

BEBR
FACULTY WORKING
PAPER NO. 90-1654

M-median and M-center Problems with

Mutual Communication: Solvable Special Cases

Dilip Chhajed

Timothy J. Lowe

The I

Unh

01 U,

College of Commerce ana business Administration

Bureau o* Economic and Business Research

University of Illinois Urbana-Champaign

BEBR

FACULTY WORKING PAPER MO. 90-1654

College of Commerce and Business Administration

University of Illinois at (Jrbana-Champaign

May 1990

M-median and M-Center Problems with Mutual Communication:

Solvable Special Cases*

Dilip Chhajed 1

Timothy J. Lowe2

'Department of Business Administration, University of Illinois at Urbana-Champaign, 1206 South

Sixth Street, Champaign, IL 61820

department of Management Science, University of Iowa, Iowa City, IA 52242

*We would like to acknowledge the helpful comments of Charles Blair, George Monahan, and Rich

Wong.

M-median and M-center Problems with Mutual Communication:

Solvable Special Cases

Abstract

In this paper we consider the network version of the m-median problem with

mutual communication (MMMC). We reformulate this problem as a graph theoretic node

selection problem defined on a special graph. We give a polynomial time algorithm to solve

the node selection problem when the flow graph (graph denoting the interaction between

pairs of new facilities in MMMC) has a special structure. We also show that with some

modification in the algorithm for MMMC, the m-center problem with mutual

communication can also be solved when the flow graph has special structure.

Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/mmedianmcenterpr1654chha

1. Introduction

The network version of the m-median problem with mutual communication

(MMMC) is to find the location ofm new facilities on a network such that the sum of a.)

the fixed location cost of each new facility, b.) the cost of interaction between the new

facilities and n existing facilities on the network, and c.) cost of interaction between pairs of

new facilities is minimized. The existing facilities are located at nodes of the network and

the interaction cost between a pair of facilities is a function of the network distance between

the facilities. We call the network on which the new facilities are to be located the transport

network, T .

An application ofMMMC is the location of several new machine centers in a

production area. Material movements are made on a transport network (e.g. network of

aisles). Each new machine center will send and/or receive material to/from one or more

existing machine centers whose locations on the transport network are known. In addition,

each new machine will have material flow interaction with some subset of the other new

machines. We assume that the existing machines are located at nodes of the transport

network. There is no loss of generality here, since as long as each existing machine is on

the network, its location can be declared as a node. We consider problems where the set of

possible locations on the network for each new facility is finite. We can also declare these

locations as nodes of the network. We also allow for the possibility that the fixed cost (cost

term a.) above) of locating a new facility is dependent upon its location.

In the above machine location example ofMMMC (as well as other examples) it is

most likely the case that the cost of interaction between certain pairs of facilities will not

depend upon the network distance between their locations. This would occur in the above

example if there was no material flow between a pair of facilities. In what follows, we say

a pair of facilities interacts only if the cost of interaction is a function of the network

distance between the facilities.

Two graphs can be defined which represent the interaction structure. The demand

graph , D, is a bipartite graph with node partition {M,N} where set M consists of m nodes

corresponding to the new facilities and set N consists of n nodes corresponding to the

existing facilities, and with u e M and i e N, nodes u and i in D are adjacent if and only if

new facility u and existing facility i interact Theflow graph, G, consists ofm nodes, one

corresponding to each new facility. Two nodes in a flow graph are adjacent if and only if

the corresponding new facilities interact.

We note that if the demand graph D has no arcs, then (MMMC) is solved by co-

locating the n new facilities at a single point on X which minimizes the sum of the fixed

location costs for the new facilities. On the other hand if the flow graph, G, has no edges,

then (MMMC) decomposes into n single facility location problems on T. The interesting

cases of (MMMC) occur when both D and G are non-trivial.

Most of the literature associated with (MMMC) deals with the case where there are

no fixed location cost (a.) above), and where the interaction costs are linear in network

distances. Kolen (1982) has shown that the problem is NP-hard, when T is a general

network, but is polynormally solvable when X is a tree. Picard and Radiff (1978) also give

a polynomial time algorithm for the' problem when X is a tree. Dealing, Francis, and Lowe

(1976) have shown that the problem is a convex optimization problem for all data choices if

and only if X is a tree. Erkut, Francis, Lowe, and Tamir (1989) consider a constrained

version of the problem and make use of separation conditions (Francis, Lowe, and Ratliff

,

1978) to obtain a mathematical program. The mathematical program is equivalent to the

original problem if X is tree; otherwise the solution to the mathematical program provides a

lower bound. A computational study of the lower bound vis-a-vis the original problem is

given in Erkut, Francis, and Lowe (1988).

• Xu, Francis, and Lowe (1988) consider the version of (MMMC) where there are no

fixed location costs, and the transport network, X, is not necessarily a tree, but X does

contain two or more blocks (maximal, nonseparable subgraphs of X). They show that by

solving a related problem on a "blocking graph" (which is a tree), information can be

obtained which localizes each optimal new facility to some vertex or block of X. The

problem then decomposes into a collection of independent problems, one for each

localizing block of X.

In this paper we give a polynomial time algorithm for a special class of network

MMMC problems in which the transport network, T, and the demand graph, D, are general;

the interaction costs are general functions of network distances as long as these cost

functions are such that node optimality conditions hold, i.e. there is at least one optimal

solution in which each new facility is located at a node of the transport network; and the

flow graph. G. is series-parallel . If the node optimality property is not valid then our model

is useful when a node restricted solution is sought.

We also consider the m-center problem with mutual communication (MCMC) and

show that the algorithm presented for MMMC can be modified to solve special cases of

MCMC.

The plan of the rest of the paper is as follows. In Section 2 we present a

formulation of the problem. Then we introduce a graph theoretic Node Selection Problem

(NSP) and show how our formulation ofMMMC can be transformed to an NSP. In

Section 4 we define a series-parallel graph and give an algorithm to solve the NSP when

the flow graph is series-parallel. In Section 5 we give a detailed example showing an

application of the algorithm. Section 6 extends our analysis to the m-center problem with

mutual communication. We close with some concluding remarks.

2. Formulation

For clarity of presentation, we will present the formulation where the

interaction costs are linear in network distances. However, our complete methodology is

applicable for general interaction cost functions of network distances as long as the node

optimality property is valid. In addition, for presentation purposes, in this Section we

assume that each new facility could feasibly be located at any node of X. The following

notation is used in the formulation.

Notation:

aui: interaction cost per unit distance between new facility u and existing facility i

buy- interaction cost per unit distance between new facilities u and v

d(k,r): distance between existing facilities k and r computed on the transport network

D: demand graph

fuk: fixed cost of locating facility u at node k

G: flow graph (V(G), E(G)). V(G) ={ l,...,m}, E(G)={(u,v): new facilities u

and v interact, i.e buv > 0}

M: set of new facilities

m: number of new facilities

N: set of existing facilities

n: number of existing facilities = IV(T)I

p,k,r,i: indices of existing facilities

X: transport network

u,v: indices of new facilities

Xuk: {0,1 } variable which takes value 1 if and only if new facility u is located at

existing facility k

As mentioned in the introduction, we assume the problem is such that the node

optimality condition holds or the solution sought is node restricted. Thus each new facility

has to be located at one of the nodes of X. To avoid notational difficulties, we assume

without loss of generality that each node of X is the site of an existing facility. If in an

application of (MMMC) there is no existing facility at some node, we assume the data

consists of a dummy existing facility at the node which has no interaction with any of the

new facilities.

The condition that an arbitrary new facility u must be located at a node of X (site of

an existing facility) can be represented by the constraint

XkeNXulc= 1 V ueM. (1)

Given that (1) holds, and the Xuk's are 0,1 variables, (2), (3), and (4) below are valid. The

interaction cost between new facility u and existing facility i is given by

auilke N d(i,k) xuk . (2)

The cost of interaction between two new facilities, u and v, is given by

buvXre N^ke N XukXVr d(k,r), (3)

and finally, the fixed cost of locating new facility u is

IkeNfukXuk- ^
Summing (2) over all pairs of new and existing facilities, (3) over all pairs of existing

facilities, and (4) over all new facilities we get the total cost:

Sue NlXie N auiXke N d(i,k) Xuk + XUe Mlv(>u)e M buvXre N^ke N XukXvr d(k 'r)

+ ZUe M^ke N fuk Xuk- (5)

The first and the last term of (5) can be combined to give

Sue M^ke N { [Xie N aui
d(i,k)] + fuk } xuk

= lueMlkeN FukXuk , where Fuk = [lieN aui d(i,k)] + fuk-

Thus, Fuk is the sum of the fixed cost of locating new facility u at k and the cost of

satisfying the customer demand for new facility u from this location. If we denote C'ukvr =

buvd(k,r) then our integer programming formulation ofMMMC is:

(P) min IUG m!v(>u)€ M £re N^ke N C'ukvr XukXvr + Sue M^ke N FukXuk (6)

Subject to: (1),

x^ = {0,1} for all u,k.

The objective function of (P) consists of a quadratic term and a linear term in

variables x. The problem can be reformulated in which there is only a quadratic term in the

objective function. To do so, first we select a new facility u° for each new facility u such

that there is an interaction between new facilities u and u° (We are assuming, without loss

of generality, that the flow graph is connected). Then we define

Cukvr- Fuk + C'ukvr, V r if v=u°, and Cukvr=C'ukvr otherwise. (7)

With these costs, consider the following problem, which we call the Quadratic Location

Problem (QLP):

Min ZuSv>uSkSr CukvrXukXvr (8)

Subject to: (1),

xuk = {0,1} for all u,k.

We now show that problem (P) can be converted to a QLP.

Lemma 1

:

(P) can be formulated as a QLP.

Proof: (8) is same as:ZuSv>u, v*u°XkXr Cukvrxukxvr + Xu^kXr Cuku rxukxu r

Using (7): = XuXv>u, v*u°£k£r C'ukvrxukXvr + ^u^k^r (C'uku°r + Fuk) xukxu°r

=XuXv>u2-k2-r C'ukvrxukxvr + XuXk £rFuk xukxu°r

=2-u^v>u^k^-r C ukvrxukxvr + 2-u^-k ^uk xuk **r xu°r

By (1): = IuXv>uXkXr C
,

ukvrxukxvr + XuXk Fuk xuk = (6). «»

Hence an MMMC can be reformulated as a QLP by redefining the costs as in (7).

Note that the QLP is a relaxation of the Quadratic Assignment Problem (QAP). In the QLP,

every facility has to be assigned to one site, but at any site multiple facilities (unlike QAP)

may be assigned. Thus, in the QAP there is an additional set of constraints, Xu xuk =1. V

k, which is not in QLP.

Kolen has proven that MMMC is NP-hard. Since (as outlined above) MMMC can

be reformulated as a QLP, it follows that QLP is also NP-hard. We provide an alternate

proof of the complexity of the QLP by reducing a Simple Max Cut problem to QLP. We

note that the equivalence between quadratic 0-1 optimization and the (weighted) max cut

problem has been demonstrated in Barahona (1986).

Problem SIMPLE MAX CUT (SMC): Given a graph G with nodes V(G) and arcs E(G),

find a partition of V(G) into two disjoint sets Vi and V2 such that the number of arcs from

E(G) that have one endpoint in V] and one endpoint in V2 is maximum.

Theorem 1 : QLP is NP-hard.

Proof: As mentioned above, we establish this by showing that (SMC) can be reduced to

QLP. Given an (SMC) problem on a graph G, we construct a QLP by defining variables:

xu i=l if node u is in Vi, otherwise, for all ue V(G), and

xu2 = 1 if node u is in V2, otherwise, for all ue V(G).

We also set Cukvr = 1 for k=r=l or 2, and arc (u,v) is in E(G); and Cukvr = otherwise.

Writing the QLP for this, we get:

(QLP(G)) MinX^veMlk^S^uCukvrXukXvr (T 1)

Subject to: Xk=l,2 xuk =1, V u e V(G) (T2)

xuk={0,l}. <T3)

Given a graph G and a feasible solution {x^} to (QLP(G)) with value Zix^ we

can construct a feasible solution to (SMC) problem with value IE(G)I - Z(xlljc) as follows:

Form sets of nodes Vi={u : xu \ =1} and V2={u : x^ =1). Note that because {x^}

satisfies (T2), only one of xu \ or x^ will be equal to one and so VinV2=<t). Also,

V!UV2=V(G).

For a fixed u° and v°, the term Cu
okv rXu kxv°r is equal to one if and only if k = r,

xu°k =1. xv°r =1, and (u°,v°)e E(G). If Cu°kv rXu°kXvor =1 then by definition, both u° and v°

will be either in Vi or in V2. Thus the number of arcs of G with both endpoints either in Vi

or in V2 is Z(xuk). Hence the number of arcs with one node in Vi and other in V2 is IE(G)I

- Z(xuic). Minimizing (QLP(G)) is same as minimizing the number of arcs with their

endpoints in same sets Vi or V2, and hence same as maximizing the number of arcs which

have their endpoints in different sets, i.e. maximizing the cut. «»

In formulation (P) of MMMC, we have assumed that each new facility could be

located at any node of T. Suppose the location of a new facility u must be at a member of

some subset of the nodes of T, denoted by Nu . In formulation (P), we could make use of

an artificial cost by setting the costs f^ for each node kg Nu to be arbitrarily large. The

artificial costs would prohibit new facility u from being located at a node outside Nu in an

optimal solution to MMMC.

In the next Section, we reformulate MMMC as a node selection problem, NSP. We

assume that Nu is known for each new facility u, however, in our reformulation we will

not need to make use of the artificial fixed location costs mentioned above.

8

3. Node Selection Problem

We now define a special graph, which we call a G-partite graph. We also define an

optimization problem, the node selection problem, on the G-partite graph. Subsequently, in

this Section, we show that the QLP can be posed as a node selection problem on a suitably

defined G-partite graph.

Definition: Given a graph G with an integer INV I associated with each node v e V(G), a G-

Partite Graph, G° , is formed as follows: Corresponding to each node v e V(G) we create a

node-family , o~v , in G° consisting of INV I nodes {v^ : k = 1, ...,INV I} (Figure 1).

Two nodes Uk and vr (v*u) are adjacent in G° if and only if arc (v,u) e E(G). Arc (uk,vr)

in G° is assigned weight CO. . Thus if (v,u) exists in G, nodes of node-family ou and

node-family ov form a complete bi-partite subgraph of G°. Node-families Gu and o~v are

said to be adjacent if and only if every node in gu is adjacent with every node in o~v . By

joining two node-families o~u and o~v we mean adding arcs between all pairs of nodes

'

({ u k>vr) : tik £ o~u> v r e gv). We will use the notation (ou,cw) to denote all arcs between

nodes in o~u and nodes in o~v .

A G-partite graph is a generalization of a complete bi-partite graph. A complete bi-

partite graph is a G-partite graph corresponding to a graph G which is a single arc. Given a

G-partite graph G°, let S(G°) be an induced subgraph of G° with one node of each node-

family and let Z(S(G)) be the sum of the weights on the arcs in S(G°) . We now pose the

following problem on G°:

(NSP) Node Selection Problem: Given a graph G and the corresponding G-partite graph,

G°, with arc weights co, find an induced subgraph consisting of exactly one node of each

node-family; such that the sum of all the arc weights on the arcs in the induced subgraph is

minimum. We will denote the node selection problem on G° by NSP(G°) and an optimal

solution by S*(G°).

Lemma 2 : Problem MMMC is reducible to NSP.

Proof: Given an MMMC problem with n existing facilities and m new facilities, we first

formulate it as a QLP. Then we create a G-partite graph, G°, as follows. Create a node

family Gu with INU I nodes for every new facility u. Each of the INU I nodes in au

corresponds to a node of X where new facility u can be located. Join two node-families, 0"
u

and o"v if and only if (u,v) e G. Recall that joining two node-families means forming a

complete bi-partite graph between nodes of ou and o*v . Assign the weight Cukvr, on the arc

(uk ,v r) g E(G°)

.

Given the G-partite graph constructed as above, we note that a feasible solution to

the NSP corresponds to a feasible solution to the QLP. Given a feasible solution S(GC
) to

the NSP, construct a feasible solution to QLP, X(S(G°)), as follows: set X(S(G°)) = {xuk

= 1 if node k of node-family o~u is chosen, otherwise}. Since one node of each node-

family is in S(G°), constraint (1) is satisfied. Similarly if a feasible solution to the QLP is

given we can construct a feasible solution to NSP by choosing node u^ e ou if and only if

x uk= I.

A choice of nodes for department u and v contributes C^vr = ^Vj. t0 tne objective

function of QLP, which is the weight on arc (uk,vr) in S(G°). Hence the value of S(G°) is

the same as the value of solution X(S(G)). Thus by solving appropriate NSP we will get a

solution to the QLP.«»

The above reduction shows that NSP is also NP-hard. Note that an NSP is more

general than QLP and many other problems can be modeled as an NSP (Section 7).

We have shown that, given an MMMC, it can be modeled as a QLP which in turn

can be reformulated as an NSP. Thus, an MMMC can be modeled as an NSP. The G-

partite graph for the MMMC will correspond to the flow graph G of MMMC. This is

because, if an arc (u,v) e E(G) then buv =0 and so Cukvr = for all k,re N. And by (7)

Cukvr = for all k,re N. Thus node-families ou and Gv will not be adjacent.

4. Polynomially Solvable Special Cases

In this Section we give a rich class of problems for which the node selection

problem is polynomially solvable. We have shown that we can use the node selection

10

problem, NSP, to model MMMC. As we have shown, in general this problem is NP-

complete. The special cases we consider are characterized by the structure of the flow

graph, G. For the node selection problem, we are given G and the G-partite graph G°. We

associate, with each node and each arc of G° a label in the form of a set . Initially we set the

label of each arc e, La(e) = { } , where { } denotes the empty set, and the label of each node

Uk, Ln(uk) = (uk) • We will represent the label of an arc e defined by two nodes p and q by

La(p,q) rather than La((p,q)).

Later on, in the course of solving the Node Selection Problem for the special cases,

arcs and nodes of graphs G and G° will be deleted, in some cases (new) arcs will be added,

and labels of the remaining arcs, as well as the arc weights, will be modified to reflect the

change. The labels are used, basically, to carry pertinent information about the deleted

portion of the graph. In modifying the labels, we will typically add two labels, where

addition of labels is defined as the set union operation on the sets corresponding to the two

labels. In what follows, we assume that the flow graph is connected. If this is not the case,

e.g. the flow graph consists of more than one component, then MMMC can be solved by

solving (independently) an MMMC problem corresponding to each component. We begin

with some definitions and results from graph theory:

Definition : A graph is series-parallel (Richey, 1989) if it can be reduced to an arc by

repeated application of the following operations:

(Gl) Series Reduction: Replace any degree-2 node q, and the incident arcs (u,q) and (v,q),

u * v, by a new arc, a'(u,v), incident to u and v.

(G2) Cut Reduction: If q is a pendant node (a node of degree one) adjacent to node u, find

a node v * q adjacent to u, delete node q and add a new arc a'(u,v). .

(G3) Parallel Reduction: Replace two arcs e and f which are both incident to nodes u and v,

by a new arc, g, incident to u and v.

The new arcs that are added to the graph in the above operations are named pseudo-

arcs in (Richey, 1989). Richey describes an operation similar to operation (G2), calling it a

Jackknife reduction, but does not add the new arc a'(u,v). If we perform parallel reduction

on (u,v) immediately after the cut reduction, we get Richey's Jackknife reduction. Thus,

11

although there is a minor difference in the definition of one operator, which we need for

our algorithm, the above definition of a series-parallel graph is identical to that of Richey.

To obtain insight into the structural nature of series-parallel graphs it is useful to

introduce the concept of a 2-tree. A 2-tree (Wald and Colbourn, 1983; Rardin, Parker, and

Richey, 1982) is defined recursively as follows: A triangle is a 2-tree. Given any arc (x,y)

of a 2-tree, by appending a node z and adding edges (x,y) and (y,z), the resulting graph is

also a 2-tree. The relationship between series-parallel graphs and 2-trees is that (Wald and

Colbourn, 1983) a series-parallel graph, without loops and parallel edges, is a subgraph of

some 2-tree. Thus, series-parallel graphs are sometimes called partial 2-trees.

Several authors have exploited the properties of series-parallel graphs.

Takamizawa, Nishizeki, and Saito (1982) have solved several combinatorial problems on

series-parallel graphs. Barahona (1986) has solved the 0-1 quadratic programming problem

when the graph representing the positive coefficients of the problem, i.e., the flow graph,

is series-parallel. Rendl (1986) solved a special case of the QAP by exploiting a series-

parallel digraph. Rardin, Parker, and Richey (1982) and Wald and Colbourn (1983) solved

the Steiner tree problem on a graph which is series-parallel, and Richey (1989) has solved

several location problems on transport networks which are series- parallel.

It is shown in Rardin, Parker, and Richey (1982) that series-parallel graphs

subsume circuits, outerplanar graphs, cactus graphs, and trees. Thus series-parallel graphs

generalize a number of graph types; however, they still form a subset of planar graphs.

We will soon define graph operations on a G-partite graph which are similar to the

operations (Gl), (G2), and (G3) discussed above. The outcome of two of these operations

will result in parallel arcs in the graph. We emphasize here that if there are parallel arcs

between two given nodes of a G-partite graph G°, and if this pair of nodes is in a feasible

solution S(G°) to NSP, then the parallel arcs are also in S(G°), so that the arc weights of

both arcs contribute to Z(S(G°)).

Let y be an arbitrary subset of nodes of a G-partite graph G° such that there is at

most one node of each node-family in \\f. Let NSP(G°,\|/) denote the constrained version of

NSP on G° with the set of nodes \\f fixed, and let S*(G°,\|/) denote an optimal solution to

NSP(G°,y) with objective function value Z(S*(G°,\|/)). Thus with { } denoting the empty

12

set, S*(G°,{ }) is a solution to NSP(G°,{ }) = NSP(G°).

We now define three elementary operations on a G-partite graph, G°. These

operations are mirror images of similar operations performed on G so that the new G-

partite graph corresponds to G after the elementary operation. Although we give the same

name to these operations as in the case of G, the context will make it clear which procedure

we are referring to. We present these operations as procedures after describing the essence

of what they accomplish. These procedures will be repeatedly used by the main algorithm

SP which we will describe later. In Section 5 we give an example which uses each of these

procedures to solve the NSP using algorithm SP. The reader may refer to Section 5 while

going through these procedures to clarify the steps in each procedure.

(GP1): Series-Reduction : In this process a node-family o~
q
such that node q is adjacent to

exactly two distinct nodes u and v of G, where q*v*u, is eliminated in G°. The reduced

graph has one less node-family. All the information pertinent to optimal node selection in a
q

is retained, as is shown in the following process. For an example of this procedure see

Iteration 3 in Section 5.

PROCEDURE SR(CT
q)

Step 1 : Let u and v be the two nodes adjacent to node q in G, where q*u*v.

Step 2 For each pair of nodes Uk e ou , vr e o\, find qp
° giving

cojj?o + u/?o = min { co^ + co
vq

} (ties can be arbitrarily broken).

Add an arc a'(uk , v r) with weight equal to
0)jJ?

o + 0)!?o and

let the label of this new arc be La'(vr,uk) <— La(v r,qp
°)uLa(uk,qp°)u Ln(qp

°)

.

Step 3: Delete node-family c
q

. Return (to the calling algorithm).

Lemma 3 : For a G-Partite graph G° with a node-family o~q such that q has degree two in G,

let Q° and Q be the results of series-reducing node-family o~q and node q in G° and G,

respectively. Given an optimal solution S*(G°) to NSP(G°), an optimal solution to

NSP(G°) can be constructed using the nodes and arc labels of S*(£j°). Furthermore, the

complexity of procedure SR(.) is 0(INul*INvl*INql) where u and v are the nodes of G

13

adjacent to node q.

Proof: Let u and v be the two nodes adjacent to node q in G and let A' denote the set of arcs

added to G° in procedure SR(.). For any choice uk. e ou and vr
^ e ov , we note that with

\}/={uk° vr°}, a) S*(G°\A\\j/), which is an optimal solution to NSP(G°\A',\j/), is also an

optimal solution to NSP(G°\A',\j/), and b) S*(G°\A',\|/) has the same objective function

value when evaluated in graphs G°\aq and G°\A'. Observations a) and b) follow since the

graphs G°\rjq and G°\A' are the same.

Considering NSP(G°), we note that for fixed uk. e au and vr
° e av , the choice of

an optimal node in Oq is independent of the optimal choices in the graph G°\{auUGvUGq}.

Thus, one way to solve NSP(G°) is to find

In graph G°, for uk e cu , v r e Gv , the arc a'(uk,vr) carries the essential information (labels

min {Z(S*(G°\Gq ,{uk vr })) + min { co£ + oTM }
u keCu 'vreov

q ' 1 K ' qpeoq kp rp

and value) of the inner minimization problem above. Letting w(a'(uk,v r)) denote the weight

on arc a'(uk,vr) in G°, we note that NSP(G°) can be solved by solving

min (Z(S*(G°\a
q
,{uk v r })) + w(a'(uk,vr))}.

The first part of the Lemma now follows.

The complexity of finding node q p
° in Step 2 of SR(.) is O(INql). This Step is

repeated INUI*INV I times, hence the complexity of the procedure is 0(INul*INvl*INq l). «»

(GP2) Cut Reduction: Given two node-families a
q
and au such that node q is a pendant

node in G, (q,u) e E(G), and (q,u) is not the only arc of G, we delete node-family aq and

add parallel arcs to the G-partite graph. The procedure which follows sketches the steps.

The example in Section 5 uses CR(.) during Iteration 1.

PROCEDURE CR(a
q , ou)

Step I: With q a pendant node of G adjacent to u, select an arc (u,v) of G, v*q. (Such

an arc exists because we have assumed that (u,q) is not the only arc of G and

throughout we assume that G is connected.)

Step 2: For each node uk of au ,

Find a node qp
° of node-family aq such that co^o = min

g { wkp)
(ties

14

can be arbitrarily broken).

In G° add new arcs a'(uk , vr) for all vr e gv with weight co^ and

set the label of these new arcs La'(uk , vr)
<— Ln(qp°) uLa(qp°,uk).

Step 3: Delete all the nodes of node-family cv in G°, i.e. delete ov .

Step 4: Return.

Lemma 4: For a G-Partite graph G° with a node-families o~u and o~q such that (u, q) e E(G),

node q is a pendant node in G, and u and q are not the only nodes of G, let G° and G be the

results of cut-reducing node-families ou and Oq in G° and nodes u and q in G. Given an

optimal solution S*(G°) to NSP(£}°), an optimal solution to NSP(G°) can be constructed

using nodes and arc labels of S*(G°). Also, reducing G° to G° can be done in

0(INul*(INvl+INql)) time where v is the node selected in Step 1.

Proof: Let A' denote the set of new arcs added between nodes in au and ov Consider an

arbitrary node uk° e au in G°. Since graphs G°\aq and GAA' are the same with \|/={uk°}, it

follows that S*(G°\A\\}0, an optimal solution to NSP(G°\A',\}/), is also an optimal solution

to NSP(G°\Oq,y) and S*(Q°\A\\|/) has the same objective function value when evaluated in

graphs G°Vj
q
and G°\A\

Also, due to the structure of G°, a way of solving NSP(G°) is to find

min
ukeau

(Z(S*(G°\a
q,{uk })) + min

qp6
{co^} }. In graph Q° with uk eou fixed,

there is an added arc a'(uic,vr) for every vr e ov and each such arc carries the essential

information (labels and value) of the inner minimization problem above. Since any feasible

solution to NSP(G°) and any feasible solution to NSP(£j°) must contain one node of Gv , the

first part of the Lemma follows.

In Step 2 of CR(.), node qp
° can be found in O(INql) time and arcs a'(uk°,vr) V

VfG o"v , can be updated in 0(INv l) time. This process is repeated for each node in o~u , i.e.

INU I times. Thus the total complexity of this Step is 0(INul*(INv l + INql)). «»

(GP3) Parallel Reduction: Initially in G there are no parallel arcs. However, as the main

algorithm SP (described later) proceeds, parallel arcs may be created in G and G°. In

particular, parallel arcs in G (G°) may be created during series-reduction of node q (a
q)

with adjacent nodes u and v (au and av). Series-reduction would add an arc between u and

15

v in G (add arcs (o~u , ov) between ou and o~v in G°) and if u and v (ou and o\) were

adjacent before the series-reduction then there would be parallel arcs between nodes u and v

(ou and av) after the series-reduction. Parallel arcs are always created during cut-reduction.

For an illustration of this procedure, see Iteration 2 of the example in the next Section.

Given two node-families ou and ov such that there are two arcs between every node

Uk e o~u and vr e o*v , we replace the parallel arcs by a single arc. The weights and the

labels associated with the two parallel arcs are added and they form the weight and label,

respectively of the new arc. Procedure PR(.) describes this process.

PROCEDURE PR(au , cv)

Step 1: Let nodes uk e 0"
u and v r e av be such that there are two arcs between them.

Delete one of these arcs and add its weight to the weight of the other arc. Also

add the label of this deleted arc to the label of the second arc.

Step 2: Continue Step 1 until no parallel arcs between nodes of ou and o~v remain.

Step 3: Return.

Lemma 5: For a G-Partite graph G° with node-families o~u and o~v such that there are two

arcs between every node uk e o~u and v r e av , let Q° and Q be the results of parallel-

reducing node-families o~u and ov of G° and nodes u and v in G. Given an optimal solution

S*(Q°) to NSP(£j°), an optimal solution to NSP(G°) can be constructed using the nodes

and arc labels of S*(G°). Furthermore, PR(.) can be performed in 0(INul*INv l) time.

Proof: The first part of the Lemma easily follows from the fact that for each Uk° e o~u and

vr° e o~v , the weight and label on arc (uk°,vr°) e G° is equal to the sum of the weights and

the union of the labels on the parallel arcs (uk°,v r°) e G°, and the fact that graphs

G°\(au,Ov) and G°\(ou,Ov) are the same.

Since there are INU I nodes in ou and INV I nodes in av , there will be INUI*INV I

repetitions of Step 1. Each repetition of Step 1 takes constant time and so the complexity of

the procedure is as stated. «»

We now present an algorithm which correctly solves NSP in polynomial time when

16

the flow graph G is series-parallel. Without loss of generality we assume that G is

connected. In the algorithm, during Iteration 1, graphs G and G° are denoted as Gi and

G°i, respectively. During each iteration these graphs will be changed and at a general

Iteration k, these graphs will be denoted by Gk and G°k. Algorithm SP proceeds by

forming a set, denoted as 2D, of degree two nodes in Gi. PA is the set of node pairs

having parallel arcs in the current Gk. Initially PA is empty. First we cut-reduce the pendant

nodes in Gk and G°k followed by parallel-reduction of the parallel arcs formed during the

cut-reduction. Then a series-reduction is performed (if 2D * { }) followed by a parallel-

reduction, if parallel arcs are formed due to the series-reduction. If these reductions create a

new pendant node, that node is eliminated by cut-reduction and the process is continued

until a single arc is left in Gk. The best arc in G°k at this stage is chosen, the weight of

which gives the solution value. The solution to NSP in G° is generated by the end nodes of

this arc and the nodes contained in the label of this arc (Step 6).

ALGORITHM SP

Step 0: Set k<- 1, G°k <- G°, Gk <- G.

Let 2D denote the list of nodes in Gk with degree 2. PA is the list of node pairs

having parallel arcs in Gk- For our problem, initially PA will be empty as there

are no parallel arcs in the flow graph G.

Step 1 : If Gk is a single arc then go to Step 6 else find a node q e V(Gk) with degree

one and go to Step 2. If there exists no such node then go to Step 3.

Step 2: Let (q,u) e E(Gk) be the arc connecting q to another node u.

Cut Reduce node-families au and aq in G°k by calling procedure CR(a
q
,o~u).

Cut Reduce nodes u and q in Gk-

Let node v be such that it is adjacent to u in Gk and is used in CR(.). Add (u,v)

to PA.

Set Gk+i <r- Gk (after cut-reduction)

G°k+ i
<— G\ (after cut-reduction)

k<-k+l.

Go to Step 5.

17

Step 3: If I2DI = then go to Step 5; else choose a node qe 2D. Let nodes u and v be

adjacent to q in Gk-

Step 4: If (u, v) e E(Gk) then add (u, v) to PA.

Series-reduce node-family o~q by calling procedure SR(Oq).

Series-reduce node q.

Set Gk+ i
<— Gk (after series-reduction)

G°k+i <r- G°k (after series-reduction)

k<-k+l

Delete q from 2D and go to Step 5.

Step 5: If IPAI = then go to Step 1; else let (u, v) e PA.

Parallel-reduce arcs between node-families ou and av by calling procedure

PR(au,av).

Parallel-reduce arcs between nodes u and v

Set Gk-t-i <— Gk (after parallel-reduction)

G°k+ i
<— G\ (after parallel-reduction)

k<-k+l

If u (or v) has degree 2 in Gk, add it to 2D.

Go to Step 1.

Step 6: At this stage G is a single arc (u, v). Find

go, o o = min, { co
" v

} . This is the value of the optimal solution and
* r ke (j u re av

kr J

the solution can be constructed by La(uksvr°)uLn(uk°)uLn (v r°). Stop.

Theorem 2: Algorithm SP correctly solves NSP in polynomial time when the flow graph G

is series-parallel.

Proof: Algorithm SP first cut-reduces all of the pendant nodes of G with each cut-

reduction followed by a parallel-reduction. It then performs a series-reduction and a

parallel-reduction, if needed. This is followed by a cut-reduction if necessary. This

process, if repeated, must reduce G to a single arc if G is series-parallel. The graph

obtained after each reduction remains series-parallel. We also perform the corresponding

operations on G°. Each of these reductions, by Lemmas 3, 4, and 5, preserves the solution

to NSP on the original graph G°. Finally, when only a single arc is left in G, the node

18

selection problem can be trivially solved as in Step 6 of SP. The end nodes of the single arc

selected in Step 6 provide the two nodes to be selected from the node-families that remain

in Step 6. The nodes to be selected from other node-families, which were in the original

graph G°, are given by the labels on the arc selected in Step 6.

To show the polynomial complexity we note that every cut-reduction and every

series-reduction eliminates one node of the flow graph. Furthermore, each such reduction

adds at most one parallel arc to the flow graph. If G has (3 nodes, there cannot be more than

(3 series and cut-reductions and at most (3 parallel-reductions. Since the complexity of

series-reduction dominates the complexity of other two reductions, the complexity of

algorithm SP is bounded above by the effort for P series-reductions. If X = maximum

{INuI:ug V(G)}, then this bound is given by 0(p*X3).«»

Corollary : The complexity of solving an MMMC problem with m new facilities and n

nodes when the flow graph is series-parallel is 0(m*n3
). «»

5. An Example of NSP When the Flow Graph is Series-Parallel

Consider the flow graph G and the G-partite graph, G° in Figure 1. Figure 2 shows

the weights on the arcs in G° which are presented in the form of matrices. The problem data

in Figures 1 and 2 were possibly derived from an instance of MMMC by using equations

(2) through (7). We do not illustrate the reduction of MMMC to NSP as doing this is fairly

straightforward. Note that in this problem, new facilities a and c are each restricted to one

of two locations, and new facilities b and d each have three potential location sites. The

entry in row 1 and column 3 of the first of the matrices in Figure 2 is the weight of the arc

joining node 1 of oc and node 3 of Gd- In G°, the label on the arc joining nodes Uk and vr is

La(uk,v r)= { } and the label on each node Uk is Ln(uk)={uk}. Now we apply algorithm SP

to solve NSP on G°.

Iteration 1 :

Step 0: k <-l, G°if-G°, Gi<-G.

2D={a,b}.

19

Step 1: Vertex d in Gi has degree one. Go to Step 2.

Step 2: d is adjacent to c and (d,c) is not the only arc of Gi. Call procedure CR(Gd,0"c).

Procedure CRfa^oV)

Step 1: Select arc (c,a) of Gi

Step 2: For node ci of Gc

min of {5,4,8} is 4 and occurs for node d2

In G°i add arcs a'(ci,ai) and a'(ci,a2), each with cost 4 and

label {d2 }.

For node c2 of ac ,

min of {7,9,6} is 6 and occurs for node d3 in o~d-

In G°i add arcs a'(c2,ai) and a'(c2,a2), each with cost 6 and

label {d3 }.

. Step 3: Delete oc

Step 4: Return

Set this graph to G°2

Cut reduce node d in Gi and set this graph to G2 (Figure 3).

Set k to 2

{In Figure 3b, the first matrix corresponds to the weights on the new arcs that are

added in Iteration 1

}

Add (c,a) to PA and go to Step 5.

Iteration 2:

Step 5: We choose (c,a) e PA and call procedure PR(ac ,aa).

Procedure PRCGp.qQ

Step 1: Pick nodes ai e o~a , c\ e acm

Delete one of the two parallel arcs. Add the weight and label of the

deleted arc to the weight and label of the other arc (new weight =

5+4 = 9; new label =
{ }u{d2 } = {d2 }).

Step 2: We continue Step 1 until no parallel arcs remain between oc and o~a .

Step 3: Return.

Parallel reduce arcs between nodes a and c in G2.

Update G3, G°3. Set k to 3. Since c has degree 2 add c to 2D and go to Step 1 (see

20

Figure 4).

Iteration 3 :

Step 1: Since we do not have a pendant node, we go to Step 3.

Step 3: We choose node c e 2D with b and a the adjacent nodes to c in G3.

Step 4: Since (b,a) is in G3, we add (b,a) to PA .

Call procedure SR(ac).

Procedure SR(oV)

Step 1: b and a are two nodes adjacent to node c in G2

Step 2: Consider nodes b\e o~b and aie oa
t^' 1 • /* r DC 3C DC ciC

Find min of (co,, + co,,, co
12
+ co

12

orminof {9+9, 19+13} = 18

Minimum occurs for node cie Gc

Add arc a'(bi,ai) with weight 18

Set the label La'(bi,ai) f- La(bi,ci)uLa(ai,ci)u Ln(ci)

orLa«(bi,ai)={}u{d2}u{ci}={ci,d2}

Consider nodes b\e 0"b and a2e oa

t"'* 1 • r (DC 3C DC HC
Find min of {co,, + co

21
, co

12
+ co

22

or min of {9+11,19+16} = 20 for node ci

Add arc a'(bi,a2) with weight 20

Set the label La-(bi,a2) <~ La(bi,ci)uLa(a2,ci)u Ln(ci)

orLa'(bi,a2)={}u{d2}u{ci}={ci,d2 }

Consider nodes D2eo"b and aieaa

Find min of {co
21

+ co,,, co
22

+ co,
2

or min of { 1 1+9,6+13} = 19 for node C2

Add arc a'(D2,ai) with weight 19

Set the label La'(b2,ai) <- La(b2,C2)uLa(ai,C2)u Ln(c2)

orLa'(b2,ai)={}u{d3}u{c2}={c2,d 3 }

Consider nodes b2e o~b and a2e aa

Find min of {co
21

+ co
21

, co
22

+ co
22

or min of { 11 + 11,6+16} = 22 for node C2

Add arc a'(D2,a2) with weight 22

21

Set the label La'(b2,a2) <- La(b2,C2)uLa(a2,C2)u Ln(c2)

or La'(b2,a2)={ }u{d3}u{c2}={c2,d3 }

Consider nodes b3GGb and aieaa
t^* i • f* € DC 3C DO <-lC

Find min of {co^, + co,,, co
32

+ &>
12

or min of {14+9,12+13} =23 for node ci

Add arc a'(b3,ai) with weight 23

Set the label La'(b3,ai) <— La(b3,ci)uLa(ai,ci)u Ln(ci)

or La«(b3,ai)={ }u{d2>u{ci }={ci,d2 }

Consider nodes b^e Gb and a2£ 0"
a

Find min of {co
31

+ co,
2

, co
32

+ w
22

or min of {14+11,12+16} = 25 for node ci

Add arc (b3,a2) with weight 25

Set the label La'(b3,a2) «- La(b3,ci)uLa(a2,ci)u Ln(ci)

orLa'(b3,a2)={}u{d2}u{ci}={ci,d2}

Step 3: Delete ac . Return. {See Figure 5 for the weights and labels on

parallel arcs between aa and Cb-

Series reduce c in G3.

Update G3 and G°3, set k to 4 and go to Step 5.

Iteration 4:

Step 5: Edge (b,a)e PA. Call PR(ab,aa).

Procedure PR(ah.oy)

Step 1 : Choose nodes aje aa and b\e Ob,

Delete one of the two parallel arcs.

Add the weight of the deleted arc to the other arc

giving the weight as 18+7=25.

Add the labels on the two parallel arcs

= {cid2 }u{}={cid2 }

Step 2: We continue Step 1 until no parallel arcs remain (Figure 6

give the weights and labels, before and after this reduction).

Step 3: Return.

Parallel reduce arcs between nodes b and c in G4.

22

Update G4, G°4.

Set k to 5 and go to Step 1.

Iteration 5:

Step 1: G4 is a single arc, so we go to Step 6.

Step 6: We find cofo, = min
k6 ab fG ^ {© £}

.

= min {25,24,23,27,31,29} = 23 and occurs for ar°=ai and bk°=b2

This is the value of the optimal solution.

The solution can be constructed by La(b2,ai)uLn(b2)uLn(ai)={c2,d3,b2,ai}

Thus choose node C2^ ac ,d3G o~d,b2e 0"b, and aie o~a . Stop. {The dark edges along

with the nodes incident by the dark edges in Figure 7 depicts the solution.

}

6. M-Center Problem With Mutual Communication

In the m-center problem with mutual communication (as defined by Kolen (1982)),

we want to find the location of the m new facilities to minimize the maximum of the

interaction costs of new and existing facilities, interaction costs of pairs of new facilities,

and the fixed cost of locating a new facility (this term is not included in (Kolen, 1982)). In

what follows, we consider the node-restricted version of the problem. There is no loss of

generality here since we can find (see Hooker, Garfinkel, and Chen , 1988) a finite number

of points on the transport network such that in an optimal solution to the problem each new

facility will be at one of the points. Thus we can declare these points to be nodes of X. In

our version of the problem, denoted by MCMC, we assume each existing facility is located

at some node of X. Thus we again use the convention that nodes of X (as well as locations

of existing facilities) are indexed by k, r, and i. Similar to (MMMC), if there is a node of X

with no existing facility, we simply declare it to be an existing facility which has zero

interaction with all existing facilities. In addition, we will consider the fixed location costs

of the new facilities.

We now describe a G-partite graph G° and a bottleneck version of NSP, denoted by

B-NSP, on G°, which if solved, will solve (MCMC). For each new facility, u, we again

23

define a node-family gu , consisting of nodes {uk, ke Nu } where Nu is the set of feasible

locations (nodes of T) for new facility u. If new facility u interacts with new facility v, i.e.,

buv > 0, there is an arc in G° between every member of au and cv . Consider uk e ou and v r

e ov . A choice of these nodes corresponds to new facility u being located at node k of X

and new facility v being located at node r of X. The cost of arc (uk,vr) is defined to be

maximum of the following terms: a) fuk, b) fvr, c) buvd(k,r), d) max; (avid(r,i)}, and e)

max; {auid(k,i)}. Terms a) and b) reflect the fixed cost of locating new facilities u and v at

nodes k and r, respectively. Term c) is the cost of interaction between new facilities u and

v, given their locations. Term d) (e)) represents the maximum cost of interaction between

new facility v (u) and any existing facility.

With this definition of the cost of each arc in G°, the B-NSP on G° to solve

(MCMC) can be stated as follows: find an induced subgraph, S(G°), of m nodes of G°,

such that S(G°) contains one node of each node-family and where the maximum of the arc

costs of the arcs of S(G°) is minimum.

We now point out the changes required in the procedures described in Section 4 to

solve B-NSP. Algorithm SP remains identical except that instead of calling procedures CR,

PR, and SR, it will call procedures CR (as before) as well as SR' and PR', described

below. To distinguish these procedures from the previous procedures we name them b-

series-reduction and b-parallel-reduction, respectively.

PROCEDURE SR'(o
q)

Step 2 For each pair of nodes Uk e ou , v r e av , find qp
° giving

max{to£> , CO^o) = min^ {max{co
u

k
q

p
, co^} }.

Add an arc a'(uk , v r) with weight equal to max{co?q , <^3) and
Kp rp

let the label of this new arc be La'(v r,uk) «- La(v r,q p
°)uLa(uk,qp)u Ln (qp

°)

.

Lemma 3'
: For a G-Partite graph G° with a node-family o~q such that q has degree two in G,

let G° and G be the results of b-series-reducing node-family o~q and node q in G° and G,

respectively. An optimal solution to (B-NSP) on G° can be constructed using the nodes and

arc labels of an optimal solution to (B-NSP) on G°. Furthermore, the complexity of

24

procedure SR'(.) is 0(INul*INv l*INql) where u and v are the nodes of G adjacent to node q.

Proof: In the objective function of NSP the sum of arc weights is computed whereas in B-

NSP, the maximum of arc weights is taken. Thus, while performing the b-series-reduction,

instead of looking at the sum of weights on arcs (uk,qp) and (vr , qp) we focus on the

maximum of the weights on these two arcs. The proof follows exactly the same arguments

as in the proof of Lemma 3, except that the '+' operator is replaced by the 'max' operator.

«»

PROCEDURE PR'(au , Gv)

Step 1 : For any two nodes u^ e au and vr e o~v such that there are parallel arcs between

them, replace the parallel arcs by a new arc with weight equal to the maximum

of arc weights on the arcs just deleted and label equal to the union of the labels

on the deleted arcs.

Lemma 5': For a G-Partite graph G° with node-families au and o"v such that there are two

arcs between every node u^ e o~u and v r e av , let G° and G be the results of b-parallel-

reducing node-families 0"
u and o~v of G° and nodes u and v in G, then an optimal solution

to (B-NSP) on G° can be constructed using the nodes and arc labels of an optimal solution

to (B-NSP) on G°. Furthermore, PR'(.) can be performed in 0(INul*INvl) time.

Proof: The proof of this Lemma is similar to the proof of Lemma 5, but again the 'max'

operator is replaces the '+' operator. «»

Note that no modifications are required in PROCEDURE CR(.). Following the

notation as in CR, for any node Uk e au , the node in 0"q for B-NSP will also be selected by

finding qp
° which minimizes oar*. If we add additional arcs A' , and delete Gq, the solutions

on the two graphs for B-NSP remain equivalent (see proof of Lemma 4).

25

7. Conclusions

In this paper we have provided polynomial time algorithms for special cases of the

m-median and m-center problems with mutual communication. The special case is

characterized by the structure of the flow graph. First, we reformulated the m-median

problem with mutual communication as a quadratic location problem which was then

formulated as a node selection problem posed on a G-partite graph. Then we presented an

algorithm (Algorithm SP) which solves NSP when the flow graph is series-parallel. The

m-center problem with mutual communication was formulated as the bottleneck version of

the node selection problem (B-NSP). We presented the modifications required in Algorithm

SP to solve B-NSP.

Algorithm SP is a general algorithm to solve any problem which can be modeled as

an NSP. As an example, consider the 0-1 quadratic programming problem (Barahona,

1986):

(QP): min l/2xtQx + ex = Zi=i..nEj=i+i...n QijXiXj + Zi=i..nCiXi, x e {1,0}.

To model QP as an NSP we create a G-partite graph, G°, with a node-family for each x
{

which has two nodes, n;o and nn. Node nio (n\\) corresponds to the variable x\ taking the

value (1). Join two node-families if and only if qy > 0. The weight on arc (nn, riji) is

initially set equal to q,j and all other arcs between C[and Oj are initially given weight 0. To

account for the linear costs Cj, we select a j such that qij > 0, and add c\ to the weight on

arcs (nn, nj0) ar>d (n ii» njl)- It is easy to see that NSP(G°) is a reformulation of QP. Thus

when the graph defined by qjj's is series-parallel, QP can be solved in 0(n*23
) time. As we

noted earlier, Barahona (1986) also has a linear time algorithm for this case of QP but he

solves it by converting it to a weighted max-cut problem on a graph H which has one

additional node adjacent to all nodes of the flow graph defined by the qy's.

We now discuss certain generalization of series-parallel flow graphs for which NSP

can be solved in polynomial time. To give an example of this generalization, consider a

series-parallel graph G' and a graph Bi which has two special nodes, u' and v\ denoted as

terminals (Figure 8). If we replace arc (u,v) in G by the graph Bi we get a graph G which

is no longer series-parallel (Figure 9). Here we define replacement of an arc (u,v) of a

26

graph G' by a graph Bi (with two terminals u' and v') as: delete arc (u,v) in G' and attach

graph Bi to G' such that node u' coincides with node u and node v' coincides with node v.

In order to solve an NSP on a G-partite graph, G°, corresponding to the flow graph

G defined above, we proceed as follows: for a choice of node pairs Uk° e au and vr° e av ,

find the optimal nodes in node-families on i and o*n2 ^d let these two nodes be denoted by

the set R(k°,r°). Note that once we choose nodes Uk° e Gu and vr
° e crv , the optimal choice

of nodes in o~n i and an2 is independent of the solution on the remainder of G. Also, note

that due to the structure of Bi, finding the optimal nodes on the remainder of B\, i.e.,

finding R(k°,r°), with uk° and Vr° fixed can be done in polynomial time. Let w(k°,r°) denote

the sum of the weights on the arcs in the graph induced by nodes {uko,vr°}uR(k ,r)- Insert

arc (uic°,vr
o
) with weight w(k°,r°) in G°. Repeat this process for every choice of node pairs

Uk e o~u and vr e av , then delete node families 0"
n i and an2 from the G-partite graph G°.

The new G-partite graph corresponds to the series -parallel flow graph G'. It is easy to see

that given an optimal solution to NSP on the new G-partite graph we can construct an

optimal solution to NSP on the original G-partite graph. Thus, we can solve NSP with

flow graph G in Figure 9, which is not series-parallel, in polynomial time

To generalize the above, we define a family of graphs, it. Graph Bj is a member of

K if there are two terminal u and v of Bj, such that for arbitrary fixed nodes, Uk° e 0"
u and

Vr° e ov , S*(G°(Bi), \\f) can be computed in polynomial time, where G°(Bi) is the G-partite

graph corresponding to Bj and with \\f = {u^, vr°). If we obtain a flow graph G by

replacing some arcs of a series-parallel graph by a member of k, we can still solve NSP

with flow graph G in polynomial time. Campbell and Rardin (1987) have defined a similar

class of generalized series-parallel graphs, which they called series-parallel block graphs,

and they give an algorithm to recognize the series-parallel block graphs in polynomial time.

The algorithm in (Campbell and Rardin, 1987) when applied to a graph G, will give a set

of graphs with two terminals. If all the graphs in this set are member of the family n, then

NSP on G can be solved in polynomial time.

27

References

Barahona, F., "A Solvable Case of Quadratic 0-1 Programming," EH serete Applied

Mathematics , Vol. 13, 1986, pp. 23-26.

Campbell, B. A. and R. L. Rardin, "Steiner Tree Problem on Series-Parallel Block Graphs
I: Polynomial Recognition and Solution," Tech. Report CC-87-17, School of Industrial

Engineering, Purdue University.

Dealing, P. M, R. L. Francis, and T. J. Lowe, "Convex Location Problems on Tree

Networks," Operations Research . Vol. 24, 1976, pp. 628-642.

Erkut, E., R. L. Francis, and T. J. Lowe, "A Multimedian Problem with Interdistance

Constraints." Environment and Planning B: Planning and Design . Vol. 15, 1988, pp. 181-

190.

Erkut, E., R. L. Francis, T. J. Lowe, and A. Tamir, "Equivalent Mathematical
Programming Formulations of Monotonic Tree Network Location Problems," Operations

Research . Vol. 37(3), 1989, pp. 447-461.

Francis, R. L., T. J. Lowe, and H. D. Ratliff, "Distance Constraints for Tree Network
Multifacility Location Problems." Operations Research . Vol. 26, 1978, pp. 570-596.

Hooker, J. N., R. S. Garfinkel, and C. K. Chen, "Finite Dominating Sets for Network
Location Problem," Working Paper 19-87-88, Carnegie Mellon University, March 1988

Kolen, A., "Location Problems on Trees and in the Rectilinear Plane," Stitchting

Mathematisch centrum, Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands, 1982.

Picard, J-C and H. D. Ratliff, "A Cut Approach to the Rectilinear Distance Facility

Location Problem," Operations Research . Vol. 28, 1978, pp. 422-433.

Rardin, R. L., R. G. Parker, and M. B. Richey, "A Polynomial Algorithm for a Class of

Steiner Tree Problems on Graphs," ISyE Report Series J-82-5, Georgia Tech., August,
1982.

Rendl, F., "Quadratic Assignment Problems on Series-Parallel Digraphs," Zeitschrift fur

Operations Research . Vol. 30, 1986, pp. A161-A173.

Richey, M. B., "Optimal Location of a Path or Tree on a Network with Cycles," Working
Paper, George Mason University, 1989.

Takamizawa, K., T. Nishizeki, an S. Saito, "Linear-Time Computability of Combinatorial
Problems on Series-Parallel Graphs," J. of the ACM . Vol. 29, 1982, pp. 623-641.

Wald, J. A. and C. J. Colbourn, "Steiner Trees, Partial 2-Trees, and Minimum DFI

Networks." Networks . Vol. 13, 1983, pp. 159-167.

Xu, Y., R. L. Francis, and T. J. Lowe, "The Multimedian Problem on a Network:
Exploiting Block Structure," Working Paper, Department of Industrial and Systems
Engineering, University of Florida, Gainesville, Florida, 1988.

28

Graph G
(a)

INa l = INC I = 2, INb l = INd l =3

G-Partite Graph G°
(b)

Figure 1 . Graphs G and G (

Weights

X 1 2 3

1 5 4 8

2 7 9 6

Weights

* 1 2

1 5 7

2 7 10

Weights

^ 1 2 3

1 9 11 14

2 19 6 12

Weights

s 1 2 3

1 7 4 8

2 4 5 4

Figure 2. Weights on G°

29

New arcs

(a) Graph G2

Weights Weights

^ 1 2 * 1 2

1 4 4 1 5 7

2 6 6 2 7 10

Weights

> 1 2 3

1 9 11 14

2 19 6 12

(b) Weights on arcs in G°2

Weights

s 1 2 3

1 7 4 8

2 4 5 4

La*(ci,ai)= {d2}

La'(c2,ai)= {d3}

La'(ci,a2)= {d2}

La'(c2,a2)= {d3}

(c) New Labels

Figure 3. End of iteration 1

(a) Graph G3

Weights Weights

V 1 2 ^ 1 2 3

1 9 11 1 9 11 14

2 13 16 2 19 6 12

Weight! i

> 1 2 3

1 7 4 8

2 4 5 4

La(ci,ai)= {d2}

La(c2,ai)= (d3)

(b) Weights on arcs in G°3

La(ci,a2)= {d2}

La(c2,a2)= {d3}

(c) New Labels

Figure 4. End of Iteration 2

30

Weights Weights

Vi 1 2 3 V
a\ 1 2 3

1 7 4 8 1 18 19 23

2 4 5 4 2 20 22 25

Previous Arcs New Arcs (a')

(a) Graph G4 (b) Weights on arcs in G°4

Labels: New Arcs (a')

La'(ai,bi)={ci,d2) La'(ai,b2) ={c2,d3) La'(ai,D3) ={ci,d2)
La'(a2,bi) ={ci,d2) La'(a2,b2) ={c2,d3) La'(a2,b3) ={ci,d2)

Figure 5. End of Iteration 3

(a) Graph G5

Weights

Vi 1 2 3

1 25 23 31

2 24 27 29

(b) Weights on G°5

Labels same as the labels on the New Arcs a' in Iteration 3

Figure 6. End of Iteration 4

31

Figure 7. Algorithm SP: The Solution

Bl

Figure 8. Series-Parallel Graph G' with a Block B

1

Graph G

Figure 9. Graph G Obtained by Replacing Edge (u,v) in G' by Bl

