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Effects of Moving Core Velocity and Viscous Dissipation
on Fully Developed Laminar Heat Transfer in Concentric Annuli

by

Ganbat DAVAA*, Toru SHIGECHI**
and Satoru MOMOKIJ**

Fully developed laminar heat transfer of a Newtonian fluid in a concentric annulus with an axially moving core was analyzed

taking into account the viscous dissipation of the flowing fluid. The effects of the relative velocity of a moving core and viscous

dissipation on the temperature distributions and Nusselt numbers at the tube walls have been discussed.

1. Introduction

Problems involving fluid flow and heat transfer with an
axially moving core of solid body or fluid in an annular
geometry can be found in many manufacturing processes,
such as extrusion, drawing and hot rolling, etc. In such
processes, a hot cylindrical rod continuously exchanges heat
with the surrounding environment. For such cases, the fluid
involved may be Newtonian or non-Newtonian and the flow
situations encountered can be either laminar or turbulent.

Another example which involves viscous dissipation effect
is seen in microchannel cooling using liquid coolant”. The
increasing scales of circuit integration of electronic
components accompanied by reducing feature size of
integrated circuit (IC) chips have increased the problems
associated with cooling. Laminar regime viscous dissipation
problems are widely involved in microchannel heat transfer
such as efficient cooling techniques for IC chips.

In the previous report @, exact solutions of the momentum
and energy equations were obtained for fully developed
laminar flow of Newtonian fluid flowing for an annular
geometry. There the effects of viscous dissipation on heat
transfer was omitted.

In this study the energy equation with the viscous
dissipation term was exactly solved for the boundary
conditions of constant wall heat flux at one tube wall with the
other insulated. .

Nusselt numbers at the inner and outer tubes were presented
for the wide ranges of parameters: the radius ratio, the
relative core velocity and Brinkman number.

Nomenclature
a,, a, coefficients, Eq.(30), Eq.(31)
b,, b, coefficients, Eq.(44), Eq.(45)
Br Brinkman number, Eq.(15)
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c1™ C
Cp

dl"’ d»l

coefficients, Eq.(26) ~Eq.(29)

specific heat at constant pressure
coefficients, Eq.(40) ~Eq.(43)

thermal conductivity

Nusselt number

pressure

Peclet number= Re ‘- Pr

Prandt] number

wall heat flux

radial coordinate

dimensionless radial coordinate = r / R,
radius

Reynolds number = u,,°2 (Ro-R;) /v
temperature

fluid velocity

dimensionless fluid velocity = u/u,,
average velocity

core velocity

relative core velocity = Ulu,,

axial coordinate

radius ratio = R, /R,
dimensionless axial coordinate
=2z/{2(Ro-R;) Pe)
dimensionless temperature
viscosity

kinematic viscosi}y = ulp

density

=(a%-1)/Ina

= wB

= {a% (B/2)}/(a?-1)
=1+a2-B
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w ={1-(U2)}/1-EU")
subscripts

b bulk

i inner tube

it inner tube (Case A)

o outer tube

00 outer tube (Case B)
2. Analysis

The physical model for the analysis is shown in Fig.1. The
outer tube is stationary and the core tube is axially moving at
a constant velocity. The assumptions used in the analysis are:

1. The flow is incompressible and steady-laminar, and fully

developed, hydrodynamically and thermally.

2. The fluid is Newtonian and physical properties are

constant.

3. The body forces and axial heat conduction are neglected.

2.1 Fluid Flow
The momentum equation together with the assumptions

described above is
Ld (,du) _ 1P
rar\"ar) = sz ()

The boundary conditions are:

{u:Uatr

Ri
R (2)

u=0atr=0

Solving Eq.(1) with Eq.(2), u is obtained as
2um * *2 ) *
=SF A-EUY(1-r 4 B'0r) (g
where u,, is the average velocity, given as

1 R,

RZ(dP)M
L ) ) 4
™ = 2+EU 4)

The dimensionless fluid velocity, u*, is written as

. _ 2 _ * _t2 *y % (5)
ut= 2201 EU)(l r +Blnr)

Fixed tube
>
Newtonian | u
Fluid Flow > 1
R Moving Core U | EI_*J, &

Fig.1 Schematic of a concentric annulus

dut\® _,(1-EU*\*| . B*\?
&) o4 == “ _4B*+ |2
(95) -4 (S57) for-am o ()]
(6)
2.2 Heat Transfer

The energy equation together with the assumptions and

constant wall heat flux condition is written as

1d ({ dT du 2__ dl, (7)
k& ('?)“‘(747) =Pty

The thermal boundary conditions are:

_pdT -

Case A : kg'T % ar = B
k- = 0 a r = R,
k2T - R

CaseB : | ’“ng 0 a r = E q
k'éT = q, aa r = Ro

where the wall heat fluxes, q, and q, are taken as positive
into the fluid.

T, is the bulk temperature defined as

R, R,
T, Ef uT-27mdr/f u-2rrdr (10)
R; R:

By integrating Eq.(7) with Eq.(8) or Eq.(9), dT,/dz is

obtained as:

R, du)?
dah__ 2Rg | Jwer @) dr)),
dz  pcpum(RS ~ RY) Rjq;
where j = i for Case A and j = o for Case B.
Dimensionless temperature, 8, is defined as
0 =T/lq(R, - R)/K] (12)
Equation (11) may be expressed in dimensionless form as
dé, 8Rj R
“b_ I {]14+Z2ep,.
& Ra+m ( t R By VB) 13
where B 2
7= 2(R,-R) P (14)
,uu2
Br, = W (Brinkman number)  (15)
1 2
dl‘#
= (1- * *
Vo= a>[far () dr}

*y 72
= 401 -a)(- ad [(I'M—-ﬂ)]

X (1 +a% -2B* + B*w) (16)

o
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The energy equation and the boundary conditions may be

expressed in dimensionless form as

1 d (.df 28 .
r_*'dr*(’ dr*) ) [m——a)z] w BV an

deé _ 1 —
Case A : @t = g M= 4
' % = 0 at r* = (18)
g,". = 0 a r+ = a
CaseB: 1 do  _ 1 . — (19)
&= = at r* = 1

where S=a for Case A and S =1 for Case B.

The parameter V is related to viscous dissipation, defined as

2 e ()
[(1+a)(1_a)2 B]“_(?d?)

*\ 72
= 8[(———1 _AIJEU )] (1 +a?-2B*+ B*'w)u*

du*\
- (a}:) (20)

Nusselt numbers, Nuj,' , on the inner and outer walls are

calculated as

;AT - T)I2(R, - R) 2
Nuj="0 "brmrre = — (21)
3 6, — 6,
The dimensionless bulk temperature, 6y, is defined as

6,=T,/lq;(R, - R)/K]

(22)
( 3_, =8, is calculated as

2 ! * x
ej_ab=( )f;rd’(ﬁj—ﬂ)dr (23)

1 - a?
Case A: In this case, Eq.(13) with j=1i is written as
%%b “die (1 ", 'W’) @4
The temperature difference is obtained as
6 -6 (- EU)
M

2 4 2
[clr* +cor* 4 eyt Inr*

2
+¢4(Inr*)° + aylnr* + az] (25)
where 9; is the dimensionless inner wall temperature and the
coefficients €1, €2, C3,C4, @) and a2 are

_ [ a(l-B*)
=

d+a)(l Ma)Z] +4Br;

d+a¥)+ {w-2+w-1)Q2a?-B*)|B*
{1+ @w —1)a?-B*}?

(26)

a

1
2= [(Ha)(l—a)?]

_ 2 +2wa? +(w-3)B"
1+ @w-_Da’—B ] @n
— aB*
“ [(1+a)(1_a)2]
{1+ a%+(w-2)B*|B*
* 1+Cw-Da?—B'f (28)

2
B#
= —2Br.
Cy Brl[l_'_(zw_l)az_B*} (29)

a; = —(2c; + 4c,+ ¢3) (30)
a, = —[c;a2 + cyat + cza?lna + c4( Ina)? + @) Ina]
(31)
Nusselt number is calculated as
2) _ 2 _ p* 2
Nu _2[1+(2w DaZz—-B ] /G (32)
where
Gii = gil + yizaz + gi3a4 + gi4‘16 (33)
1 B* 1 B*
w=-\z"7)o g 9/«
+ 5 B")c_(7 3B‘)c
% 8 ) \8 2)™
+ §—B' a1 - (1-B*)%2
4 (34)
1 B* 1 B*
=" \37 1) \6"9)

_ Bw) + @ ——BSw) + 2(1B_Zw)] ¢y

1 2(1-

2 )c (1 B*
s7v)a 6" 9)°

3

(5-% )+ 2=
s-3 )+

(1-6w) (3~ 4w)]
2B

[(1 - 2“’)] a, (36)

(35)
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1 2w (2-3w)
9= \z7%)o+|T3m |®
1—
+ [(——Ezzi)]% (37)

Case B : Equation (13) with j =0 is written as

db, _

& Aot B W) (38)
The temperature difference is obtained as

1 _ *
00 -0 =- (—M—EI]) [dlr"2+ dzr‘4+ d3r‘21nr‘

+d,(Inr*)? 4 byInr* + bz] (39)

where § is the dimensionless outer wall temperature
and the coefficients d}, dy, d3, dy, b; and b2 are

d = [ d-BY

d+a){ —a)z] +4Br,

X

d+a?)+ {w- 2+ (w-1)2a?2-B*)| B*
[1+Cw-1aZ-B*)

1

(40)
dy= L {___1
! [(Ha)(l—a)z]

2 *
B [2+2wa +(w—3)B ]

(1+Q@w -1 -B*? (1)
- B*
ds = [(l+a)(1—a)2]
{1+a® +(w-2)B*|B*
4B
+ T [ |1+(2w_1)a2_Btl2 (42)
2
Bt
d, = -2B
4 ro[ 1+(2w_1)a2_B¢] (43)
by = —[@d,+ d3) @+ 4d,a* +2d3a’ Ina + 2d,Ina]
(44)
b2 = ~(di+dy) (45)

Nusselt number is determined as
Nul® = 2[1 + (2w —1)a® - B*]*/G4, (46)
where
Goo= Gy + Gp2@” + G,30" + g,40° (47)

+ ( B ) B, — (1 - B*)b, 48)

1 B* 1 B*
s (5-7)a-(5-5)=
(%-%)e
T\% "%
1 2- 3w) 2(1- w)
+[(5-%)+ %5 5]
: 1 2(1- w)
[(3-2) 252
+ (1= 2w)b, (49)

2 1 B*
e (oo (1)

[(1-6w)  (3—4w)
|\t %

+ '(l—2w)] b1 (50)

_ 1 2w (2 - 3w)
%04 = (E'T)d”[ 3B ]d3

(51)
3. Result and Discussion

3.1 Effects of moving core velocity

The effects of the relative velocity of the moving core U”*
on the velocity profiles across the annulus for the cases of a
= 0.2, 0.5 and 0.8 are shown in Fig.2. It is seen clearly that
the profiles of the fluid velocity are deformed by the moving
core with a relative velocity U”*. For U" <0, the velocity
profile is parabolic having a larger maximum value with
increasing values of a .

The velocity gradient and parameter V govern the heat
transfer with viscous dissipation through Eq.(16). The
behaviors of velocity gradient and V' are shown in terms of
(1=-a)®(du*/dr*)? and (1 —a)?V, respectively, in
Figs.3 and 4, for a = 0.2, 0.5 and 0.8. The absolute values
of velocity gradient and V become larger near the moving
wall ( ¢ = 0) with a decrease in U”" .

Figure 5 shows the magnitude of parameter V3. It is seen
that V; increases with a decrease in U™*.

In Fig.6, the magnitude of d6, /dy is shown for Cases A
and B respectively. It is seen from these figures that d6, / dy
changes sharply with a for U'= -2, and depends weakly
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on a for U"=0 and U" =2. d6,/dy increases with an
increase in Br;.

In Figs.7 and 8, the effect of U on the dimensionless
temperature differences (6; —8), (6,—6) and (6 —6y), are
shown respectively for Cases A and B. (6, —68) decreases
with an increase in U" near the fixed wall, but (8, —6)
increases with an increase in U™ near the moving wall.

(8 —8y) decreases with an increase in U near the moving
wall for Cases A and B.

In Fig.9 Nusselt numbers, Nu;;, for Cases A and B are
shown. From these figures it is seen that Nu;; changes clearly
with an increase in U for Case A and depends weakly on
U* for Case B.

3.2 Effects of viscous dissipation

In both Cases of A and B, df, / dy increases with an

increase in Brinkman number, Br; for heating process
( Br; > 0) and decreases with an increase in Br; for cooling
process ( Br; < 0) (see Fig.6).

In Case A, (8 —8) increases with an increase in Br; for
U*=-2 and U" = 0, whereas it decreases with an increase
in Br; for U* =2 (see Fig.7). In Case B, (6, ~6) decreases
with an increase in Br, for U* =—2 , whereas it increases
with an increase in Br, for U" =0 and U" =2 (see Fig.7).

In Cases A and B, for Brj> 0 and U" = 0 the bulk
temperature difference (6 — 68,) increases with an increase
in Brj near the walls (see Fig.8). But it decreases in the
middle section. This is attributed to that near the walls the
dimensionless velocity gradient is large (see Fig.3) and that
the viscous dissipation effect is large. The heat axially
transfered by convection is large in the middle section (see
Fig.2). For U" =— 2, (6 —6,) greatly increases with an
increase in Brj near the moving wall, but increases a little
near the fixed wall. In the middle section it decreases. The
dimensionless velocity gradient is large near the moving wall
and small near the fixed wall. For U" = 2, (§ —8,) increases
with an increase in Brj near the fixed wall and decreases near
the moving wall. Near the moving wall the dimensionless
velocity gradient is large, but small near the fixed wall (see
Fig.3). The heat transfered by convection is larger near the
moving wall (see Fig.2).

Nusselt numbers, Nuji increases with an increase in Br; for

Case A and it decreases with an in Br, for Case B (see Fig.9).

3.3 Cooling process

The negative values for Br; correspond to the cooling

process. In Figs.10 and 11, the effects of U* and viscous
dissipation on the dimensionless temperatures (6; —6),

(6, —8) and (8 —6), are shown respectively for Cases A
and B. In cooling processes the behavior of temperature
differences tends to be contrary to that in heating process (see
Figs.7 and 8).

The effects of viscous dissipation in cooling process are
shown for Cases A and B in Fig.12. It is seen from these
figures that Nusselt numbers depend on Brjand U”.
Especially, the behaviors of Nu; vary widely when the value
of Br; is large.

4 . Conclusions

The study showed that for equal conditions the following
changes were observed in heating process.
a) With an increase in U”,

decrease in dfly, / dn for Cases A and B

decrease in 8; —6 for Case A

°
®
® increase in 6, — 6 for Case B
® decrease in 8 — 6, for Cases A and B
® increase in Nu; for Case A
® decrease in Nu,, for Case B
b) With an increase of Br;
® increase in dfly / dy for Cases A and B
@ increasein 8, —0 (U* <0)and
decrease in 6, —8 (U"* > 0) for Case A
® decrease in 8, —8 (U <0) and
increase in 6, —8 (U* >0 ) for Case B
® decrease in 8 — 8, for Cases A and B
® decrease in Nu; (U’ <0.4) and
increase in Nuy; (U* > 0.4 ) for Case A
® decrease in Nu,, for Case B
The effect of Brjon d6y, / dy, 8; —6, and 6 — 6, is stronger
for U*< 0. But it affects more strongly on Nu; (Case A)
when U* > 0.
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