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Laminar heat transfer in the thermal entrance region
of concentric annuli with moving heated cores

(Part I: The cases with the first and second kinds
of thermal boundary condition)

Ganbat DAVAA*, Toru SHIGECHI** and Satoru MOMOKI**

Consideration is given to the effects of viscous dissipation on the developing heat transfer between
a fully developed laminar non-Newtonian fluid flow and a concentric annular geometry with a moving
heated core. In this report, the results with the first and second kinds of thermal boundary condition
are presented. Applying the shear stress described by the modified power-law model, the energy
equation including the viscous dissipation term is solved numerically. The effects of radius ratio, flow
index, relative core velocity, dimensionless shear rate parameter and Brinkman number on temperature

distribution and Nusselt number are discussed.

1. Introduction

The problems of fully developed heat transfer
to non-Newtonian fluids in a concentric annulus
with an axially moving core have been studied nu-
merically for the thermal boundary conditions of
constant heat flux at either tube(1)(2),

In this paper, the entrance-region heat transfer
between a fully developed laminar fluid flow and
a concentric annular geometry with a moving
heated core is studied numerically. Applying
the fully developed velocity profile reported for
the modified power-law model in the previous
report(3), the energy equation including the
viscous dissipation term is solved numerically
using the finite difference method for the thermal
boundary conditions of first kind and second kind.
The effects of radius ratio, relative velocity of
the core, flow index and dimensionless shear rate
parameter and Brinkman number on developing
temperature distribution and Nusselt number are
discussed.

Nomenclature

cp  specific heat at constant pressure

Dy, hydraulic diameter = 2(R, — R;)

k thermal conductivity

m  consistency index

n flow index

Pe Peclet number

r radial coordinate

r* - dimensionless radial coordinate = r/Dy
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R radius

q wall heat flux

T  temperature

um average velocity of the fluid

u*  dimensionless velocity = u/um

U* dimensionless relative velocity of the
moving core = U/un

z axial coordinate

2*  dimensionless axial coordinate
= z/(PeDy)

Greek Symbols

o radius ratio = R;/ R,

B dimensionless shear rate parameter

7o  viscosity at zero shear rate

n*  reference viscosity

P density

3 transformed dimensionless radial

coordinate = [2(1 — a)r* — o]/(1 — @)

Subscripts

b  bulk

e inlet

i inner tube

ii at the inner wall with the inner heated
o outer tube
oi  at the outer wall with the inner heated

2. Analysis

The physical model for the analysis is shown in
Fig.1. The core tube moves axially at a constant
velocity, U. The assumptions used in the analysis
are:
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1. The flow is incompressible, steady-laminar,
and fully developed hydrodynamically.

2. The fluid is non-Newtonian and the shear
stress may be described by the modified
power-law model(), and the physical prop-
erties are constant except viscosity.

3. The body forces and axial heat conduction
are neglected.

Heat transfer

The energy equation together with the assump-
tions above is written as

10 or du aTb
b (o) 7 (&) = O

The velocity, u, and its gra,dlent , have been

evaluated and reported in the prev10us report(3)
The thermal boundary conditions:

(1) The first kind (constant wall temperature at
the moving core and the temperature of the outer
tube is kept equal to the uniform entering fluid
temperature):

T = T-l(l) at r = R;
(2)
™) = T, at r = R,

(2) The second kind (constant heat flux at the
moving core with the outer tube insulated):

-k D~ ¢ at r = R,
I = 0 at r = Ro

The inlet condition is:

z=0: T®=T,

for R <r<R, (k=1or2) (4)
7 in Eq.(1) is the shear stress defined as

du
T= ’7aa—r‘ (5)

where 1), is the apparent viscosity defined by

7o

N = — for n<1, (6)
du|™
’Ia=’70(1+n0 o ) for n>1. (7)
Dimensionless apparent viscosity is
n;E"—:=——ii-ﬁ—l_; for n<1, (8)
T o1+p|%%

Fixed tube
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Fig.1 Schematic of a concentric annulus with an
axially moving core

du* |* L
et _Bt|E
17“=;’%—-——ﬂ—:r——— for n>1, (9)
where
n'=1Tﬂ for n<1, (10)
. 1
n =170(1+E) for n>1, (11)
o [ Um 1-n
Bulk temperature, Ty, is defined as
Ro , (k)
T®rd
T® = f&-; rdr
Jr° urdr
ﬁ / uT®rdr.  (13)

Average fluid velocity, up,, is defined as
. 1 R,
u2nrdr. (14
= TR / )

Nusselt number at the tube walls:

()
Nul) = E%DA for k=1lor2 (15)
(1),
Nu® = Poi D th (16)
Heat transfer coefficients are defined as:
kaT(l)
W = (17)
Ti( ) _ Té )
koT(l)
O (18)
io 1 _ Tél)
B = ot (19)
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Thus, Nusselt numbers are calculated as:

W _ Dy ﬁT“)

Ny’ = TO_70 | o |n (20)
a _ Dy '_aT(l)

Neto™ = ) -1V | O e, @)
@ _ Dy, 'Qi]

Nu” = —e—— | = 22
ii T;(z) _ Tég) |k (22)

Introducing a dimensionless temperature, 8, de-

fined as
™ T,
o) = __—Z€ (23)
Ti(l) ~T,
@) _
o  FT? -1 o)
gDy

the energy equation and the boundary conditions
may be expressed in the dimensionless forms as

1 0 . 00
™ Or* (r Br*) +Br

xy\ 2
. (d_“_) -t a"l (25)

dr* 0z

(1) The boundary condition of the first kind:

1) =1 at r*
o) =0 at r*

o

= 2(i<a)

1 (26)
= 1-a)

(2) The boundary condition of the second kind:

da,(f) = -1 at ™ = ; 1‘:&
dpt2) (27)
& = 0 at = 3i-a
The inlet condition is:
2#=0: 6®=0
o 1
—_ < — =
for T r* < 30 —a) (k=1 or 2)(28)
Brinkman number is defined as follows
x,,2
By = " Ym 29)
[ -1 (
Br? = 17*_“?3 (30)
"~ Dugi
Nusselt number at the tube walls:
1 90
1-6, ()
1 1 a0
Nyl = PO O S (32)
' 0" =0, T o
Nu® = 1 (33)

6@ _ g

where the dimensionless bulk temperature, 6, is
defined as

1
2{1-a)
o _81-0) v 90 px gt
6, = iTa u* %) rdr (34)
2(l-a

3. Results and discussion

The calculation has been carried out by using
the finite difference method. The range of param-
eters considered are:

The radius ratio: 02<a<1.0

The relative velocity: 0 < U* < 1.0

The flow index: 05<n<15

The dimensionless shear rate parameter:

1073 <A< 105

Brinkman number: 0.0, 0.01, 0.05 and 0.1.
The mesh sizes used in the numerical calculation
are shown below.
a. Axial direction (Az*):

0<2*<1073: Az* = 1077

103 <2*<1: Az* =103
b. Radial direction (A¢)

A€ = 1/100.

The development of the non-dimensional temper-
ature profiles in the thermal entrance region of a
concentric annulus with a heated core for the two
kinds of the boundary conditions (k = 1 and 2)
are presented in Fig.2a and Fig.2b, respectively,
for the same condition ( @ = 0.5, n = 0.5, power
law fluid (8 = 10%) and U* = 1.0 ). The figures
illustrate clearly how the temperature profiles de-
velop for the two different boundary conditions.

The effects of the relative velocity, U*, on the
development of temperature profiles are demon-
strated in Figs.Figs.2b and 2c for the second kind
of boundary condition (k = 2). It is seen that the
fluid temperature increase is less rapid for larger
values of the core velocity.

The effects of viscous dissipation on the devel-
opment of temperature profiles for « = 0.5, n =
0.5, B8 = 10% and U* = 1.0 for the second kind of
boundary condition (k = 2) are shown in Fig.2b
and 2d.

The effect of the moving core velocity on Nus-
selt number at the tube walls are shown in Figs.3a
to 3c at given values of Br = 0.0 and a = 0.5 for
three different fluids (n < 1.0 pseudoplastic, n =
1.0 Newtonian and n > 1.0 dilatant).

The calculation results of the particular case of
Newtonian fluids (n = 1.0) with neglected viscous
dissipation (Br = 0.0) are compared with the pre-
dictions by Shah and London(® for the stationary
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core (U* = 0) and by Shigechi and Araki(® for
the moving core (U* = 1.0), respectively. Even at
small values of z*, it can be seen in Figs.3a, 3b
and 3c that the agreement is excellent. The effect
of the relative velocity of the moving core tube
is always to increase the values of Nusselt num-
bers, Nu; and to decrease the values of Nusselt
numbers, Nu,;, for the given conditions of o and
Br.

The viscous dissipation effects on Nusselt num-
ber are shown in Figs.4 to 6 for three different flu-
ids. With an increase in Brinkman number, Nu;;
decreases for U* = 0.0 and Nu,; increases for U*
= 0.0 and U* = 1.0.

For the first kind of boundary condition, Br has
a strong effect on Nu;; at the thermally fully de-
veloped region while the core is fixed. But for the
case of the moving core the effect of the Brinkman
number is very small at both the thermal entrance
region and the fully developed region. It is also
seen that for dilatant fluids Br on Nu;; is stronger
than for Newtonian and pseudoplastic fluids.

For the second kind of boundary condition Br
affects strongly on Nu;; in both the thermally de-
veloping and developed regions when the core is
fixed. Nu;; decreases with an increase in Br. For
the moving core in the thermal entrance region
the effect of the Br on Nu; is almost negligible
but in the fully developed region Nu;; increases
with an increase in Br.

Fig.2.a Development of temperature profiles
(1st kind)

Fig.2.b Development of temperature profiles
(2nd kind)

Fig.2.c Development of temperature profiles
for different U* (2nd kind)

Fig.2.d Effect of Br on the development
of temperature profiles (2nd kind)
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Fig.3.a Nusselt numbers, Nuj,
at n = 0.5, 1.0 and 1.5 (1st kind)

4. Conclusions

The heat transfer between a fully developed
laminar fluid flow and concentric annular geom-
etry with a moving heated core of fluid or solid
body is studied with the two different boundary
conditions.

It may be concluded that the viscous dissipa-
tion effect on heat transfer is stronger for dilatant
fluids. Br affects strongly on Nusselt number at
the unheated fixed tube.

In this report the heat transfer results for the
first and second kinds of thermal boundary condi-
tions are only discussed. The counterpart for the
third and fourth kinds of boundary conditions will
be reported in the next report.

z

Fig.3.b Nusselt numbers, Nu;j,
at n = 0.5, 1.0 and 1.5 (2nd kind)
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Fig.4.c Nusselt numbers, Nu;;, for n = 1.5, U* = 0.0 and 1.0 (1st kind)
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Fig.5.b Nusselt numbers, Nuyj, for n = 1.0, U* = 0.0 and 1.0 (1st kind)
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Fig.5.c Nusselt numbers, Nuyi, for n = 1.5, U* = 0.0 and 1.0 (1st kind)
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Fig.6.a Nusselt numbers, Nu;;, for n = 0.5, U* = 0.0 and 1.0 (2nd kind)
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Fig.6.b Nusselt numbers, Nui, for n = 1.0, U* = 0.0 and 1.0 (2nd kind)
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Fig.6.c Nusselt numbers, Nuj;, for n = 1.5, U* = 0.0 and 1.0 (2nd kind)



