
Reports of the Faculty of Engineering, Nagasaki University, Vol. 29, No. 52

Higher-Order Abstraction of Process

Compositions and Their Transformation

by

Norihiko YOSHIDA *

67

This paper presents a higher-order abstraction framework for process compositions which are common to

highly-parallel systems and VLSI architectures. It is to aid reuse and formal design of such compositions. We

construct the framework on functional programming, since it has a facility for process modeling and higher-order

abstraction. Our achievements include a basis for inheritance and aggregation relationship in a collection of

compositions, and analysis and design oftransformation rules for deriving compositions.

1. Introduction

Our research is aiming at building a design framework

for highly-parallel systems, in particular VLSI hardware

algorithms. This paper presents a framework for abstraction

of system compositions. Abstraction is crucial to aid

system design. There are already abstraction schemes for

components using objects or processes, but no scheme for

composition topologies or configurations yet. So, for

example, we can only build a library of components, but

not of compositions yet. Abstraction of compositions

enables us to build a library for compositions as meta­

components. In this point of view, our motivation is similar

to the one for design patterns or frameworks introduced

recently in the area of object-oriented software design.

In our previous research, we made some achievements

regarding formal design of VLSI architectures from their

mathematical specifications using transformational

derivation techniques which had been originally introduced

for software design[l·2l. Abstraction of compositions will

help greatly such formal design techniques by enabling us

abstraction of transformation rules. This is our another

motivation.

Strictly speaking, abstraction of a process composition

yields a higher-order abstract process. It is abstract that the

composition is encapsulated, and it is higher-order that

concrete component processes of the composition are of no

concern. For example, a pipeline composition of processes

Received on October, 1998

"Department of Computer and Information Sciences

is defined as a higher-order abstract process of just the

pipeline topology. With a set of concrete processes, it is

instantiated as a concrete pipeline (We will show this

details later.)

Here we concern ourselves with process compositions

common to many parallel systems and hardware

algorithms, which are repetitive, synchronous and

deterministic. Partly based on our preliminary work[3J, we

investigate the ability and potential of a framework for

higher-order abstraction through formalizing some basic

compositions such as pipeline, parallel and tree processes.

We construct the framework on functional programming,

since functional programming has a facility for process

modeling and higher-order abstraction. And more than that,

we also examine inheritance and aggregation relationship

in a collection of compositions represented in our higher­

order abstraction framework, since they are important when

we consider libraries of compositions.

Section 2 briefly overviews functional programming and

some related works as the background. Section 3 introduces

some functions to represent processes, and also examine an

inheritance-like hierarchy among them. Section 4

formalizes some process compositions, and then introduces

higher-order functions for them. This section also examines

their aggregation. Section 5 discusses transformation of

compositions represented in higher-order functions. Section

6 contains some concluding remarks.

68 Norihiko YOSHIDA

(f env)

foldrl (.)PIPE

FARM £ env = map

foldrl f [x] = x

foldrl f (x : xs) = f x (foldrl f xs)

where "foldrl" is a system function. "PIPE" is almost

identical to Kelly's original. "FARM" is the skeleton for a

simple parallel composition in which a single function "f"

with a parameter "env" is applied to all the component

processes in the composition. We will define a little more

general one later.

Regarding design support for parallel systems and VLSI.

the Ruby project around Oxford University applied

functional programming to VLSI design. in particular at the

gate-transfer level[8J. But this research is not concerned

much with higher-order abstraction of compositions.

paper.

Darlington, partly together with Kelly. extended this

Kelly's work. and are now building a composition

framework named Skeletons[7). Their research somewhat

shares motivations and approaches with ours. They defined

principal skeletons for pipeline and parallel compositions

as:

foldr t· z. ex, : xs) =
f x (foldr f z xs)

He was aware that a processtcould be represented using

"map". but did not formalize a function for a process. We

will define a process function based on "map" later in this

2. Background

2.1 Functional Programming

We write programs in this paper using a functional

programming language Gofer. It has a syntax and semantics

quite common to most functional programming languages

such as Miranda and Haskell. More details of functional

programming are left to the referencel4J.

A function call is described as "f x y", against the

mathematical convention to describe it as "f (x, y)". In fact.

"f x y" may be interpreted also as a function "f x"

applied to an argument "y". A function's argument and/or

return value may be another function. in which case the

function is called higher-order. A function definition is

described as "f x y = x + y".

One of the basic data structures is a list. The empty list is

" [] ", a list of 1. 2 and 3 is "[I, 2 , 3] ". and CONS (a

Lisp term) of 1 and" [2,3]" is "1:. [2,3] ", which yields

" [I, 2 , 3] ". It is important that a list may be infinite.

namely without an end. and such an infinite list is

interpreted as a data stream fed to a process. We describe a

list of "x"es by "xl" and a stream of "x"es by "xs" so as

to distinguish them which are syntactically identical.

Another basic data structure is a tuple. A tuple of 1, 2 and

3 is "(1,2,3) ". Unlike a list. the size of a tuple is fixed.

" () " is also used to manage the order of function

application.

2.2 Related Works

While there are many researches on parallel execution of

functional programs including ours lSJ , researches on

modeling of parallel systems in functional programming

were originated rather recently, and are rapidly attracting

attentions. They were derived from researches on formal

design of concurrent systems and data-flow computing.

Some prominent works are summarized below.

Kelly formalized and defined a couple of basic

compositions including "pipeline"[61:

pipeline £1 xs =
(foldr (.) id (map map fl» xs

where" (.) ", "id", "map" and "£ oldr" are system

functions defined as :

(f g) x = f (g x)

id x = x

map f [] []

map f (x xs) f x map f xs

foldr f z [] = z

3. A Perpetual Process

3.1 Definition

A perpetual process is a fixed point of state transition. A

process "process" applying a function "f" on its stream

argument "xs" is defined to be a recursive functionl9.101as :

process (x : xs) = f x : process xs

In fact, this "process" is to map "f" over every item in

"xs", and thus a process function "proc" is defined to be

equivalent to "map" :

proc = map

For example. a process which squares every integers in

its input stream is described as :

sq x = x * x

pO = proc sq

pO [1, 2, 3, ..] == [1, 4, 9, ..]

This "p 0" is an instantiation of the abstract process

"proc" with a function "sq".

Higher-Order Abstraction of Process CompOsitions and Their Transformation 69

3.2 Consideration for'Inheritance

In our higher-order abstraction· framework, we can build

inheritance-likt hierarchies among compositions, which

could not be formalized before. We show this using an

example.

Processes are classified according to arities : I-in I-out

process, I-in 2-out process, 2-in I-out process, 2-in 2-out

.process and so on. An M-in N-out process "procMN" in

general has M input streams and N output streams. They all

can be defined as subclass-like functions of the generic

process "proe". Before going further, we should introduce

some assistant operators and functions :

(f 1/ g) x y f x (g y)

(f / I g) x y f (g x y)

zip2 (sl, 52) = zip sl s2

unzip2 = unzip

where "zip" and "unzip" are system functions. This

"z ip2" converts a tuple of lists into a list of tuples, while

"unzip" does inversely. Now we define "proeMN" for M

= 1 ... 2 and N = 1 ... 2 respectively as :

proe11 = super

where super = proc

proe21 = super 1/ zip2

where super = proe

proe12 = unzip2 /1 super

where super = proe

proc22 = unzip2 / I (super 1/ zip2)

where super = proc

Just as in usual inheritance hierarchies, this "proc22"

may be defined also as a subclass of "proc21" which in

tum is a subclass of "proc":

proc22 = unzip2 /1 super

where super = proe21

This inheritance-like relationship of compositions can be

represented only in higher-order abstraction. On the base

level, namely without abstraction, we may describe

"procMN" just as :

proc11 f (x : xs) =
f x : proc11 f xs

proc21 f (x : xs, y ys) =
f (x, y) : proc21 f (xs, ys)

where their relations are not easy to understand.

But we do not claim yet this to be true inheritance

exactly, since we have not investigated thoroughly its

correspondence with type polymorphism, in particular type

overloading. This should be of further study.

4. Prodss Compositions

4.1 Pipeline Processes

A pipeline of two processes "p" and "q" connected by a

stream channel is represented as "q (p xs)". So we

introduce a pipeline operator "»":

(p » q) xs = q (p xs)

It is important that a pipeline "p » q" itself is a higher­

order process, and we can declare "»" as right­

associative. Hence, we introduce another pipeline function

"pipe" for a list of processes, which satisfies:

p1 » .. » pn == pipe {p1, .. , pn]

We define this, following Kelly and Darlington's work:

pipe = foidr (») id

For example, a pipeline which computes ou~ = (2ink +
1)2 is described as :

p1 proc ((*) 2)

p2 proc ((+) 1)

p3 proc sq

pipe1 = pipe [p1, p2, p3]

pipe1 [1, 2, 3, ..] == [9, 25, 49, ..]

This "pipe1" is an instantiation of the abstract pipeline

"pipe" with a list of concrete processes" [p1, p2,

p3]".

4.2 Parallel Processes

Following the same consideration as above, we introduce

a parallel function "para" which represents a parallel

composition of processes applying a set of functions

(possibly identical in a SIMD style) to a bunch of streams:

para [] [] = []

para (p : pi) (xs : xsl)

p xs : para pi xsi

This is a little more general than Darlington's, since

component processes need not be identical. We define this

in a more abstract manner:

para = curry ((map evai) . zip2)

evai (f, x) f x

curry f a b f (a, b)

where "curry" is a system function.

4.3 Tree Processes

Pipeline and parallel compositions are the two

commonest of parallel systems, but there are some others

such as trees and hexagonal arrays, which were not

formalized in higher-order abstraction before. A tree

composition of processes is for funneling a bunch of

70 Norihiko YOSHIDA

proc £ xs : para-proc fl xs1

The function "resp" to apply functions respectively is, in

fact, equivalent to "para". So, we specify the parallel-

pipe (map proc £1) xs

We specify the rule shown above in an abstract manner as :

(proc pipe)

+

proc (resp fl) xIs

xl) =

proc (seq f1) xs

seq f1 (f x)

proc_resp £1 xIs

resp [] [] = []
resp (£ : fl) (x

f x resp £1 xl

+
para-proc [] [] = {]

para-proc (£ : £1) (xs : xsl) =

proc_seq fl xs

seq [] x = x

seq (f : fl) x

+

(pipe map proc)

We see that this representation of the derivation rule is

more concise than the first one, and we get rid of program

patterns like "proc_seq" and "pipe-proc".

Following the same consideration as above, we

investigate derivation of a parallel composition as well

next. The transformation rule to derive a parallel

composition has been specified so far using program

patterns:

process compositionsI1.11; The principle behind

transformational derivatron of a process composition is

decomposing a single complex process into a composition

of some simple processes. A pipeline composition is

derived from a process of successive functions, and a

parallel composition is derived from a process of respective

functions.

First, we investigate derivation of a pipeline

composition. The transformation rule to derive a pipeline

composition has been specified so far using program

patterns:

pipe-proc [] xs = xs

pipe-proc (f fl) xs

pipe-proc fl (proc f xs)

The function "seq" to apply successive functions is, in

fact, equivalent to "pipe". So, this pipeline-derivation rule

is described also as :

proc (pipe fl) xs

+

tree p [xs] xs

tree p xsl

p (tree p (fst (sp1it2 xsl» ,

tree p (snd (split2 xsl))

fst (x, y) x

snd (x, y) y

streams. It is mostly used with associ~tive functions like

addition or comparison, because consecutive applications

of such l;ln function, which. takes O(n) time. can be

transformed into bi-recursive applications, which takes

only O(1og n) time.

For simplicity, here we consider a binary tree

composition in which all the component processes are

identical. First, we should introduce a split-at-center

function "spli t2" which splits a list at its center:

split2 xl = splitAt (length xl / 2) xl

where "sp1 i tAt" and "length" are system functions.

Then we define a binary tree function "tree" which

consists of bi-recursion :

where "fst" and "snd" are system functions.

4.4 Consideration for Aggregation

Aggregation is whole-part relationship. The word as well

as inheritance is from object-oriented programming. A

composition is an aggregate of its component processes. It

is important that the composition itself is a higher-order

abstract process, and can be a component of another

composition. This scheme leads to an aggregation hierarchy

among compositions represented in our higher-order

abstract framework.

For example, a parallel composition of pipeline

compositions is described as :

[ysl, ys2, ys3] =
para (copy 3 (pipe [pI, p2, p3]»

[xsl, xs2, xs3]

where "copy" is a system function to make a list of N

copies of its second argument.

S. Transformation of compositions

Transformational derivation from mathematical

specifications is one of the most promising approach to

formal design of system implementations. It is performed

by applying transformation (rewriting) rules to program

representations in a step-wise manner.

Formal design of highly-parallel systems and VLSI

architectures are achieved by transformational derivation of

Higher-Order Abstraction of Process Compositions and Their Transformation 71

derivation rule in an abstract manner as :

(proe para)

~

transpose /1
((para. map proe) 1/ transpose)

where "transpose" is a system function to transpose a

list of lists.

In this representation, we have an insight, which could

not be noticed before, that the two rules for pipeline

derivation and parallel derivation have significant

resemblance that we may generalize their essence using a

composition variable "e" as :

. Connecting to an object-oriented hardware description

language which we are building elsewhere so as to aid

VLSI design in a more thorough manner.

It also must be of interest to estimate how many classes of

compositions are practically necessary and sufficient from

the pragmatic point of view.

Acknowledgments

We are grateful to Dr. Mark P. Jones and Dr. Kevin

Hammond for offering Gofer and MacGofer to public ; this

research would be more difficult without them.

(e . map proe)

This kind of insight helps greatly when trying to design

new derivation rules. This is another benefit of higher-order

abstraction as well as making derivation rules concise and

easy to understand. We are now studying transformational

derivation of other class of compositions.

6. Concluding Remarks

In this paper, we presented a higher-order abstraction

framework for process compositions in functional

programming. It is to aid reuse and formal design of

repetitive, synchronous and deterministic compositions

common to highly-parallel systems and VLSI architectures.

It is known that functional programming has some

weakness for modeling nondeterministic systems, but this

is not the case in our research, since we concern ourselves

with deterministic systems.

Through formalizing some basic and common

compositions such as pipeline, parallel and tree processes,

we investigated the ability and potential of higher-order

abstraction. Our achievements include a basis for

inheritance and aggregation relationship in a collection of

compositions, and analysis and design of transformation

rules for deriving compositions.

Our ongoing research to extend this work includes :

. Collecting and formalizing more class of compositions,

Studying composition inheritance and composition

derivation further (as mentioned earlier,)

(proe e) References

[1] N. Yoshida, "A transformational approach to the

derivation of hardware algorithms from recurrence

equations", Proc. Supercomputing '88, pp. 433-440,

1988.

[2] N. Yoshida, "Transformational derivation of systolic

arrays", Lecture Notes in Computer Science, Vol. 491,

pp. 297-311, 1991.

[3] N. Yoshida, "Higher-order abstraction and derivation of

process group topologies in functional programming",

Lecture Notes in Software Science, Vol. 15, pp. 131-139,

1995 (in Japanese).

[4] R. Bird and P. Wadler, "Introduction to Functional

Programming", Prentice-Hall, 1988.

[5] C. Howson, N. Yoshida and K. Araki, "Implementing

functional languages on a network of transputers", Proc.

Third Transputer/Occam Int') Conf., pp. 21-33, 1990.

[6] P. Kelly, "Functional Programming for Loosely­

Coupled Multiprocessors", Pitman, 1989.

[7] J. Darlington, et aI., "Parallel programming using

skeleton functions", Proc. Parallel Architectures and

Languages Europe (PARLE '93), 1993.

[8] G. Jones and M. Sheeran, "Circuit design in Ruby", in

Formal Methods for VLSI Design, ed. J. Staunstrup, pp.

13-70, Elsevier, 1990.

[9] T. Ida and J. Tanaka, "Functional Programming with

Streams", Proc. IFIP '83, pp. 265-270, 1983.

[10] T. Ida and J. Tanaka, "Functional Programming with

Streams - Part II", New Generation Computing, Vol. 2,

No.3, pp. 261-275, 1984.

