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ABSTRACT

Amemiya's estimator is a weighted least squares estimator of the regression coefficients in a linear

model with heteroskedastic errors. It is attractive because the heteroscedasticity is not parameterised

and the weights (which depend on the error covariance matrix) are estimated nonparametrically. In

this paper, we obtain an asymptotic expansion for Amemiya's form of the weighted least squares

estimator. We use this expansion to discuss the effect of estimating the weights, the effect of the

number of iterations and the effect of the choice of the initial estimate. We also discuss the special

case of normally distributed errors and clarify the special consequences of assuming normality.





1. Introduction

Econometric modelling is frequently complicated by heterogeneous variability in the

stochastic component of the model. Such heteroscedasticity, arises in almost all fields; for

examples see Carroll and Ruppert (1988). It is always possible, of course, to ignore the

heteroscedasticty and proceed with a standard analysis, but substantial gains in efficiency are

possible if we incorporate information about the heteroscedasticity into the analysis. One

approach is to model the heteroscedasticity by introducing an explicit parametric model for the

scale of the stochastic component of the model. This approach has been explored in

considerable detail; again see Carroll and Ruppert (1988) for a recent survey. It can, however,

be prohibitively difficult to parametrize heteroscedasticity. In practice purely empirical models

are difficult to identify, and there may be no theoretical motivation for a particular structural

model. Economic theory is rich in models for conditional means but meagre as a source of

models for scale. In this paper, therefore, we will consider an approach suggested by

Amemiya (1983) which attempts to deal with heteroscedasticity without introducing an explicit

parametric model. This approach is closely allied with the work of Eicker (1963), and White

(1982) on consistent covariance matrix estimation and Chamberlain (1982) on method of

moments estimation.

Consider the heteroscedastic linear model

y = Xp + ii, (l.l)

where X is an nxp matrix of known constants with rows denoted x. , j = l,...,n, (3 is a p-vector

of unknown parameters and u = (ui,...,un )
T is an n-vector of independent random variables

*\ *> *1 A

with Euj = 0, Eu. = a- , Eu- = Ji3j and Eu. = H4j < °° . The regression parameter (3 is the

2 2
parameter of interest while I = diag(o\ a ) is regarded as an arbitrary n dimensional

nuisance parameter. In the classical linear model we take ui,...,un to be identically distributed

so that I = a2 I.

The weighted least squares estimator is widely used for estimating the regression

parameter in heteroscedastic linear models. Notice that when £ is known, premultiplying (1. 1)

by 2> l/2 yields a classical linear model for which the least squares estimator is
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When I is unknown p£ cannot be computed but we may be able to substitute an appropriate 1

for L to obtain

(3£=(XTI- 1X)- 1XT£- 1
y.

Since L is not parametrized, an appropriate I is obtained by setting I = diag(r
lt

...,r
n),

where

r = Y - X (3(0) is the vector of residuals from an initial estimator P(0) of p. Notice that I is in

fact an estimator of diag(u^ u*) rather than of I. Although we actually need to estimate

iHxTl-^X and ir lXTIr ly rather than I, it turns out that we cannot estimate n^XTE-^X

unless we can estimate I. As we have only n observations with which to estimate the n

parameters in £ we cannot construct a consistent estimator of I. However, there is a

convenient reformulation of Pi which enables us to overcome this difficulty. Let V be an

nx(n-p) matrix of constants such that (X,V) is a nonsingular nxn matrix and VTX = 0. i.e. the

columns of V are orthogonal to those of X. If we let K(X) denote the subspace of R n

spanned by the rows ofX and ft(X)1 denote its orthogonal complement, we have trivially that

K (X-l/2X )i- = K (X)-L = il (V) = K (L^V). Now I - L-l/2X(XTL-lX)-lXTE-l/2

projects E" onto (JKL-^X)^ and L^VC^I^r^Z^ projects R n onto flld^V) and

this projection is unique (e.g. Seber, 1977, p394), so we have I - IrV2X(XTIr lX)-WZr 1'2

= Il/2V(VTZV)- 1VTI 1 /2
. Thus

pZ = (XTX)-lXTy- (XTX)-lXTll/2{I - l-^X(XJ^X)^X^-^}i:- l^y

= (XTX)- lXTy- (XTX)- lXTll/2{El/2V(VTEV)-lVT"ll/2}I-l/2y

= (XTX)- l {XT-XTlV(VTZV)-lVT}y

= pi - (X^-^TIVCVTIV)-
1VTy

I
which involves 2 rather than 2K At least so far as analysis is concerned, there is a slight

further difficulty caused by the fact that the dimensions of n" 1VTIV and ir lXTZV increase

with n. Amemiya (1983) therefore suggested that we replace V by an nxq matrix W with a

fixed q < n-p of the columns of V. Replacing I by £, we obtain Amemiya's estimator



P(i) = ft- (XTX)-1XT£w(WT£w)-lWTy. (1.2)

If I = a2I is known, P(i) = Pi. It is obvious that in replacing V by W we are neglecting some

of the structure of I. Nonetheless, Amemiya (1983) showed that this estimator is always more

efficient than the least squares estimator Pi and Balestra (1983) showed that it can be as

efficient as pi; in particular, if there are only q different variances in I, a judicious choice ofW
makes Amemiya's estimator equal to p£ . The general issue of how to choose W has not been

addressed. Nor has the possibility of allowing q to diverge to infinity at a slower rate than n.

These interesting issues are beyond the scope of the present paper and will not be pursued here.

Our purpose is rather to obtain an expansion for P(i) which enables us to examine the effect of

using £ rather than I in the estimator, the effect of the number of iterations and the effect of the

choice of the initial estimate. This work complements that of Carroll, Wu and Ruppert (1988)

and Rothenberg (1984) on the effect on weighted least squares of fitting parametric models for

I and extends that of Fuller and Rao (1978) on the replicated case by relaxing the assumption

of normal errors.

2. Theoretical Results

Our main result is a higher order asymptotic expansion for p(i) including terms of order

n-3/2 in probability. The expansion requires conditions on various sums and matrices

involving X, W and the moments of the uj's which are stated in the Section 3. We also require

a condition on the initial estimator p(0). In particular, we suppose that P(0) satisfies

p(0)
- p = n-lCSD^u) + Op(n-l/2), C2-D

for some pxp nonsingular matrix C = 0(1), some nxp matrix D and some vector function ¥(u)

= (\|/(ui),...\|/(un))
T

, where n- lC" 1DT4/(u) = Op(n" 1 /2
). It is convenient to set

A = n- 1WTIW and M = X - n" 1WA" 1VVTlX.

Then we show in Section 3 that

P(1)
_ (} = n-l/2z ln + n-lZ2n + ir^nC P(0) - P) + Op(n-3/2), (2.2)

= n-^Zm + n-lZ2n + n-3/2z3n(n-
1C- 1D^(u)) + Op(n"3/2),



where ir^Zin = (XTX)- JMTu and Zm = Op(l), t = 1,2,3. Here Z3n(-):IR P -> R p
is a

function of the initial estimator whereas Zi n and Z2n are not. If L were known, we would have

the identity

p(D - (3 = n-l/2Zln = (XTX^MTu, W
and

Var p(i) = n-lEZmZ[
n

- Varpi - (X^-^TIWA- 1WZXCXTX)" 1
.

which, incidentally, proves that Var n'^Zin ^ Varpj. When X is unknown, we have (2.2)

and, preceding formally, the moment expansions

EP(1)-P = n-lEZ2n + o(n-l)

and

Var p( i)
= n-lEZmZ^ + n-2T(P(0)

- P) + o(n"2), (2.3)

where

T( P(0) - P) = EZ2nZ
ln
+ EZinZ^ 4- EZinZ^ - EZ^EZ^

+ EZ3n(P(0) - P)z[n + EZi nZ3n(P(0) - P)
T

-

It is instructive to write T = Ti + T2(p(0) - P), where T2O) is a function of p(0) - P and Ti is not. I

follows from the results in Section 3 that

Ti = - n-l(XTX)" 1 X mimf wTA-1wj (M4j -ahoWr 1 (2-4)

|if

n n _ _
T, T,

+ 3 n-2(XTX)-l I S mjm(wA-lwk)2 Wj Wk(XTX)-l
j=lk=l J

n n

+ 2n-2(XTX)-l I I man w A-*wj w/A"lwk Wj Wk(XTX)-l
j=lk=l J J



and

T2(n- 1C- 1DT4/
(u)) = 4n-2(XTX)~1 I mimf wJA"1WTGDC- lx; o2 (XTX)~ l

(2.5)

j
=1 J J J

+ 4n-2(XTX)" 1 I m; xf (wTa^ws c2 - rr^C-WGW'A-^ACr^^GMiX^X)^

,

l_i
J J J J j j J

where G = diag(Euiy(ui),...tEunv^(un)).

It is perhaps worth noting that, with considerable work, higher order terms in the above

expansions could be obtained. However, the above expansions contain sufficient terms to

capture the dominant effect of the initial estimator. Moreover, Carroll, Wu and Ruppert (1988)

found that the conclusions drawn from examining expansions of this order seem to reflect, at

least qualitatively, the findings from simulation studies.

The contribution of the initial estimator to Amemiya's estimator (1.2) is of order n-3/2 in

probability and affects the second term in the expansion of the asymptotic variance of

Amemiya's estimator. We can iterate the procedure by using P(i) as a new initial estimator,

calculating
J3(2) etc. Identifying ir^Zin = (XTX)-*MTu with n- 1C- 1DTvP(u), nC = XTX, D

= M and *F(u) = u, we find that for c > 2, (2.2) becomes

(3(c)
- p = n-l/2Zm + n-lZ2n + n-^Z3n(n-^Z Xn) + Op(n"3/2),

and (2.3) becomes

Var p(c) = n-lEZmZ^ + n-2{T! + T2(n-WZln)) + o(n-2),

Thus iteration reduces the contribution of the initial estimator to a smaller order than n
-^/2 in

probability and the first two terms of the asymptotic variance stabilise after two iterations.

Carroll, Wu and Ruppert (1988) obtained a similar result when the parametric model for Z does

not depend on X(3 but that an extra iteration is required to achieve stability when the model for

Z depends on X(3.

It is not always straightforward to draw general conclusions from the expansions (2.4)

and' (2.5) so it is worth considering the simple special case that the Ui's are identically

distributed with a symmetric distribution so that 2 = o2 I, Ji3j = and U4j = \M- Notice that

here we are examining the consequences of proceeding as though we had a heteroscedastic

model when in fact we do not In this case M = X and (2.4) and (2.5) become



Ti = - (m - o4)
n-l(XTX)-l I xjx]" wTa-Wj (JXTX)-1 (2.6)

and

T2(n-iC-lDTvF(u)) = 4a2Euiy(ui)n-2(XTX)-l I xjx]" { wjA-lWTfcCSxj (2.7) |j

+ C-^TXwTa- 1wj }
(XTX)" 1

- 4 {EuiV(ui)}2 n-3(XTX)"l J XjxJc-lDTX x[c-1DTWA-1wj (XTX)-1.

Interestingly, Carroll, Wu and Ruppert (1988) found that using the least squares

estimator Pi as the initial estimator reduced the number of iterations for the covariance to

stabilise by one in each case, this is not in general true for Amemiya's estimator. However,

when the uj's are identically and symmetrically distributed the least squares estimator pi

satisfies (2.1) with nC = XTX, D = X and \j/(u) = u and, for c > 2, P(c_i) satisfies (2.1) with

nC= XTX, D = M = X and \y(u) = u so that

T2(Pl - P) = T2(P(c-l) -P)=4o4 n-l(XTX)-!
J xjxJwJa-Wj (XTX)"\ c > 2. (2.8)

Thus in this particular case, starting with the least squares estimator results in a stable

covariance after only one iteration.

Carroll, Wu and Ruppert (1988) show further that there may be advantages to using a

robust initial estimator. Suppose we use the M-estimator p* obtained by solving

X xj\i/((yj - xTpyco) = 0, where a> is a consistent estimate of some scale functional co which

j=l J

need not equal a. If the uj's are identically distributed with a symmetric distribution, p*

satisfies (2.1) with nC = co" lE\/(ui/co)XTX and D = X so that

T2(p* - P)
= 4 a*

EU1¥(U1/C0)
n-l(XTX)-l I xjXyw[A-lwj QC^rK (2.9)

©-^^(ui/co) j=l

I

Since Y x;x
TwTA- 1wi is nonnegative definite, a comparison of (2.8) and (2.9) shows that

j=l
J J J

J

P(l) based on an M-estimator has a smaller covariance (up to terms of order n~2) than P(i)



based on the least squares estimator or, indeed, on the iterated stable estimator P(C), c > 2,

whenever

Emy(ui/G)) < o^oriEvj/Xui/co). (2.10)

Note that more generally when the uj's have arbitrary symmetric distributions p* satisfies (2. 1)

with nC = ©- lXTdiag(E\j/ ,

(ui/CD),...,E\y
,

(un/cD))X and D = X so that we can write down

expansions for this case too. Moreover, we can also drop the symmetry assumption but at the

cost of a slightly more sophisticated analysis.

We can also examine the effect of including £ in our analysis when it is not actually

required in the identically distributed symmetric case. Since

T(p*-p)=T1+ T2(p*-P)

= - { M4 - o4 - 4 a*
E" 1¥(U1/Q))

} n-l(XTX)-l I xjxywVwj(W
oHEyXui/a)) j=l

J J J J

and

T(pi-p)=T(P(c_ 1) -p) = -{u4-5o^}n-kXTX)-l Ixjxyw[A-lwj(XTX)-l, c > 2,

we see that for near normal distributions with k = u-4/04 < 5, including £ when it is not actually

required casues an increase in the covariance compared to when £ = a2 I is known. However,

for long-tailed distributions with k > 5, including £ actually reduces the covariance (up to

0(n~2)) compared to when £ = a2I is known. The same result was found in Carroll, Wu and

Ruppert (1988). One possible explanation is that when we have long-tailed distributions we

obtain some large residuals and weighted least squares estimators downweight the observations

corresponding to these residuals so that we actually get a kind of robustness effect.

Finally, consider the particular case where u has a multivariate normal distribution.

Rothenberg (1984) has examined the special case where £ depends on a finite dimensional

parameter 9 which is not a function of p. He assumes that £ is formed from estimates

which are even functions of u and also do not depend on p. Given the closure of the

multivariate normal distribution under linear transformations, this last condition implies that 6

is an even function of the projection of y onto the orthogonal complement of the column space

of X. That is, the initial estimator P(Q) will be of the form P(0) = (XTQX)~ 1XTQy, where Q is



an arbitrary positive definite matrix not depending on (3 and X is any matrix which spans the

column space of X. Then is obtained as an even function of the resulting residuals. He

found that including X increases the covariance compared to when Z is known, that the number

of iterations and the choice ofQ do not matter. Note that for normal ui an integration by pans

"

implies that Eui\y(ui/co) = a2co_1 E\|/'(ui/a)) and so (2.10) cannot hold. But in non-normal

models, however, choosing \\f so that (2. 10) holds, we can actually decrease the covariance (up

to n~2) compared to when L is known. Moreover, even if we restrict attention to linear initial

estimators we find that the number of iterations does matter. Here on setting X= X, the most

plausible choice for X, (3( ) = (XTQX)" lXTQy satisfies (2.1) with nC = XTQX, D = QX and

\\f(u) = u so G = E and (2.5) becomes

T2((XTQX)- 1XTQu) = 4n- 1(XTX)" 1 £ mjmT wTA- 1WtIQX(XtQX)- 1 xj a
2
(XTX)" 1

j
=1 J J J

+ 4n- I (XTX)~ 1 I mjxTwTA^Wi a2 (XTQX)~ 1XTQIM(XTX)- 1

j
=1 J J J

-4n- l(XTX)-! I m j
x
T
(XTQX)- lXTQIMxy(XTQX)- 1XTQIWA- lwj (XTX)~ l

j=l
J J

which depends on Q. However, in the identically distributed case (L = o~
2 I), the number of

iterations and the choice ofQ do not matter as M = X and (2.7) becomes

n

T2((XTQX)" 1XTQu) = 4a4 n^X^X)" 1 I xjx{ wjA- 1w;(XTX)- 1

j=l
J J

which does not depend on Q.

3. Proofs

In this section we give a formal proof of the expansion (2.2), obtain expressions for

Zm , t = 1,2,3, and then calculate formally the moments which appear in Ti and T20-

To prove (2.2) suppose that (2.1) holds and that, with M = X - W(WTIW)- IWTZX,

i) n-1XTX and n~ lWTLW converge to nonsingular limits,

and

ii) iHxTZX = 0(1), iHwTIX = 0(1),

n- 1 £ lw:W
T

l lx:l
2 = 0(1), n- 1 1 1 m:wT| |Xjl

2 = 0(1)
j=l

J j=l
J

«



n-1 1 (WiwThwiW?) H4j = 0(1)

n

n-1 I (m:w. )*(m
i

w. ) H4j = 0(1)
j=l

J J J J

n-1 I wjW[w£wj* a* = 0(1), 1 < k,l < q, .

.pi

n-l 2 xjXTw^mj* 0? = 0(1), 1 < k < q, 1 < 1 < p,

hold (Here * denotes the Hadamard product of two matrices.)

First note that as WTX = 0, we can write

J3( i)
= pi - (XTX)-1XT2W(WT£w)r1WTY

= p + (XTX)" l {XT - xTswovTLwy-iwTju. (3.1)

To preserve notation let

and

Gi = diagtiij - G\ u
n
- o^)

G2 = diag(uix]"(p - p),...,unx^(p - P))

G3
= diag({x]

,

(p-p)}2,...,{ x;(p-p)}2).

Then, squaring the residuals, we obtain

n-lX^IW = iHxTIW + n-lXTdiag(r^ - a*...,r* - <#W

= n-lXTIW + n-lXTGiW - 2n"lXTG2W + n" lXTG3W

and, similarly,

(3.2)

n- lWTIW = n-lWTEW + n
- lWTGiW - 2nr1WTG2W + ttWGjW.

Notice that when A - A = Op(n~
1/2

) we have

A" 1 = A- 1 - A-kA - A)A"! + A"HA - A)A-»(A - A)A"! + Op(n"3^)

so that with A = ir"lWT£w and A = n" 1WTEW f we obtain

n(WTZW)- 1 = A-l - A-ln-lW^GiW A"1 + A- ln-lWTGiWA" lWTGiWA" 1
(3.3)

+ 2A- 1 W^WA" 1 - A- lrr lWTG3WA- 1 + Op(n"
3/2

).



Substituting (3.2), (3.3) and (2.1) into (3.1) yields

P(l) - P = Zm + Z2n + Z3n( p - P) + Op(n
"3/2

)'

where, i I

Z ln = (XTX)-lMTu =
p
(n-l/2)

Z2n =- ir 1(XTX)- 1MTGiWA- 1WTu = Opfa" 1
)

and

Z3n(P(0) - P) = n-2(XTX)-lMTGiWA-l\VTGiWA- 1WTu

+ 2n-l(XTX)-lMTG2WA-lWTu - ir»(XTXHMTG3WA-lWTu

= n-2(XTX)- 1MTGiWA- 1WTGiWA- 1WTu

+ 2n-2(XTX)-lMTdiag(uix]'c- 1DvF(u),...,UnxTC- 1DvP(u))WA-lWTu

-n-2(XTX)- 1MTdiag(x'[c- 1D lF(u),...,x^C- 1DvF(u))2WA- 1WTu

= Op
(n-3/2).

Now writing DT = (di,...,dn), G = diag(Eui\y(ui),..„Eun\l/(un)) and proceeding formally,

EZin = 0;

EZinZ[n
= (XTX)-lMXM(XTX)- 1

;

EZ2n = - n-l(XTX)-l S mjwlA-lwj ji
3j ;

j=l
J

EZ2nZ}
n
= - n-l(XTX)-l£ m

j
m]' wJa-^wj (^j - a?)(XTX)-i

EZ2nzIn = n-2(XTX)-l £ I mjm][ w]a-1 wj wjA-^k Jj.3j H3k(X
TX)-*

zn
j=lk=l J

+ n-2(XTX)"l I I mjm* (w[A-lwk)2 Wj ^(XTX)" 1

j=lk=l J

+ n-l(XTX)-l I mjmy w?A-l wj (M4j - aSp^Xjr1 + 0(n-3)
j=l

J J J
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n n

EZ3nZyn = n-2(XTX)-l 1 I mjmT Wj
TA"lwk wjA-lwk Wj Wk(XTXH

+ n-2(XTX)"l 2 I mjra^ (wTa-Iwj^ Wj Wk(XTX)-l
j=lk=l J

+ 2n"2(XTX)- 1 I mjmT w^A"1W^GDC-^j a2 (XTX)-!
j
=1 J J J

+ 2n-2(XTX)" 1 I mjXy {wyA^wjof-n-^yC^DTGWA-lwj JCSDTGMQCTX)- 1

j=l
J J J

J J

+ 0(n-3),

as A-1\VTZM = A-iWTZX - n^A^WTlWA^WTlX = A^WTlX - A^V/TlX = 0.

Finally,

EZ^ + EZinzJn + EZ2nz£n - EZ2nEZjn+ EZ3n(P - W]n
+ EZ lnZ n̂(p

- (3)

= - n-l(XTX)-! 2 mjmT w[a-Iwj (mj - a?)(XTX)-l

j=l
J J J

+ 3n-2(XTX)-l I 2 mX (wTa-IwO2 Wj Wk(XTX)-l
j=lk=l J

+ 2n-2(XTX)-l I I mjmT wfA-lwj w^A"^ Wj W^X)-*
j=lk=l J J

+ 4n-2(XTX)" 1 X mimy wyA^WTGDCSxj a? (XTX)-*
j=l

J J J

+ 4n-2(XTX)-l X m i

xy{wyA-lw
i
a
2 -n-lxTC- 1DTGWA-lwj}C- 1DTGM(XTX)-l.

i=l
J J J J

4. Numerical Results

We performed a limited simulation experiment to examine some of the predictions of the

asymptotics, the results of which are presented in Table 1. Using a sample size of 50 we fitted

a linear regression through the origin with X - N(0, 25) and the coefficient on x set to unity.

Although not reported, other sample sizes were examined with improved performance,

measured in terms of mean squared error, as the sample size increased and inferior performance

for smaller sample sizes. The disturbance term had zero mean but its distribution differed from

case to case. The M-estimator chosen as an initial estimator was that proposed by Huber

(1964) with c, using the notation of Amemiya (1985, equation 2.3.2), chosen to be 1.345.



Some experimentation suggested that the results obtained were relatively robust to the choice of

c. In constructing the weighted least squares estimator, W was chosen (initially) to be the first

column of Px = In - X(XTX)_1XT . In what follows we shall denote the iterated weighted

least squares estimator, using ordinary least squares as an initial estimator, by Pis ; pm shall '

denote its analogue based on the M-estimator. This notation supresses the number of iterations

used in the estimation process. In Table 1, mean squared errors are reported for estimators

involving one through five iterations, inclusive. All results are based on 1000 replications.

As a bench-mark we can compare the performance of (3is and (3m when the disturbances

of the model are u; ~ N(0, 1), i 1, ..., n (experiment 1), and when u\ ~ t(5), i = 1, ..., n

(experiment 2). In both experiments the disturbances are homoscedastic. In the latter

experiment k = 9 and, as predicted, (3m performs better than pis although, as in experiment 1,

there is little to choose between them. One common feature of the two sets of results is that

nothing appears to gained by iterating. Indeed mean squared error seems to increase with the

number of iterations. There was some evidence to suggest that the mean squared error

converged to some finite value, usually within four to seven iterations.

Table 1 about here

Experiments 3 and 4 repeat the first two experiments but with uj ~ N(0, i), i = 1, ..., n

and uj~ i
1/2 vj, vj ~ t(5), i = 1, ..., n, respectively. That is, these experiments consider

heteroscedastic models with the scale of the disturbance increasing with the index. The most

noticeable feature of these results is the dramatic decline in the performance of the estimators

relative to that for the homoscedastic models. In experiment 3 we see that, for k < 5, there

remains little to choose between the two estimators. In contrast, the results of experiment 4

suggest that as the error distribution becomes increasingly leptokurtotic there are benefits in

using a robust initial estimator. '
™

As indicated in the introduction, no effort has been devoted finding the optimal W for

the estimator although Balestra (1983) has shown that in certain special situations there may

exist such a choice. Nevertheless some investigation of the effect of different choices for W

was made by using different columns of Px in the construction of the estimators. The worst
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case that was found is presented as experiment 5. It is evident from the results the performance

of both estimators is dramatically worse than for the other experiments. Further, the mean

squared errors are oscillating quite violently. While not entirely understood, it may be that

these results are driven by the inversion of an ill-conditioned matrix, there is enough evidence

to suggest that these weighted least squares estimators are sensitive to the choice of W. This

remains a topic for further research.

* The authors would like to thank Trevor Breusch, Jose Machado and Terry O'Neill for

helpful discussions. The usual caveat applies.
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Table 1

Estimated Mean Squared Errors

Experiment Estimator Iterations

1 2 3 4 5

1 Pis

Pm

0.8170

0.8266

0.8433

0.8512

0.8666

0.8743

0.8859

0.8936

0.9020

0.9087

2 Pis

Pm

1.5151

1.4588

1.6075

1.5883

1.6799

1.6731

1.7342

1.7336

1.7738

1.7765

3 Pis

Pm

20.4400

19.8888

21.9701

21.8939

23.6265

23.7231

24.9826

25.1056

26.0440

26.1486

4 Pis

Pm

31.9520

27.6794

31.7733

30.0238

32.7435

31.9873

33.7856

33.4609

34.6158

34.5188

5 Pis

Pm

3522.9696

4014.5814

1087.7951

603.4256

4694.9841

3788.3785

222.9984

428.9702

4663.7089

4107.2634






