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Spatiotemporal variation 
of nitrate concentrations in soil 
and groundwater of an intensely 
polluted agricultural area
Kei Nakagawa1*, Hiroki Amano2, Magnus Persson3 & Ronny Berndtsson4

Nitrate pollution in groundwater is a serious problem in many parts of the world. However, due to the 
diffuse and common spatially over-lapping character of potential several non-point pollution sources, 
it is often difficult to distinguish main nitrate sources responsible for the pollution. For this purpose, 
we present a novel methodology applied to groundwater for an intensely polluted area. Groundwater 
samples were collected monthly from April 2017 to March 2018 in Shimabara City, Nagasaki, Japan. 
Soil samples were collected seasonally at soil surface and 50 cm depth at 10 locations during the same 
period. Sequential extraction by water and extract agents was performed using calcium phosphate 
for anions and strontium chloride for cations. Mean nitrate concentration in groundwater close to a 
livestock waste disposal site (hereinafter called “LWDS”) was 14.2 mg L−1, which is exceeding Japanese 
drinking water standards (10 mg L−1). We used coprostanol concentration, which is a fecal pollution 
indicator, to identify pollution sources related to livestock waste. For this purpose, we measured 
coprostanol (5β) and cholestanol (5α) and then calculated the sterol ratio (5β/(5β + 5α)). The ratios for 
three groundwater sampling sites were 0.28, 0.26, and 0.10, respectively. The sterol ratios indicated 
no pollution (< 0.3). However, the detection of coprostanol originating from animal and human waste 
showed that groundwater was clearly affected by this pollution source. Nitrate levels in the soil 
were relatively high in samples collected close to the LWDS and coprostanol contents were affected 
by livestock waste. Soil and groundwater nitrate concentrations displayed a complex but strong 
relationship. Nitrate contents were shown to be transported downstream from source areas in both 
soil and groundwater.

Groundwater polluted by nitrate is a common problem leading to negative human health effects. World Health 
Organization recommends a maximum of 50 mg L−1 of nitrate (NO3

−) in drinking water1. In general, nitrate 
pollution in groundwater is often related to animal husbandry and heavy use of soil fertilizers. To improve the 
understanding of the fate and transport of nitrate and possible remediation measures, research is needed on 
new methods to distinguish different spatiotemporal nitrate sources to soil and groundwater. Many studies 
have focused on nitrate contents in groundwater2–8 and soil5,6,9–13. Modeling studies indicate that groundwater 
vulnerability to nitrate pollution can be explained by a complex set of different hydrogeologic variables such as 
depth to water table, net recharge, aquifer and soil media, topography, impact of the vadose zone, and hydraulic 
conductivity14. Besides this, the spatiotemporal variability of potential pollutant sources creates a second superim-
posed complexity. In practical applications it is therefore, difficult to distinguish fate and transport properties of 
nitrate from different overlapping pollutant sources. Similarly, potential remediation techniques are hampered by 
this lack of knowledge. Thus, it is important to develop new methods that can be tested on various experimental 
areas and observations of nitrate concentrations combined with transport modeling to efficiently evaluate future 
environmental effects and potential remediation alternatives15,16.

Shimabara City, Nagasaki, Japan, depends solely on groundwater for its public water supply. The city has 
been monitoring nitrate-nitrogen (NO3-N) concentration in public water wells since 1975. In general, NO3–N 
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levels in the wells have continuously increased over the years. Recently, the NO3-N concentrations exceeded 
the Japanese drinking water standard of 10 mg L−1 in some wells. High nitrate levels in groundwater have been 
observed especially in the northern parts of the city for large groundwater depths (> 50 m)17,18. High nitrate 
concentrations in surface water have also been reported19. In the northern parts of the city, the potential nitrate 
load was estimated in 1975 at about 258 kg N year−1 ha−1. This figure increased to about 308 kg N year−1 ha−1 in 
1985, then reached 436 kg N year−1 ha−1 in 1995. In 2010, the load was estimated at 455 kg N year−1 ha−1, which 
is 1.8 times that of 197520.

As mentioned above, high nitrate concentration in drinking water can affect human health and for infants 
there is an elevated risk of methemoglobinemia disease. Even though nitrate concentrations may not pose 
a fatal threat to humans, they do indicate the possible presence of other serious agricultural contaminants. 
Nitrate pollution is often related to agricultural activities and runoff from fertilizers or leachate from animal 
husbandry17–19. For this reason, evaluation of nitrate leaching from farmlands to surrounding water bodies and 
the environmental capacity of soils need to be assessed. It is evident that high nitrate concentration in soils is 
related to corresponding concentrations in surface and groundwater. However, these relationships are complex 
and not easy to quantify. Thus, although there have been previous studies on the nitrate in surface water and 
groundwater17–19, joint studies including soil nitrate and assessment of pollutant sources are still few.

Identifying the source of nitrate is a first step to unravel the complex relationships among groundwater, surface 
water, and soil. Previous studies have indicated that the spatial distribution of nitrate concentration in both sur-
face and groundwater in Shimabara City is associated with the use of chemical fertilizers and livestock waste17,19. 
To identify individual nitrate pollution sources, isotopic nitrate data have proven successful21–24. However, some 
observations may not have a clear isotopic signature and not a clear association with a certain pollutant source21. 
To overcome this problem, coprostanol can be used to indicate fecal pollution and to distinguish between 
dominant nitrate pollution sources in groundwater25. Considering that the coprostanol content in groundwater 
is often quite low due to adsorption to soil and rock material, special analyses techniques are needed26. For this 
purpose, the sterol ratio between coprostanol and cholestanol may as well be investigated to indicate dominant 
nitrate pollution sources26. Coprostanol and sterol ratio are thus, parts of a comprehensive methodology that can 
be used to study the complex spatiotemporal nitrate variation and interactions between soil and groundwater. 
To the authors´ knowledge, comprehensive studies on this are still rare in the research literature.

In view of the above, the main objective of this study is to present and test a novel methodology that can be 
used to improve the knowledge on the fate and transport of nitrate pollutants in complex and heavily polluted 
soils and groundwater. For this purpose, we investigated coprostanol content in soil, and sterol ratio in ground-
water in the study area. A further objective was to investigate the relationships between soil, surface water, and 
groundwater in terms of nitrate concentration and to improve the understanding of nitrate dynamics in the area. 
To accomplish these objectives, we collected soil and groundwater samples close to a previously used livestock 
waste disposal site (LWDS) that was in use from 2000 and from downstream areas. We then used data obtained 
from previous studies17,19 to assess the nitrate dynamics of the area in soil and water since the LWDS is a possible 
main source of pollution. The LWDS has been in use during a prolonged period from 2000 to 2006 and nitrate is 
likely to remain in the soil due to slow natural attenuation, affecting both surface and groundwater downstream 
of the site. Thus, there is a possibility to monitor nitrate pollutants from the LWDS site using coprostanol as a 
tracer and map mixing and transport dynamics in the soil and water phase. The suggested novel methodology can 
potentially give us new insights of nitrate pollution fate and transport in the study area and new and improved 
knowledge on nitrate dynamics.

Study area.  Shimabara City is located in the northeast part of the Shimabara Peninsula, Nagasaki, Japan 
(Fig. 1). The area of Shimabara City is 82.8 km2, occupying 18% of the Shimabara Peninsula. Shimabara City lies 
on the alluvial fan that spreads as a gentle slope from the Mt. Fugendake in the center of Shimabara Peninsula. 
The geology is formed by volcanic deposits composed of andesite, dacite, and tuff breccia. Upland agricultural 
areas are concentrated to the northern part of Shimabara City (Fig. 1). The cultivation area is 18.5 km2 and com-
prises 22.3% of Shimabara City (2015). The livestock raised in the area is about 1000 milk cattle, 23,000 pig, and 
1,030,000 chicken (2015). Many livestock raising facilities are located in the upstream areas of the Nishikawa and 
Yuegawa Rivers. The study area has a humid subtropical climate with an annual mean temperature of 17.1 °C27. 
The area received 1989 mm of precipitation in 2017. Normally, the rainy season occurs during June and July and 
precipitation amount was 571.5 mm (2017) (28% of annual amount that was less than usual).

The hydrogeology of the study area has been described by Murakami28. Figure 2 shows a geological cross 
section according to the A-A’ line in Fig. 1. The figure was constructed using geological profiles from boreholes28. 
The northern parts of the peninsula present a gentle slope that form an alluvial fan from the Mt. Fugendake 
composed of volcanic rock. The basement rock (Kuchinotsu Layer), has a circular arc-shaped structure that is 
gently inclined toward the coast. Close to the coast, the basement rock is distributed between 10 and 100 m below 
mean sea level. A thick layer of Paleogene period shale is found in the lower part of the Kuchinotsu Layer (360 
to 420 m below mean sea level). Rock on top of the Kuchinotsu Layer forming a foot of the mountain is called 
Pre-Unzen volcanic rock (Tatsuishi Layer). This consists of tuff breccia, tuff, and volcanic conglomerate. The 
thickness of this layer is 100–150 m, and the top parts are constituted of weathered rock and sand gravel layer, 
which forms an unconfined aquifer29. Soil of the lower parts contains a confined groundwater aquifer. In the layer 
above the Tatsuishi Layer, the groundwater is unconfined29. Above 300 m amsl, Unzen volcanic rock forms the 
mountain area. This mainly consists of hornblende-andesite that displays mature joints and splits. The Unzen 
volcanic rock is favorable for large groundwater recharge. Near the boundary with Pre-Unzen volcanic rock, 
groundwater discharges as springs to the soil surface. Alluvium deposits have mainly developed in limited areas 
of the lowland in the river basin. The central parts of the peninsula belong to a subsidence area called Unzen 
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Graben. In these central parts, active volcanos such as the Mt. Fugendake are composed of hornblende-andesite 
and dacite that form steep mountain areas. As mentioned above, the Pre-Unzen volcanic rock is extensive and 
forms the major groundwater aquifer in Nagasaki Prefecture. Debris from the collapsed Mt. Mayuyama, located 
west of Shimabara city, is distributed in the urban area. Rainfall over this area infiltrates into deposits and 
becomes unconfined/confined groundwater that subsequently flows toward the Ariake Sea. Thus, artesian wells 
can be found close to the coastal line.

Materials and methods
Sampling and analysis.  Sampling locations are shown in Fig.  1. To assess nitrate pollution sources, 
groundwater samples were collected once a month from three wells (T-1, T-2, and T-3) close to a livestock waste 
disposal site (LWDS) and the downstream area from April 2017 to March 2018. The depth of these wells is about 
50 m from soil surface. Screens were installed in all wells. The groundwater in T-1 and T-2 are unconfined. On 
the other hand, as T-3 is an artesian well, it probably is connected to the lower parts of the Tatsuishi Layer. Soil 
samples were collected seasonally at soil surface and 50 cm depth at 10 locations. These locations included the 
LWDS that was used for secondary treatment of liquid manure (D2–D5), downstream of LWDS (D6), Nishikawa 
River Basin (D7–D10), and forest (D1) during the same period. The area of the LWDS is about 2000 m2, and 
its location is upstream in the Yuegawa River Basin (Fig. 1). Sampling around the LWDS was performed due 
to that the site is expected to be a main nitrate pollution source. For this reason, as well, soil samples were col-
lected downstream of the LWDS (upland field). Two rivers (Yuegawa and Nishikawa River) and groundwater in 
this basin are heavily polluted by nitrate with a highest observed level of 27.5 mg L−1,17,19. We also collected soil 
samples from the Nishikawa River Basin as a comparison to Yuegawa River Basin. The LWDS was constructed 
by digging a 50 cm trench in the soil, installing a drainage pipe at a soil depth of 35 cm, and then backfilling the 
trench. At time of construction, it was expected that most of the manure would be absorbed by the soil and excess 
water would be eliminated by evaporation and drainage. Thus, soil samples were collected from different soil 
depths. Sampling location T-1 is situated between the LWDS and the treatment plant for liquid waste. Operation 
of the treatment plant started in 2000 just after the Japanese livestock waste disposal law changed (1999). The 

Figure 1.   Study area. (1) this study. (2) Nakagawa et al.17, (3) Amano et al.19.
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LWDS was taken into use in 2000 to constitute a second treatment step added to the original treatment plant. Use 
of the LWDS was halted in 2006 because the treatment capacity of the plant was improved. Today, the effluent 
from the plant meets the standard 600 mg L−1 of treated waste water, but may exceed drinking water standard.

Portable meters (HORIBA D-51 and D-54) were used for measurements of pH, oxidation–reduction poten-
tial (ORP), and electrical conductivity (EC). Dissolved oxygen (DO) was measured with a luminescence-based 
sensor (HACH HQ30d). HCO3

− was quantified using titration with 0.1 N HCl. These variables and water tem-
perature were measured on-site. Sequential extraction by water and extract agents was performed for the soil 
samples. As extract agents, firstly water for both cations and anions, then calcium phosphate for anions and 
strontium chloride for cations were used. The major cations and anions (Na+, NH4

+, K+, Mg2+, Ca2+, F−, Cl−, NO2
−, 

NO3
−, and SO4

2−) found in the water and extract samples were analyzed by ion chromatography (Metrohm 861 
Advanced Compact IC). As well, coprostanol and cholestenol concentrations were monitored in the ground-
water as indicators of fecal pollution. Sterols were extracted from all samples by liquid–liquid extraction with 
water-dichloromethane. After dehydration and concentration, the extract was converted to trimethylsilyl using 
bis (trimethylsilyl) trifluoroacetamide (BSTFA) followed by quantification utilizing gas chromatography-
mass spectroscopy (GC-MS)25. A more detailed description of the analysis method for sterols is described in  
Nakagawa et al.26.

Data analysis.  To understand the temporal fluctuation of nitrate concentration, it is important to quantify 
precipitation events. Previous studies have shown that nitrate concentrations are clearly diluted after precipita-
tion events17,18. Following previous studies, the relationship between precipitation and nitrate in groundwater 
and soil was evaluated using sterols as tracers. Precipitation data from Shimabara Observatory were downloaded 
from the Japan Meteorological Agency Website27.

We used coprostanol concentration as a tracer and to identify pollution sources related to livestock waste25,26. 
Elevated coprostanol concentration is a fecal pollution indicator. We measured coprostanol (5β) and cholestanol 
(5α) and then calculated the sterol ratio (5β/(5β + 5α)). The sterol ratio was used as an indicator to evaluate fecal 
pollution at three levels: no pollution, uncertain, and certain pollution30. This suggested methodology has not 
been tested previously.

As mentioned above, the area close to the LWDS is expected to constitute a main pollution source. In order 
to evaluate a potential risk of nitrate pollution in groundwater from soil, nitrate concentrations in soil were 
converted to groundwater nitrate concentrations using a following regression equation suggested by Wang et al.9:

where Ng is nitrate concentration (mg L−1) in groundwater, and Ns is nitrate concentration (mg kg−1) in soil.
To apply appropriate countermeasures against nitrate pollution, careful site examination is needed, thereby 

evaluating the relationship between soil, groundwater, and surface water. Finally, nitrate transport relationship 

(1)Ng = 0.058Ns + 1.17

Figure 2.   Geological cross section of line A-A’ in Fig. 1.
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between soil, surface water, and groundwater along the two polluted Nishikawa and Yuegawa rivers, was evalu-
ated by projecting soil, surface water, and groundwater data vertically along the stream length within 200 m 
from the mainstream river according to the plotted dot-line area in Fig. 1. The nitrate concentrations in water 
and soil were projected to the straight line from T-1 to T-3 (Fig. 1). Spatial variation of nitrate concentrations in 
groundwater had a similar pattern as the corresponding surface water, even though groundwater samples showed 
slightly larger concentrations17,19. In addition to the groundwater data that we obtained in this study, groundwater 
data from a previous study representing mean of observations from 2011 to 201317 were used. Surface water data 
were studied during 201719 at 42 locations. In the total 13 samples were collected from Yuegawa river including 
tributaries. In Nishikawa river, six samples were collected. Most of the water samples were collected directly 
from the center sections of the rivers.

Results
Groundwater.  Measured hydrochemical variables in the groundwater are summarized in Fig. 3. In addition, 
all analyses results for each well can be found in Supplementary Table S1. Ca2+ was the dominant cation for all 
sampling sites. Water samples at T-1 and T-2 were dominated by NO3

− while HCO3
− was dominant at T-3. This 

shows that the chemical composition of groundwater in the area is Ca–NO3 and Ca–HCO3 type. Although, 
T-3 had a water chemistry of Ca–HCO3 common to most shallow groundwater in Japan31, the other sites had 
unusual contents of some ions according to the below. T-1 was characterized by K+ with a mean concentration 
of 28.1 mg L−1. This site had the highest average Cl− corresponding to 21.6 mg L−1 for the three sites. T-2 had 
significantly higher NO3–N with an average concentration of 39.5 mg L−1. The average DO range from 9.0 to 
9.8 mg L−1. All DO concentrations were above 5.0 mg L−1 indicating small pollution from organic matter32. The 
average ORP represented positive values from 329.4 to 367.0 mV, indicating that the groundwater is in an oxi-
dant state. The average EC ranged from 21.9 to 46.8 mS m−1, reflecting the amount of dissolved ions. The average 
pH was between 6.1 and 7.1, representing slightly acidic to neutral conditions.

Temporal variation in precipitation, nitrate (NO3–N) concentration, and groundwater level are shown in 
Fig. 4. Mean nitrate (NO3–N) concentration in groundwater at T-1 was 14.2 mg L−1, which is exceeding Japa-
nese drinking water standards (10 mg L−1). After precipitation events, a general decline in nitrate concentration 
was observed. A similar tendency can be seen at T-2. Mean nitrate concentration in groundwater at T-2 was 
39.5 mg L−1, which is considerably exceeding Japanese drinking water standard. Mean nitrate concentration 
in groundwater at T-3 was 7.0 mg L−1, which is below drinking water standards, but still represents a relatively 
high concentration.

Temporal variation in coprostanol, cholestanol, and sterol ratio are shown in Fig. 5. The mean ratios at 
T-1, T-2, and T-3 were 0.28, 0.26, and 0.10, respectively. According to proposed criteria of sterol ratio, these 
values indicate “no pollution” (< 0.3)30. However, samples at all locations in December showed high sterol ratio 
(0.51–0.71). Samples at T-1 exceeded this criterion four times. Thus, this site is obviously affected by livestock 
waste. The mean concentration of coprostanol at T-1, T-2, and T-3 was 39.4, 30.0, and 3.62 ng L−1. T-1 and T-2 
showed above or close to 30 ng L−1. High concentrations of coprostanol and cholestanol were detected in June 
at T-1, which were 146.0 ng L−1 and 184.0 ng L−1, respectively.

Soil.  Major ion concentrations in soil are shown in Fig. 6. The graphs are divided into water extracted and 
exchangeable fractions. Most of the nitrate ions (NO3

−) are concentrated to the water extracted fraction. This 
confirms that nitrate ions are easily dissolved in soil water. Adsorbed nitrate concentrations gradually decreased 
from June to November at all sampling locations due to dilution by precipitation during the rainy season (Fig. 7). 
In Fig. 7, adsorbed nitrate corresponds to obtained nitrate from the soil by sequential extraction using water and 
calcium phosphate. Generally, nitrate concentrations at the soil surface are higher than those of the 50 cm soil 
depth.

Nitrate in the soil is relatively high from 29.4 to 382.7 mg kg−1 in samples collected at the LWDS adjacent to 
the livestock waste treatment plant (D2–D5). Ca2+ also shows a high concentration of 2257.4–3984.5 mg kg−1 
at these sites. Especially at D4, samples have high K+ concentration of 230.2 mg kg−1 at the 50 cm depth. The 
concentration of adsorbed nitrate is relatively high (about 200 mg kg−1) at the four sampling sites in Nishikawa 
River Basin (D7–D10). Especially at soil depth 50 cm, nitrate concentration is high in the upstream area (D7: 

Figure 3.   Chemistry of groundwater (a) Major ion components and DO, (b) ORP, (c) EC, and (d) pH.
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171.9 mg kg−1 and D8: 71.2 mg kg−1). The ammonium (NH4
+) concentration of 20.8–59.0 mg kg−1 in soil along 

the Nishikawa River is as high as soil samples from the LWDS. A maximum ammonium concentration of 
47.6 mg L−1 was detected in the water samples from the Nishikawa River19. If all of NH4

+ is transformed to NO3
−, 

NO3
− concentration corresponds to 164.0 mg L−1. At the downstream (D9 and D10), cations such as K+, Mg2+, 

and Ca2+ display high concentrations of 117.0–269.2 mg kg−1, 118.8–211.6 mg kg−1, and 2874.6–6562.9 mg kg−1, 
respectively. In addition, SO4

2− concentration is also high, ranging from 148.4 to 203.9 mg kg−1. Meanwhile, at 
the upstream (D7 and D8), higher concentration of SO4

2− with 180.4–274.2 mg kg−1 also was present. The soil 
from the upland agricultural area displayed high nitrate concentration (D6) of 349.8 and 198.64 mg kg−1 at each 
depth. In addition, SO4

2− concentration of 1094.8 mg kg−1 at the 50 cm depth was relatively high. Ca2+ showed 
high values, 3662.0 and 2796.3 mg kg−1 at soil surface and 50 cm depth, respectively, similar to the LWDS soil.

Coprostanol concentrations in water leached soil samples collected in May 2017 are plotted in Fig. 8. The 
results clearly show that the soil in the LWDS adjacent to the livestock waste treatment plant (D2–D5) has much 
higher contents as compared to soils in the Nishikawa River Basin (D7–D10). Coprostanol concentration is 
higher for surface soils as compared to 50 cm depth, similarly as for nitrate concentration.

Nitrate relationships between soil, surface water, and groundwater.  Nitrate concentration in the 
soil, surface water, and groundwater along the Nishikawa River is summarized in Fig. 9a. From the figure it is 
seen that there is no clear relationship between soil and water samples. However, the concentration in soil sam-
ples (D7 and D8) appears to be related to the surface water concentration in the upstream of the river (> 3500 m 
from the river mouth). In the case of 50 cm soil depth, it can be seen that there is a slight tendency of higher 
concentration in the upstream areas. In the upstream (D7), 50 cm depth concentration in soil is high and close to 
the concentration of the surface soil. The 50 cm depth concentrations then gradually decrease in the downstream 
direction. Thus, on soil surface, pollutants are easily transported by surface runoff.

Figure 9b shows the relationship between surface and groundwater as both display a high nitrate concentra-
tion along the Yuegawa River. According to the negative gradient of the regression equation, a decreasing ten-
dency for both surface and groundwater between 6000 and 7500 m from the river mouth is seen (y-axis shows 
nitrate concentration in water, and x-axis shows distance from the river mouth). Except for this upstream region, 
most of the sampling points along the river show high concentration close to or above Japanese drinking water 
standards. As shown in Fig. 9, nitrate concentrations in groundwater and surface water clearly show a similar 
tendency up to 3000 m along the Nishikawa River (Fig. 9a) and 6000 to 8000 m along the Yuegawa River (Fig. 9b). 

Figure 4.   Temporal variation of precipitation, nitrate concentration in groundwater, and groundwater level (a) 
T-1, (b) T-2, (c) T-3.
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By using data at nearby locations, the correlation between surface and groundwater concentration was calculated 
(Fig. 10a). Accordingly, a coefficient equal to 0.93 displays a strong connection.

Similarly, nitrate concentration in soil and water is plotted along a line from T-3 to T-1 (Figs. 1 and 9c). T-2 
displays a very high concentration in groundwater. This site is located at the downstream of the animal waste 
treatment plant. Soils contain about twice the concentration of nitrate as compared to other sites in the Nishikawa 
River Basin. These concentrations do not decrease in the downstream direction. The concentration 7.0 mg L−1 
in groundwater at T-3 approximately matches the concentration 9.4 mg L−1 in surface water just downstream 
(concentrations are slightly below Japanese drinking water standard). The correlation coefficient between water 
(groundwater and surface water) and soil content gives 0.54 for 50 cm soil depth (Fig. 10b). This indicates a clear 
connection between soil and water content regarding nitrate.

Discussion
Groundwater.  Except for T-3 with expected water chemistry, T-1 and T-2 wells represent unusually high 
concentration of K+, Cl−, and NO3–N. According to the location of these wells (Fig. 1), it may be assumed that 
the site is affected by livestock waste from the LWDS and livestock facilities. Not only groundwater but also 
surface water of Yuegawa River, is severely polluted by nitrate19. Previous studies in the area have not revealed 
such high NO3–N concentrations17 (range of 25.8 mg L−1). The study area has a geological feature consisting of 
complex pyroclastic sediments on the bedrock as mentioned above. Due to this, flow paths and groundwater 
recharge patterns are complex potentially following structures of preferential pathways including lava tubes, 
faults, and fractures. Thus, spatial heterogeneity may be critical factor for nitrate transport and distribution in 
the study area.

Heavy precipitation corresponding to 344.5 mm during 9 days during the rainy season (July), increased the 
groundwater level and decreased nitrate concentration by dilution to 0.3 mg L−1 in T-1. Also other ion concentra-
tions significantly decreased during this precipitation event from June to July as seen in Supplementary Table S1. 
There is a positive correlation (r = 0.72) between groundwater level rise and precipitation amount two weeks 
before the sampling date. Consequently, an inverse correlation between groundwater level and nitrate concen-
tration is clearly present at this site. Thus, it is clear that the nitrate concentration was significantly affected by 
dilution from infiltrating rainfall. However, the diluted concentration was still above 35 mg L−1 in T-2. In T-1, 

Figure 5.   Temporal variation of coprostanol, cholestanol, and sterol ratio in groundwater (a) T-1, (b) T-2, (c) 
T-3.
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the water depth from the soil surface ranged from 27.0 to 35.0 m. On the other hand, the water depth in T-2 
ranged from 29.0 to 35.0 m. A shallower groundwater table was usually observed in T-1 as compared to T-2. 
The depth of water table is an important indicator of groundwater recharge (water table rise) and dilution effect. 
T-2 receives water also from other livestock facilities (Fig. 1). T-2 is located about 250 m downstream of T-1. 
Since the sample of T-3 was taken from the confined aquifer, it is not affected by precipitation and thus, shows 
a relatively stable concentration. The location of T-3 is 1.4 km downstream from T-1.

A sterol ratio above 0.3 means that input of coprostanol into the groundwater is larger than formation 
of cholestanol by microbial reduction in natural environment. Increased water temperature will promote the 
activity of microbes33. As water temperatures were lowest in December (see Supplementary Table S1), one of 
the reasons for the high sterol ratio can be effects of microbe activity and introduction of cholestanol for a lower 

Figure 6.   Major ion components in different soil types (a) forest, (b) LWDS, (c) upland field, and (d) Nishikawa 
River basin.



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2598  | https://doi.org/10.1038/s41598-021-82188-2

www.nature.com/scientificreports/

water temperature. 30 ng L−1 is a relatively high concentration of coprostanol in groundwater. In total, 22 out of 
33 coprostanol concentrations were 20.7–29.6 ng L−1 or undetected in a previous study in the area25. Recorded 
high coprostanol concentration of 146.0 ng L−1 in June at T-1 (Fig. 1), is obviously related to leachate of treated 
livestock waste. Onset of the rainy season in June promotes groundwater recharge and leachate formation. In 
any case, the detection of coprostanol originating from animal and human waste showed that groundwater was 
clearly affected by this pollution source.

Our proposed method using nitrate concentration and sterol ratio, showed that livestock waste is the main 
nitrate source in surface water with above 10 mg L−1 of nitrate and 0.3 of sterol ratio26. Nitrate and sterol ratio 
tended to be above or near these thresholds at sampling sites (T-1 and T-2) that are affected by livestock waste 
and high concentrations of K, Cl, and coprostanol. Thus, our method involving sterol ratio can be used to identify 
complex nitrate sources in groundwater.

Soil.  Most of the nitrate ions were extracted by water. On the other hand, cations and other anions are not 
easily extracted by water. Thus, it may be confirmed that nitrate is easily dissolved in groundwater due to high 
water solubility and weak adsorption properties as summarized by Chitsazan et al.2, causing water pollution. 
Common for all sampling sites was that nitrate concentration at the soil surface was higher than at 50 cm depth. 
The vertical variation may reflect shallow banding of fertilizer, soil mineralization, or net upward transport of 
nitrate as a result of evaporation34. Nakagawa et al.35 demonstrated by a series of soil column experiments and 
numerical simulation that evaporation promotes upward movement of anions.

Figure 7.   Temporal variation of nitrate in soil.

Figure 8.   Water soluble coprostanol in soil (May, 2017).
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High nitrate content in soil is beneficial for crop cultivation, however, excess nitrate is easily leached to the 
groundwater due to high water solubility and weak adsorption properties as mentioned above. Depending on 
crop type and stage of cultivation, nitrogen demand varies. Thus, it is difficult to define a maximum permissible 
nitrate content in the soil. Su et al.10 estimated that background values of soil nitrate may be about 2.6 mg kg−1 
for agricultural soils in China. All soil samples in our study area exceeded this value. Nitrate levels in surface 
soil were input to a regression equation between groundwater and soil nitrate suggested by Wang et al.9. As a 
result, the estimated nitrate (NO3–N) level in groundwater is in the range from 1.32 to 5.28 mg L−1. However, 

Figure 9.   Distribution of nitrate concentration in soil, groundwater, and surface water (a) Nishikawa River, (b) 
Yuegawa River, and (c) LWDS and downstream. (1) Nakagawa et al.17, (2) Amano et al.19, (3) this study.



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2598  | https://doi.org/10.1038/s41598-021-82188-2

www.nature.com/scientificreports/

since 11 years have passed since 2006 and the closure of the LWDS, the plume of high nitrate concentrations 
is expected to have moved to larger soil depth. This is confirmed by the estimated nitrate concentrations that 
are below the Japanese drinking water standard of 10 mg L−1. Even so, the closed LWDS site is expected to have 
affected the groundwater.

There are many kinds of fertilizers used in the study area36. One fertilizer contains specific components such as 
(NH4)2SO4, Ca(H2PO4)2·H2O + CaSO4, and K2SO4. Another type includes Mg(H2PO4)2, K2SiO3, NH4Cl, and KCl. 
CaCO3 are applied for disinfection of deceased animals in livestock facilities. Livestock waste includes Cl− and 
essential nutrients such as N, P, and K. Thus, high nitrate, Ca2+, and K+ concentration in D2-D5 (LWDS) may be 
related to these factors. At the downstream of Nishikawa River (D9 and D10), high potassium may also be related 
to the livestock waste. However, Ca2+ and Mg2+ are related to chemical fertilizers commonly applied together 
with (NH4)2SO4. Probably, nitrate pollution sources are mixed with chemical fertilizers and livestock waste in 
the downstream area of the Nishikawa River Basin. Meanwhile, high concentration of SO4

2− at the upstream 
(D7 and D8) is also related to application of chemical fertilizers such as an ammonium sulfate, (NH4)2SO4. This 
may be regarded as a major pollution source in the upstream of Nishikawa River. Relatively high concentra-
tion of SO4

2− and Ca2+ at D6 is probably also a result of fertilizer application and CaCO3 for disinfection. High 
SO4

2− concentrations of 664.3 and 2585.1 mg kg−1 in the forest may be naturally occurring in the soil (D1).
The high coprostanol concentrations at D2–D5 (LWDS) are due to disposed livestock waste that risk to leach 

nitrate to the groundwater. D6 is located in the upland agricultural area close to an animal husbandry farm 
and it is likely that manure has been applied here as fertilizer. Accordingly, coprostanol was detected in the soil 
surface at D6. Some threshold values of coprostanol have been suggested to indicate sewage contamination such 
as 100 ng g−1 in river sediments37. Accordingly, observed levels in our study indicate no sewage contamination.

Nitrate relationships between soil, surface water, and groundwater.  Pollutants from not only 
soil but also waste water drained from pig farms affected nitrogen content in the water environment19. On 
the other hand, vertical transport of pollutants is slow (e.g., 0.22–0.26 m year−1 for nitrate38) that eventually 
may reach larger soil depths after considerable time. These processes explain the effects of the upstream pol-
lution sources. Even if the nitrate concentration in groundwater is below the Japanese drinking water standard 
10 mg L−1, the soil has more or less the same high amount of nitrate along the upstream to downstream between 
2500 and 4000 m from the river-mouth in Nishikawa River. The annual variation of nitrate concentration in the 
soil (Fig. 7), indicates a clear leaching tendency with precipitation. In addition, the correlation between water 
and soil regarding nitrate concentration, suggests risk of future increased nitrate contents in both surface and 
groundwater.

Conclusions
Research is needed to improve methods for distinguishing different spatiotemporal nitrate sources to soil and 
groundwater. The spatiotemporal variability of potential pollutant sources creates a strong complexity that is 
difficult to decipher using traditional methods. The common soil and geologic media complexity creates a sec-
ond difficulty in this context. In practical applications it is therefore, difficult to distinguish fate and transport 
properties of nitrate from different overlapping pollutant sources. Thus, it is important to develop new methods 
that can be tested on various experimental areas and observations of nitrate concentrations.

In our study, two of three groundwater samples displayed elevated mean nitrate concentration exceeding 
Japanese drinking water standard (10 mg L−1). Groundwater well T-2 displayed the highest nitrate concentra-
tion. High concentrations of nitrate are likely affected by discharged livestock waste. In this context, coprostanol 
occurrence showed that the groundwater is polluted by livestock waste. Nitrate concentration in soil was relatively 
high in samples collected at the LWDS adjacent to the livestock waste treatment plant. Even so, samples from 
the Nishikawa River Basin displayed higher nitrate concentration in soil as compared to the LWDS samples. In 
terms of NH4

+, surface water samples collected in the Nishikawa River Basin also displayed nitrate pollution. 

Figure 10.   Nitrate concentration relationships for groundwater, surface water, and soil.



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2598  | https://doi.org/10.1038/s41598-021-82188-2

www.nature.com/scientificreports/

There have been no remediation activities for the LWDS soil. The area is mainly affected by natural attenuation 
in soil and groundwater. Thus, the soil is still clearly influenced by animal waste, as indicated by the coprostanol 
content. Accordingly, the coprostanol content clearly displayed type of soil contamination source. Depending on 
the location, considering the high concentration of specific ions (SO4

2−, and K+) and the detection of coprostanol, 
the main nitrate sources were shown to be chemical fertilizer in combination with likely influence of livestock 
waste in the soil and groundwater. Nitrate in groundwater and soil is diluted by precipitation during the rainy 
season. The dilution is notable only for the unconfined groundwater where nitrate concentration is relatively 
constant. Nitrate concentration in groundwater is related to the concentration in the surface water both for 
Nishikawa and Yuegawa River Basins. There is complex but clear relationship between soil and water samples 
regarding nitrate concentration and high concentration in the soil is likely to be related to the groundwater and 
surface water pollution. Thus, in addition to the spatial heterogeneity of pyroclastic sediments, nitrate distribu-
tion reflects soil, groundwater, and surface water linkage-processes.

The correlation between nitrate and other groundwater chemical components is essential to display the dif-
ferent types of nitrate source. Simultaneous assessment of coprostanol level in soil, surface and groundwater is 
useful to determine effects of livestock waste and risks for water pollution. In addition, sterol ratio is an effective 
tool to distinguish between nitrate sources for not only surface water but also groundwater. The relationship 
between coprostanol (sterol ratio) and nitrate is different depending on the spatial location. Including copros-
tanol analyses in nitrate assessment is a useful method that can be used in other areas where nitrate pollution 
sources are investigated.
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