Dst = Cn′.Dst
∧ ∃Cn′∈Conn(Mi,Mi.Sync)Cn.Dst = Cn′.Dst)

Timing assumptions
R6. ∀Mi∈CompP (G,∗)Mi.P eriod ≥ 2× G.Clock Skew

+Max((Mi).Latency) +Mi.Deadline
R7. ∀Mi∈CompP (G,∗)Min(Mi.Output T ime) ≥

max(2×G.Clock Skew −Min(Mi.Latency), 0)
External input assumptions
R8. ∀Mi∈CompP (G,∗) ∀Cn=(Mk,Mi)∈Conn(∗,Mi)

Cn.PALS Connection Id =Mi.PALS ID →
(Mk.PALS Synch. Type = Env. Input Synch
∧ Mi.PALS Period % Mk.P eriod = 0
∧ (Mk satisfies the predicates of R6, R7))

Table I
Multi-rate PALS PATTERN ANALYSIS

Pattern specification rules: The rules R1-R5 are related to
the scheduling and communication characteristics associated
with the pattern instantiated multi-rate synchronizer and
the formed thread group. For example, R4-R5 gives the
condition that all messages related to a Multi-rate PALS syn-
chronization instance are indeed flown through the multi-rate
synchronizer. We analyze the data flow between components
and detect if the multi-rate synchronized is bypassed. This
is important since any violation of these constraints may
potentially break the logical synchronization guarantee if the
data is relevant to the instantiation.

Timing assumptions: The rules R6 and R7 describe the
timing assumptions we have defined in Equation 1 and 2.
We have shown their usage in Lemma 1.

External input assumptions: The rule R8 validates the
external input assumptions in a pattern instantiation. It val-
idates that synchronization of external inputs are originated
from an environment input synchronizer. This rule can be
useful to validate the scenario when the components of
two separate synchronization groups interact but do not
themselves from a bigger synchronization group.

VII. CONCLUSION AND FUTURE WORK

This paper presents an architectural pattern to support
virtual synchronization among a group of distributed com-
putations running at different rates. In this approach, the
amount of effort spent on distributed system verification can
be reduced by the re-usage of pattern guarantees, which are
pre-proven to be correct.

We are extending this pattern to support distributed syn-
chronization at a period smaller than the hyper-period. This,
however, requires additional constraints on the execution
period and scheduling. Currently, the pattern only supports
synchronization based on point-to-point communications.
Future work will support synchronization of distributed
flows spread across multiple nodes and relevant constraints
on the end-to-end scheduling. In [24], we collaborated with
our colleagues at UIUC and University of Oslo to develop
a model checking and validation framework for verifying
synchronous AADL models of a single-rate PALS system
in Real-time Maude. We also plan to integrate the Multi-
rate PALS pattern in this framework.

ACKNOWLEDGMENT

This work was sponsored in part by AFRL under contract
FA8650-10-C-7081 as part of the DARPA META program.
The authors would like to thank anonymous reviewers, Scott
Nagel of Rockwell Collins Inc, Min Young Nam, Mustafa
Dursun, Po-Liang Wu, Kyungmin Bae and Cheolgi Kim of
UIUC for their help and suggestions.

REFERENCES

[1] P. H. Feiler, J. Hansson, D. de Niz, and L. Wrage, “System
architecture virtual integration: An industrial case study,”
Technical Note, CMU/SEI-2009-TR-017, ESC-TR-2009-017,
http://www.sei.cmu.edu/reports/09tr017.pdf , 2007.

[2] R. N. Charette, “This car runs on code,” IEEE Spectrum,
2009.

[3] D. D. Cofer, “Complexity-reducing design patterns for cyber-
physical systems,” AFRL Technical Report AFRL-RZ-WP-TR-
2011-2098, 2011.

[4] S. P. Miller, D. D. Cofer, L. Sha, J. Meseguer, and A. Al-
Nayeem, “Implementing logical synchrony in integrated mod-
ular avionics,” in Proceedings of DASC, 2009.

[5] A. Al-Nayeem, M. Sun, X. Qiu, L. Sha, S. P. Miller, and D. D.
Cofer, “A formal architecture pattern for real-time distributed
systems,” in Proceedings of RTSS, 2009.

[6] J. Meseguer and P. C. Ölveczky, “Formalization and correct-
ness of the pals architectural pattern for distributed real-time
systems,” in Proceedings of ICFEM, 2010.

[7] L. Sha, A. Al-Nayeem, M. Sun, J. Meseguer, and P. C.
Ölveczky, “PALS: Physically Asynchronous Logically Syn-
chronous Systems,” UIUC Technical Report http://hdl.handle.
net/2142/11897.

[8] K. Birman and T. Joseph, “Exploiting Virtual Synchrony
in Distributed Systems,” ACM SIGOPS Operating Systems
Review, vol. 21, no. 5, pp. 123–138, 1987.

[9] R. van Renesse, K. P. Birman, and S. Maffeis, “Horus: A
flexible group communication system,” Communications of
the ACM, vol. 39, April 1996.

[10] T. H. Harrison, D. L. Levine, and D. C. Schmidt, “The
design and performance of a real-time corba event service,”
in Proceedings of OOPSLA, 1997.

[11] T. Abdelzaher, S. Dawson, W.-C. Feng, F. Jahanian, S. John-
son, A. Mehra, T. Mitton, A. Shaikh, K. Shin, Z. Wang,
H. Zou, M. Bjorkland, and P. Marron, “ARMADA Mid-
dleware and Communication Services,” Real-Time Systems,
vol. 16, no. 2/3, pp. 127–153, 1999.

[12] C. Kim, A. Al-Nayeem, H. Yun, P.-L. Wu, and L. Sha,
“PALS/PRISM software design description (sdd): Ver. 0.51,”
UIUC Technical Report http://hdl.handle.net/2142/25987.

[13] S. Tripakis, C. Pinello, A. Benveniste, A. S. Vincent, P. Caspi,
and M. D. Natale, “Implementing synchronous models on
loosely time triggered architectures,” IEEE Transactions on
Computers, vol. 57, no. 10, pp. 1300–1314, 2008.

[14] A. Benveniste, A. Bouillard, and P. Caspi, “A unifying view
of loosely time-triggered architectures,” in Proceedings of
EMSOFT, 2010.

[15] G. Tel, Introduction to Distributed Algorithms, 2nd ed. Cam-
bridge University Press, 2000.

[16] H. Kopetz, “The time-triggered architecture,” in Proceedings
of ISORC, 1998.

[17] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis,
and P. Niebert, “From simulink to SCADE/lustre to TTA:
a layered approach for distributed embedded applications,” in
Proceedings of LCTES, 2003.

[18] J. Rushby, “Systematic formal verification for fault-tolerant
time-triggered algorithms,” IEEE Transactions on Software
Engineering, vol. 25, pp. 651–660, September 1999.

[19] A. Pnueli, In transition from global to modular temporal
reasoning about programs. Springer-Verlag, 1985.

[20] C. S. Pasareanu, M. B. Dwyer, and M. Huth, “Assume-
guarantee model checking of software: A comparative case
study,” in In Theoretical and Practical Aspects of SPIN Model
Checking, Lecture Notes in Computer Science, 1999.

[21] M. Gheorghiu Bobaru, C. S. Păsăreanu, and D. Gian-
nakopoulou, “Automated assume-guarantee reasoning by ab-
straction refinement,” in Proceedings of CAV, 2008.

[22] Y. Zhao, J. Liu, and E. Lee, “A programming model for time-
synchronized distributed real-time systems,” in Proceedings
of RTAS, 2007.

[23] W. Steiner and J. Rushby, “TTA and PALS: Formally verified
design patterns for distributed cyber-physical systems,” in
Proceedings of DASC, 2011.

[24] K. Bae, P. Ölveczky, A. Al-Nayeem, and J. Meseguer, “Syn-
chronous AADL and its formal analysis in real-time maude,”
in Proceedings of ICFEM, 2011.

[25] Paparazzi, “http://paparazzi.enac.fr.”
[26] F. Nemer, H. Cassé, P. Sainrat, J. P. Bahsoun, and M. D.

Michiel, “Papabench: a free real-time benchmark,” in Inter-
national Workshop on Worst-Case Execution Time (WCET)
Analysis, 2006.

APPENDIX

AADL Models of Some Example Systems

A. Hierarchical Control System
In this section, we discuss the example, mentioned inside the

paper in more detail. The top-level AADL diagram is presented
in Figure 4(a). This system consists of two supervisory controller
defined under the hood of a system component (SCS), two rudder
servo controllers (RCS), and three aileron servo controllers (ACS).
In Figure 4(b) we show the internal specification of the system
component RCS, where we show the system components of the two
servo controllers RCS1 and RCS2, the actuator RA and the sensor
RS. Similar to the description inside the paper, both rudder servo
controllers receive the setpoints command from the supervisory
controllers (denoted by SpRD1, SpRD2), sampled sensor data
(RSD). Since the heardbeat information used in the active-standby
replication management are given by the output port Status. Output
of the rudder servo controllers (RCD1, RCD2) are passed to the
supervisory controller and the actuator. Only the active controller’s
output is used to control the actuator.

In this section, we show the AADL code snippet of the appli-
cation of the Multi-rate PALS pattern in the supervisory control
synchronization discussed in the paper. The structural modeling
of this pattern application is shown in Figure ??. A multi-rate
synchronizer, named Synch Supervisory Control is implemented.
The synchronizer only affects the data ow of the input data SpRD1,
SpRD2 which are used in the supervisory control synchronization
so that supervisory commands are processed consistently and
logically synchronously at the local servo controllers. With this
synchronizer, we form a new thread group (as discussed in the
pattern description) and replace the original component in the
process element with the new thread group.

(a) A computation component, RCT inside the process element of RCS1
(before pattern application)

(b) A thread group, named RCT Group Supervisory Control is created
with a multi-rate synchronizer and RCT.

(c) RCT is replaced with RCT Group Supervisory Control (after pat-
tern application)

Figure 5. Application of Multi-rate PALS pattern on the hierarchical
control system

Input model The AADL code snippet of the rudder control
process prior to the application of the Multi-rate PALS pattern
for supervisory contro is given below. Here we only provide the
AADL code without any hardware bindings.
process Rudder_Control_Process
features
RSD: in event data port;
SpRD1: in event data port;
SpRD2: in event data port;
RCD: out event data port;
Status: out event data port;
Other_Status: in event data port;

end Rudder_Control_Process;

-- input process implementation
process implementation Rudder_Control_Process.old
subcomponents
RCT: thread group Rudder_Control_Threads.servo;

connections
C1: event data port SpRD1 -> RCT.SpRD2;
C2: event data port SpRD2 -> RCT.SpRD2;
C3: event data port RCT.Status -> Status;
C4: event data port RSD -> RCT.RSD ;
C5: event data port Other_Status

-> RCT.Other_Status;
event data port RCT.RCD -> RCD;

properties
PALS_Properties::PALS_Connection_Id

=> "Rudder_Control" applies to C4;
PALS_Properties::PALS_Connection_Id

=> "Rudder_Control" applies to C5;
-- connections used in this logical
-- synchronization.
PALS_Properties::PALS_Connection_Id

=> "Supervisory_Control" applies to C1;
PALS_Properties::PALS_Connection_Id

=> "Supervisory_Control" applies to C2;
end Rudder_Control_Process.old;

-- generic deition of the rudder control
-- threads and the thread group used
-- to define the pattern instantiation.
thread group Rudder_Control_Threads
features
RSD: in event data port;
SpRD1: in event data port;
SpRD2: in event data port;
RCD: out event data port;
Status: out event data port;
Other_Status: in event data port;

end Rudder_Control_Threads;

-- input computation component.
-- it already has been formed after
-- pattern instantiation of "Rudder_Control".
thread group implementation

Rudder_Control_Threads.servo
subcomponents
RCT: thread Rudder_ServoControl_Thread.impl;
Synch_Servo:

thread Rudder_Servo_SynchThread.impl;
connections
C1: event data port RSD

-> Synch_Servo.RSD_in;
C2: event data port Synch_Servo.RSD_out

-> RCT.RSD;
C3: event data port Other_Status

-> Synch_Servo.Other_Status_in;
C4: event data port Synch_Servo.Other_Status_out

-> RCT.Other_Status;

(a) Top-level system component (b) Replicated rudder control subsystem

Figure 4. Application of Multi-rate PALS pattern on the hierarchical control system

C5: event data port RCT.RCD -> RCD;
C6: event data port SpRD1 -> RCT.SpRD1;
C7: event data port SpRD2 -> RCT.SpRD2;
properties

PALS_Properties::PALS_Period => 20 Ms;
PALS_Properties::PALS_Id

=> "Rudder_Control";
PALS_Properties::PALS_Offset => 0 Ms;
Period => 20 Ms;
-- SEI::Priority definition extended to
-- define priority on thread group.
SEI::Priority => 20;
Deadline => 11 Ms;
-- In this case, Output_Delay is a short
-- form of the Min(Output_Time) property.
META_Properties::Output_Delay => 4 Ms;

PALS_Properties::PALS_Connection_Id
=> "Rudder_Control" applies to C1;

PALS_Properties::PALS_Synchronizer_Operation
=> Last_Message_Only applies to C1;

PALS_Properties::PALS_Connection_Id
=> "Rudder_Control" applies to C2;

PALS_Properties::PALS_Connection_Id
=> "Rudder_Control" applies to C3;

PALS_Properties::PALS_Synchronizer_Operation
=> Last_Message_Only applies to C3;

PALS_Properties::PALS_Connection_Id
=> "Rudder_Control" applies to C4;

end Rudder_Control_Threads.servo;

thread Rudder_ServoControl_Thread
features

RSD: in event data port;
SpRD1: in event data port;
SpRD2: in event data port;
RCD: out event data port;
Status: out event data port;
Other_Status: in event data port;

end Rudder_ServoControl_Thread;

thread implementation
Rudder_ServoControl_Thread.impl

properties
Dispatch_Protocol => Periodic;
Period => 20 Ms;
Deadline => 11 Ms;
SEI::Priority => 20;

META_Properties::Output_Delay => 3 Ms;
Timing_Properties::Dispatch_Offset

=> 0 Ms;
end Rudder_ServoControl_Thread.impl;

thread Rudder_Servo_SynchThread
features
RSD_in: in event data port;
RSD_out: out event data port;
Other_Status_in: in event data port;
Other_Status_out: out event data port;

end Rudder_Servo_SynchThread;

thread implementation
Rudder_Servo_SynchThread.impl

properties
Dispatch_Protocol => Periodic;
Period => 20 Ms;
Deadline => 3 Ms;
SEI::Priority => 21;
Timing_Properties::Dispatch_Offset

=> 0 Ms;
META_Properties::Output_Delay => 1 Ms;
PALS_Properties::PALS_Period => 20 Ms;
PALS_Properties::PALS_Synchronizer_Type

=> Multi_Rate_Synchronizer;
end Rudder_Servo_SynchThread.impl;

Pattern instantiated components
The AADL code of the multi-rate synchronizer and the instan-

tiated thread group are shown below:
process implementation Rudder_Control_Process.new
subcomponents
RCT_Group_Supervisory_Control:

thread group Rudder_Control_Threads.supv;
connections
C1: event data port SpRD1

-> RCT_Group_Supervisory_Control.SpRD2;
C2: event data port SpRD2

-> RCT_Group_Supervisory_Control.SpRD2;
C3: event data port

RCT_Group_Supervisory_Control.Status
-> Status;

C4: event data port RSD
-> RCT_Group_Supervisory_Control.RSD ;

C5: event data port Other_Status
-> RCT_Group_Supervisory_Control.Other_Status;

event data port
RCT_Group_Supervisory_Control.RCD -> RCD;

properties
PALS_Properties::PALS_Connection_Id

=> "Rudder_Control" applies to C4;
PALS_Properties::PALS_Connection_Id

=> "Rudder_Control" applies to C5;
-- connections used in this logical
-- synchronization.
PALS_Properties::PALS_Connection_Id

=> "Supervisory_Control" applies to C1;
PALS_Properties::PALS_Connection_Id

=> "Supervisory_Control" applies to C2;
end Rudder_Control_Process.new;

thread group implementation
Rudder_Control_Threads.supv

subcomponents
RCT: thread group Rudder_Control_Threads.servo;
Synch_Supervisory_Control:

thread Rudder_Supervisor_SynchThread.impl;
connections

C1: event data port RSD -> RCT.RSD;
C2: event data port RCT.RCD -> RCD;
C3: event data port RCT.Status -> Status;
C4: event data port Other_Status

-> RCT.Other_Status;
C5: event data port SpRD1

-> Synch_Supervisory_Control.SpRD1_in;
C6: event data port

Synch_Supervisory_Control.SpRD1_out
-> RCT.SpRD1;

C7: event data port SpRD2
-> Synch_Supervisory_Control.SpRD2_in;

C8: event data port
Synch_Supervisory_Control.SpRD2_out
-> RCT.SpRD2;

properties
PALS_Properties::PALS_Period => 60 Ms;
PALS_Properties::PALS_Id

=> "Supervisory_Control";
PALS_Properties::PALS_Offset => 0 Ms;
Period => 20 Ms;
Deadline => 11 Ms;
-- SEI::Priority definition extended to
-- define priority on thread group.
SEI::Priority => 20;
META_Properties::Output_Delay => 5 Ms;

PALS_Properties::PALS_Connection_Id
=> "Supervisory_Control" applies to C5;

PALS_Properties::PALS_Synchronizer_Operation
=> Last_Message_Only applies to C5;

PALS_Properties::PALS_Connection_Id
=> "Supervisory_Control" applies to C6;

PALS_Properties::PALS_Connection_Id
=> "Supervisory_Control" applies to C7;

PALS_Properties::PALS_Synchronizer_Operation
=> Last_Message_Only applies to C7;

PALS_Properties::PALS_Connection_Id
=> "Supervisory_Control" applies to C8;

end Rudder_Control_Threads.supv;

thread Rudder_Supervisor_SynchThread
features

SpRD1_in: in event data port;
SpRD1_out: out event data port;
SpRD2_in: in event data port;
SpRD2_out: out event data port;

end Rudder_Supervisor_SynchThread;

thread implementation
Rudder_Supervisor_SynchThread.impl

properties
Dispatch_Protocol => Periodic;
Period => 20 Ms;
Deadline => 5 Ms;
SEI::Priority => 22;
Timing_Properties::Dispatch_Offset => 0 Ms;
META_Properties::Output_Delay => 1 Ms;
PALS_Properties::PALS_Period => 60 Ms;
PALS_Properties::PALS_Synchronizer_Type

=> Multi_Rate_Synchronizer;
end Rudder_Supervisor_SynchThread.impl;

B. Second illustrative example
In this section, we describe an example of a fault-tolerant

UAV system to model our proposed Multi-rate PALS pattern. This
example is derived from an open-source UAV architecture, called
Paparazzi [25]. Paparazzi is a low-cost UAV system with the
support for both manual and autonomous flight navigation based on
variety of onboard sensor modules, e.g. GPS, infrared, gyroscope.
Its on-board autopilot software performs two major operations:
flight navigation and flight stabilization. During the autonomous
flight operation, the navigation controllers provides flight guidance
commands for roll, pitch and throttle setpoints to the stabilization
controllers which then compute the control commands and sends
to the aircraft actuators, e.g. aileron, motor and elevator. In this
system, the UAV can also be manually controlled from the ground
station. The ground station sends radio commands to manage the
flying modes and any necessary flight guidance commands or flight
plans to fly the aircraft.

Figure 6. AADL diagram of the extended Paparazzi architecture.

Although the Paparazzi architecture has some built-in support
for failsafe operation, e.g. flying the aircraft according to a safe
(pre-defined) plan in the case of radio communication failure or
just gliding the aircraft in case of hardware failures, it does not
implement any standard fault-tolerance practice of hardware or
software redundancy for any of its safety and mission critical
components.

To describe the synchronization problem in a multi-rate dis-
tributed operations, we therefore have extended design of the
Paparazzi architecture with different fault-tolerant mechanism for
the major functional components. Since extending Paparazzi to

become a full-fledged avionics system is not the primary goal of
this paper, we focus only on the autopilot software and replicated
its navigation and stabilization controllers.

Extended Paparazzi architecture: Figure 6 gives the high-level
AADL block diagrams of the extended design7.

The sensors include GPS, Infrared and a Gyroscope which
supply the position, altitude, attitude and roll rate measurement to
be used by the flight navigation controllers, Flight Navigatori and
flight stabilization controllers, Flight Stabilizerj . Ground station
commands are received by the Radio Receiver and propagated to
the Flight Stabilizer by the radio command manager, RC Manager.
In the original design, the sensor state estimation, flight navigation,
stabilization are done by a single set of controllers executing on the
single processor. In this design, we replicate the flight navigation
controllers as an active-standby system to tolerate any single
hardware failure and the flight stabilization components using a
triple-redundant system to tolerate any single hardware/software
failure with the voting logic implemented at the actuators. The
State Estimator supplying sensor state estimation must also repli-
cated to prevent any single-point failure (not shown in the figure
to simplify the diagram).

We consider the original task rates of these component.
In this system, Flight Stabilizer operates at 20Hz (50ms),
Flight Navigator operates at 4Hz (250ms) and Radio Manager
operates at ,

Mode consistency problem: The flight can operate in two modes:
auto and manual. In the auto mode, each flight stabilizer must use
the flight guidance command computed by the flight navigators,
while in the manual mode flight stabilizers use the flight guidance
commands of the ground station. Flight navigators can also operate
in two modes: normal and home. In the normal mode, it
navigates the flight according to fight plan and the waypoint
trajectory; however if certain categories of failure occurs, such as
low battery, GPS failure or the aircraft going out of the expected
fligh region, the navigator may switch to the home mode and
navigates toward the safe location, e.g. ground station.

To illustrate the challenge to guarantee consistency in this
design, consider that the current mode is auto and the aircraft is
flying near the edge of the planned flying zone. At this momen,
the ground station sends a command to switch to manual mode.
Due to the asynchronous interaction, Flight Stabilizer1 receives the
command in period j, but Flight Stabilizer2 and Flight Stabilizer3
receive in period j + 1. Nearly at the same time, the Flight
navigators received the GPS location and decided to route the
aircraft toward the ground station. Again due to the asynchrony,
while operating in the auto mode, Flight Stabilizer2 reads the new
flight navigation command, but not the Flight Stabilizer3. As a
result, the Flight Stabilizer3 still operates on the old navigation
command. It becomes clear that the voting logic will not be able
to decide upon a valid actuator command and will force the UAV
to trigger other failsafe mode, although none of the stabilizers are
indeed failed!

Multi-rate PALS system based mode consistency: In Figure
8, we show the provided logical synchronization between the
radio control manager (RC Manager), flight stabilizers and flight
navigators.

In Figure 7(a), we show the logically synchronous interaction
between the three flight stabilizers with a synchronization period
of 50ms. In each synchronization period j50, each flight stabilizer
receive two commands from the radio control manager. The Multi-
rate PALS guarantees that these redundant stabilizers receive iden-
tical updates from the radio control manager. Similarly in Figure

7The AADL thread description of the original paparazzi UAV is de-
scribed at [26]

7(b), the flight stabilizers receive identical updates of the setpoints
from a flight navigator. Similar execution behavior is guaranteed
with respect to the updates from other flight navigator.

Pattern instantiation: Similar to the previous example, Figure
8 illustrates the instantiation of a multi-rate synchronizer in this
example.

(a) Interaction between RC Manager and Flight Stabilizerj , j=1...3 (b) Interaction between Flight Navigator1 and Flight Stabilizerj ,
j=1...3

Figure 7. Logical synchronization in the extended UAV architecture

(a) AADL diagram of a Flight Stabilizer process (b) AADL diagram of a Flight Stabilizer process with the multi-rate
synchronizer

Figure 8. Instantiation of the multi-rate synchronizer in the UAV example

