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FREE VIBRATION ANALYSIS OF RECTANGULAR PLATES
WITH VARIABLE THICKNESS

by

T. SAKIYAMA* and M. HUANG**

ISummary An approximate method for analyzing the free vibration of rectangular plates with

variable thickness is proposed. The approximate method is based on the Green function of a rectangular

plate. The Green function of a rectangular plate with arbitrary variable thickness is obtained as a discrete

form solution for deflection of the plate with a concentrated load. The discrete form solution is obtained at

each discrete point equally distributed on the plate. It is shown that the numerical solution for the Green

function has the good convergency and accuracy. By applying the Green function, the free vibration pro-

blem of plate is translated into the eigen-value problem of matrix. The convergency and accuracy of the

numerical solutions for the natural frequency parameter calculated by the proposed method are in-

vestigated, and the freqency parameters and their modes of free vibration are shown for some rectangular

plates.

Key words free vibration , rectangular plate , variable thickness , discrete Green function

1 INTRODUCTION

The fundamental differential equations of free vibra-
tion of plates with variable thickness have variable
coefficients concerning the flexural rigidity and
thickness of plate, and it seems almost impossible to
get generally the analytical solution.

For some special cases of variable thickness of rec-
tangular plate, investigations have been made and
solutions have been obtained. Apple and byers [1] in-
vestigated the case when the thickness varied only in
one direction, and calculated the fundamental frequen-
cy of simply supported rectangular plate having a
linear thickness variation. Plunkett [2] investigated
the free vibration of linearly tapered rectangular can-
tilever plates.

In this paper an approximate method for generally
analyzing the free vibration of rectangular plates with
variable thickness is proposed. At first the approx-

imate solutions of rectangulr plate with variable

11998. 4. 24
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thickness for a concentrated load are obtained at the
discrete points equally distributed on the plate. The
solution for deflection gives the discrete-type Green
function of the plate. It is shown that the numerical
solution for the Green function has the good con-
vergency and accuracy.

By applying the Green function, the free vibration
problem of plate is translated into the €igen-value pro-
blem of matrix. For some rectangular plates with
various boundary conditions and variable thickness,
the convergency and accuracy of the numerical solu-
tions for the natural frequency parameter calculated
by the proposed method are investigated and the
lowest twenty one frequency parameters and their

modes of free vibration are shown.

2 DISCRETE GREEN FUNCTION OF
PLATE WITH VARIABLE THICKNESS
The Green function of plate bending problem is

**Graduate Student, Graduate School of Marine Science and Engineering
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given by the displacement function of the plate with a
unit concentrated load, so the Green function w (x, y, x,,
,) /P of plates with variable thickness can be obtained
from the fundamental differential equations of the
plate with a concentrated load P at a point xg ¥
which are given by following equations.

%% + %% + P (x—5)3 9—y) =0 (1-a)
aTA’ixz + %.2 -Q,=0 (1-b)
P+ M Q=0 (1-0)
aa—% +v %i’l = % (1-d)
%—ZX +v %_% = %’- (1-e)
TR Al seya 3 -0
Mio=F (1-g)
g—;’ + 6, = % (1-h)

where @,, @, the shearing forces, M,, the twisting mo-
ment, M,, M, the bending moments, 6,, 6, the slopes,
w the deflection, D = Eh3/12(1 —v?): the bending
rigidity, E,G: modulus, shear modulus of elasticity, v:
Poisson’s ratio, A=h(x, y): the thickness of plate, ¢
=h/1.2, 6(x—x,), 6 (x—x,): Dirac’s delta functions.

By introducing the following non-dimensional ex-
pressions,

X, X, 1= E;(lasz) Q. Q1 [X; X, X;5]

_ a
TD, (1o (Mo Mo M

[-X(Sv X7v XS ]=|: 0y; ax; w/a :l’
the differential equations (1-a) ~ (1-h) can be rewrit-

ten as follows.

8

X, X,
[Fie == + Fpp =% + F3, X,]
;1 1te ac Ztea” 3te e

where t=1~8, ¢ = b/a,p= x/a,{= y/b, Dy= Eh}/12

(1—v?): standard bending rigidity, #,: standard
thickness of a plate, a,b: breadth, length of a rec-
tangular plate, P = Pa/Dy(1—v2), & Kronecker’s
delta, F\,, Fye, Fi. : Appendix 1

3 DISCRETE SOLUTION OF FUNDAMEN-
TAL DIFFERENTIAL EQUATION

With a rectangular plate divided vertically into m
equal-length parts and horizontally into » equal-length
parts as shown in Fig.1, the plate can be considered as
a group of discrete points which are the intersections
of the (m+1)—vertical and (z+1)-horizontal dividing
lines. In this paper, the rectangular area, 0 < » < %;,
0 <{<(;, corresponding to the arbitrary intersection
(4, j) as shown in Fig.1 is denoted as the area [, 5],
the intersection (7, 7) denoted by O is called the main
point of the area [4, 7], the intersections denoted by O
are called the inner dependent points of the area, and
the intersections denoted by ® are called the boun-
dary dependent points of the area.

By integrating the equation (2) over the area [7, 7], the
following integral equation is obtained.

Cay

n Lb

NCF

Fany

d"a

a
1 23 i m

Fig.1 Discrete points on plate

8

Z{Flte f:i I:Xe(vr Cj) —'Xe(v’ 0 )]d”

e=1

+Fy, jo X, (00 O —X.(0,0)] dL
+Fue [ ” 0” X,(r;,c)dndc}
+Pu(p—n)u{—()6,,=0 (3)

where u(y—7,), #({—{,): unit step function

Next, by applying the numerical integration method
the simultaneous equation for the unknown quantities
X.;=X,(y;, ¢;) at the main point (7, 5) is obtained as

follows.
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8 J
> {Flte Bir KXo~ Xero) +Fore Y, Bit(Xois— Xool)
e=1 =

7
2z
k=0

i
2
k=0

;
+Fse X, X Bir Bi Xek1}+ Puiy wj, 6,,=0 4)
=0
where
0 ifi<q 0 ifj<r
Uig= 0.5 ifi=q, u, = 0.5 ifj=r,
1 ifi>q 1 ifj>r

0.5 ifk=0,: 0.5 ifl=0,j
aik={ . .»aﬂ:{ . .
1 if k#0,1 1 if1#0,5

B = au/m, By = au/n

The solution X,; of the simultaneous equation (4) is

obtained as follows.

8 {
Xog T 3 ba AplXao — Xup(1—50)]
e=1 =0
j
+ X 8t Bpe [ Xes — Xer(1—55)]
=0

i
+ Z Z Bir Bit Cpert Xeri(1— 34 51,')}
F=0 =0
— 1, Puiy uj, (5)

where p=1,2,---,8, i=1,2,---,m, j=1,2,n, Ay, B,
Chet » 7r : Appendix 1T

In the equation (5), the quantity X,; at the main
point (7, ) of the area[, 5] is related to the quantities
X1 and X, at the boundary dependent points of the
area and the quantities X,;;, X, and X, at the inner
dependent points of the area. With the spreading of
the area [7, j] according to the regular order as [1, 1],
(1,21, -, [1,=], [2,1], [2,2], -, [2,m], -,
[m, 11, [m,2], ---, [m, n], a main point of a smaller
area becomes one of the inner dependent points of the
following larger areas. Whenever the quantity X,; a¢
the main point (i, j) is obtained by using the equation
(5) in above mentioned order, the quantities X, X
and X, at the inner dependent points of the following
larger areas can be eliminated by substituting the ob-
tained results into the corresponding terms of the
right side of equation (5). By repeating this process,the
equation X,,; at the main point is related to only the
quantities Xy, (©=1,3,4,6,7,8) and Xy, (s=2, 3,
5,6,7,8) which are six independent quantities at the
each boundary dependent points along the horizontal
axis and the vertical axis in Fig.1 respectively. The

result is as follows.

Xpi = D, { @ikt (Qy) ko T B1pine (M) ko + @1 piins (M) 1o
k=0

+ a1 pina (0y) o+ @rpins (0) o+ @1pies (W) ko}
j
+ { @apijn (Q) 01+ @apijir (M) o1+ Aapijis (M) o
=0
+aapijia (0,) o1+ @opiiis (0:) o1+ Aopijis (W) 01} +qp P (6)

where (@) =X, (Q)=X,, M,) =X;, (M,) =X,,
M,) =X;, (0,) =Xs, (6,) =X;, (W) =X;, qp; : Appen-
dix II

the equation (6) gives the discrete solution (3) of the
fundamental differential equation (2) of plate bending
problem, and the discrete Green function of plate is ob-
tained from Xg;= G (;5;,%,5,) [Pa/D,(1—v2)] which
is the displacement at a point (x, ;) of a plate with a
concentrated load P at a piont (%g Y-

4 INTEGRAL CONSTANT AND
BOUNDARY CONDITION OF REC-
TANGUYLAR PLATE

The integtal constants (@), Mydr, =*» (W)eos

QDo My)y, -+, (w)y being involved in the

discrete solution (6) are to be evaluated by the boun-

dary conditions of a rectangular plate. The combina-
tions of the integral constants and the boundary condi-
tions for some cases are shown in Fig.2 ~ Fig.4, in
which the integral constants and the boundary condi-
tions at the four corners are shown in the boxes. The
integral constants and the boundary conditions along

9,=0
0:=0
M.ty My=ez=w=0 w=_0
Q- 6, =0
My M.=0
0 w=0
M-"-‘ll QU!MWYMV sz

Fig.2 Simply supported plate
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the four edges are given at the each equally-spaced A b . _
(o 30) = [ [ 0ho%io (s, 9) [ xo 30,5, 3) /Pldsdy ()

discrete point. In this paper simply supported, fixed . .
where p is the mass density of the plate material.

and free edges are denoted by solid line , thick . . ] R
L. . By using the non-dimensional expressions,
solid line and dotted line ————. " ) ke 5)
4 = Lohgo?at P&y hxy)
2 DO(I_V2) ’ H(’?:C) po ho ’
M,y M,=6,=w=0 w=0 7, a 705 60s 75
_wlxo¥o%9) Dy (1—v?)
a Pa
Q- b6, =0 po : Standard mass desity
M,y 0. =0 the integral equation (7) can be rewritten as follows,
1 (1
M. w=0 Wt = [ e2H, 0G0, O W, O
0 Y0
dnd (8)
By applying the numerical integration method men-
tioned at the third-section, equation (8) is discretely ex-
M., Qs M2y, M, M, pressed as
m+1n+1
kW, = Bmi Bni Hij Gy Wy, B =1/ (%) (9)
Fig.3 Fixed plate & ;1 T
From equation (9) homogeneous linear equations in
(m+1) x (n+1)unknowns Wy, Wi, -, Wi, Wa,
Qy = Mg,, = W22! WZm T Wmh Wm2y Tty Wmm are obtained
M, =6, =
0y,6:,w Qy =My =M, =0 0. —wlo as fﬂlo:vls
.._r___. ———— —r——— __r. m n
: D D (Bomi B Hy Gy — £33, Wy
i=1 j=1
I
8, |L 8, =0 =0, k=12, .-, m+1, I=1,2, -, n+1) (0
e .
0, } 6, =0 The characteristic equation of the free vibration of a
| rectangular plate with variable thickness is obtained
v oL w=0 from the equation (9 as follows.
|
:L Ky Kz - Ky
I IENRENENEREN I{:ZI K:zz Kz(::+1) =0 )
oyyoz,w 0,,,9,,10
Km+ni Kminz - K@m+nw+n
Fig.4 Cantilever plate where
5 CHARACTERISTIC EQUATION OF BuiH\ Gy — K8 BneH Gy
FREE VIBRATION OF RECTANGULAR K ButHj Gy BroHnGijp— K85
PLATE WITH VARIABLE THICKNESS 4= P : :
By applying the Green function @ (o, ¥, %, ¥)/P BuHjnGin+1y 1t BreHpGit+1) 2

which is the displacement at a point (o, ¥;) of a plate Batnt) Him+1) Gitjins)

with a concentrated load P at a point (x, y), the Brins1) Hims+1) Gizjin+1)

displacement amplitude @ (x,, ¥;) at a point (x;, ¥;)

of the rectangular plate during the free vibration is Brw+1) Him+1) Gitnry) jonry — K055

given as follows
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6 NUMERICAL RESULTS

The convergency and accuracy of numerical solutions
have been investigated for the free vibration problem
of some rectangular plates with uniform thickness or
with variable thickness.

The convergent values of numerical solutions of fre-
quency parameter for these plates have been obtained
by using Richardson’s extrapolation formula for two
cases of combinations of divisionl numbers m and n.
6.1 Simply supported square plate and rec-

tangular plate with uniform thickness
Numerical solutions for the lowest twenty one natural
frequency parameters A of a simply supported square
plate and a rectangular plate of aspect ratio b/a=2 are
shown in Table 1. The convergent values of numerical
solutions were obtained by using Richardson’s ex-
trapolation formula for the two cases of division

numbers m(=n) of 12 and 16 for Ref.[4] by Leissa,
and it shows the good convergency and satisfiable ac-
curacy of the numerical solutions by present method.
The nodal lines of twenty one modes of free vibration
of the two plates are shown in Figure 5

6.2 Fixed square plate and rectangular plate

with uniform thickness

Numerical solutions for the lowest twenty one natural
frequency parameters A of a fixed square plate and a
rectangular plate of aspect ratio b/a=2 are obtained
for the two cases of divisional numbers m(=#=) of 12
and 16 for the whole part of the plate. Table 2 involves
the other theoretical values by Claassen and
Thorne[5]. The numerical solutions by the present
method have the good convergency and satisfiable ac-
curacy. The nodal lines of twenty one modes of free
vibration of the two plates are shown in Figure 6.

Fig.5 Nodal patterns for simply supportd plate

nodal patterns
/a7 2 3 Py s 6 7
Table 1 Natural frequency parameter 1 for simple rectangular plate; v =0.3
b=l b/ac? O HOHK S B
m Extra- Extra- U
mode 12 16 polation Retl4] 12 16 polatin FetTV ’ D H @ m E H h
T 1574 4563 4548 4.549 3617 3,607 3,506 3759 L1
2 7.333 7.270 7.188 7.192 4.615 4.585 4.547 4.549 Ao
3 7.333 7.270 7.188 7.192 6.029 5.924 5.789 5.799 b/a nOCAl pattorns
Col e oem o se el sl sm e R
5 . 10. 442 .146 - . . . —
6 10.672 10. 442 10.146 - 7.359 7.284 7.187 7.192 1 <\
7 12.110 11.873 11.569 11.597 8.318 8.192 8.030 8.041 155 L1 = oK
8 12.110 11.873 11.569 11.597 9.960 9.326 8.511 9.098 M ==
9 14.530 13.931 13.161 13.262 9.672 9.403 9.056 8.661 2 l= H
10 14.530 13.931 13.161 13.262 12. 691 11.402 9.745 10.172 Y _i=
12 e lvox  tios T 0B 04 w0k win -
5. . . - . . . . odal
13 15.614  15.032  14.28 - | 11,48 10.906  10.156  10.298 L e Ty )
it 17424 1678 1305 1o | 113 11105 10337 10789
: - : - : : - m & B3
16 19.083  17.769  16.079 - | 13.855  12.725  11.272 - i E 8 E B B
17 19.083 17.769  16.079 - 12.393 12.022 11.545 11.597 _
18 19.918 18.642 17.000 17.322 13.921 13.230 12.341 - f |” I
19 19.918 18. 642 17.000 17.322 14.259 13.650 12.865 - 2 e B({
20 20009  19.145 18,033  18.196 | 14.543  13.938  13.160 - =8 1 o
21 21.360  20.081 18.436 - 15. 049 14.432 13.639
Fig.6 Nodal patterns for fixed plate
b/a - P < nod-l‘p.ttlr:l - >
Table 2 Natural frequency parameter 2 for fixed rectangular plate; v =0.3
ba=1 bla=2 0O g0d/| [©] E3
m Extra- Extra-
il - S po}ation o 2 e po“tion e ’ D B @ E H:I % E
D IE i 1B o B i m i
.030 L9011 . . . . . .
3 9.030 8.911 8.756 8.771 7.175 7.023 6.829 6.851 /e _nodsl patterne
3 19%  1306s  iies 107 | &4 8w sire  eio =
6 12,563 12,191 11714 11.772 | 8923  8.798  B.617  8.632 W B 1 8 B8 55
7 13.910 13.551 13.001 13.152 11.305 10.430 9.305 9.668
8 13.910 13.551 13.091 13.152 9.742 9.558 9.320 343
9 16. 690 15.803 14.663 14.856 11.023 10.667 10.209 10.279 2
10 16. 690 15.803 14.663 14.856 14.372 12.611 10. 347 -
1 16.194 15.717 15.105 - | 16.671 14.087 10.765 -
12 17.655 16.817 15.741 15.933 18. 600 15.193 10.813 11.044 nodal patterns
13 17.697 16. 856 15.744 - 12.892 12.134 11.160 - /a5 % 17T 18 19 21
ol RE ommomm o c) monm nm |
. . . - . . . - <z | 572
16 21.676 19.825  17.446 - 15.565 13.991 11.970 - ! @ 2 @ B
17 21.684 19.833 17.454 - 13.074 12.672 12.155 -
18 22.409  20.633 18.351 - 13.995 13.492 12.845 - 2
19 22.409  20.633 18.351 - 15.422 14.626 13.603 -
20 22.063  20.929 19.471 19.712 16.444 15.536 14369 -
21 23.707  21.982 19.765 17.610 _ 16.193 15. 466 -
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- 6.3 Cantilever square plate and rectangular
plate with uniform thickness

Numerical solutions for the lowest twenty one natural

frequency parameters A of a cantilever square plate

and a rectangular plate of aspect ratio b/a=2 are ob-

tained for the two cases of divisional numbers m (=n)

T. SAKIYAMA and M. HUANG

of 12 and 16 for the whole part of the plate. Table 3 in-
volves the other theoretical values by Claassen and
Thorne[6]. The numerical solutions by the present
method have the good convergency and satisfiable ac-
curacy. The nodal lines of twenty one modes of free

vibration of the two plates are shown in Figure 7.

Fig.7 Nodal patterns for cantilever plate

b /n nodal patterns
1 2 3 4 5 6 k4
Table 3 Natural frequency parameter i for cantilever rectangular plate; v =0.3
i i "~ = i1 = il
b/a=1 b/a=2 e N O S I 0
/ RN ) s I
m Extra- Extra- i i i = iT” i -
2 Ref. . .
mode P % polation ef.[4] 1z 16 polation Ref.[4] 2 'E ] H d E EJ .l i D
T I8 1% 18 B % B g e
3 4783 4756 4721 4724 | 3204 3281 3264 3273 | [/ iintpattanne N
3 TR i B MY | ik ik 1w i S
. . . . . . . . = i 7= i b
6 7.640 7.588 7.522 7.545 5.155 5.122 5.080 5.099 B & B R
7 8.305 8.172 8.000 8.016 <846 5. 800 5.741 5.746 - 54 %-E 28 Em § Bﬂ
8 8.478 8.350 8.185 8.204 6.354 6.173 .940 5.979 i 01 ¥
9 8.913 8.777 8. 602 8.633 6.907 6.818 6.705 6.729 2 ! ; , ;
10 10.179  10.029 9.836 - 8.310 7.912 7.400 - i f 0
11 10.389  10.244  10.058 - 8.192 8.011 7-779 - = - -
A BN B ==
ol EE oMo B C i o e ) e oo @ e
16 13.337  12.958  12.470 - 9.950 9.506 9.142 - = =< I | =
17 13.671  13.284  12.786 - | 10.764 9.938 8.692 - — . —
18 16.339  15.426  14.252 - | 100907  10.534  10.238 - R B
19 15.327  14.886  14.319 - 120022 11.203  10.150 - :
20 16.376  15.476  14.319 - | 127148 11691  11.103 - - o B e
21 15.483  15.027  14.441 - | 127130 11.730  11:204 -

6.4 Simply supported square plate and rec-
tangular plate with variable thickness
Numerical solutions for the lowest twenty one natural
frequency parameters 2 of a simply supported square
plate and a rectangular plate of aspect ratio b/a=2
with a linear thickness variation in the »—direction
given by £ (,{) =hy(1+ay) are shown in Table 4 and
5 for two cases of a=0.1 and 0.8. The convergent
values of numerical solution were obtained for the two

Table 4 Natural frequency parameter 2 for simple square plate with variable thickness; v =0.3

cases of divisional numbers m (z) of 12 and 16 for the
whole part of the plate. Table 4 and 5 involves the
other theoretical values of the fundamental frequency
by Apple and Byers[1]. The numerical solutions by
present method have the good convergency and
satisfiable accuracy of fundamental frequency. The
nodal lines of sixteen modes of free vibration of the
four plates of b/a=1, 2 and a=0.1, 0.8 are shown in
Figure 8 and 9.

Fig.8 Nodal patterns for simply supportd square plate

a=0.1 =08 with variable thickness
m Extra Extra « nodal patterns
xtra- -

mode = = Braon  Retli] = T Pxtmon  Retll] 1 23 a4 5 & 7
T 1687 4675 4660 4661 | 538 5372 534  5.3% [ H M EHBMO HE
3 (T A v I I - S B o []1 5 [0 B 81
1 9.534 9.436 9.311 - | 10/044  10.829  10.680 - is)
5 10.927  10.692  10.389 - | 12.32 12080  11.742 - porv
6 10.932 10.696 10. 393 - 12.512 12.238 11.886 B « nodal patterns
ey o4E otB C 4l o8 p8 0 7 LT = e =w o

.40 . . - . . . -
9 14.870  14.269 -496 - | 16581  15.918  15.066 - 0.1
Pl aE BB o§E  CleR oew pe ) 2 DI HETE
12 15.993  15.396 - 14.628 - | 18204 17602  16.712 - wH E B HHEHBEBE
13 15.997  15.400  14.631 - 18402 17701  16.799 -
14 17.846  17.195  16.358 - | 21.467  20.047  18.222 - - nodal pattarns
e b 1ein  leda D] Wi 1oen  isees - 510 @ 12 » w m
17 19.543  18.198  16.468 - | 22320 20.775 18789 -
Bl Rm se opl clae 2m o bw | B SNHEEMH
20 20492  19.607  18.469 - | 23481 22446  21.116 - s i BB [ B EE B HE
21 1.874  20.564  18.880 - 3.992 3.484  21.546 -
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Fig.9 Nodal patterns for simply supported rectangular

plate with variable thickess
o« nodal patterns
1 2 3 4 5 6 7
Table 5 Natural frequency parameter 2 for simple rectangular plate with variable thickness; §/a =2v=0.3 —
0.1 f——y
a=0.1 a=0.8 —
m Extra- m Extra- ] -
mode 12 76 polation  Ref[lJ 12 16 polation RetLU - 3 @ — H3 @
1 3.705 3.696 3.684 3.684 4.2446 4.234 4.220 4.221 —— —
2 4.728 4.698 4.659 - 5.433 5.398 5.352 - @ nodal patterns
3 6.176 6.069 5.930 - 7.078 6.955 6.797 - 8 9 10 11 12 13 14
4 6.943 6.876 6.789 - 7.955 7.876 7.775 -
5 7.982 7.693 7.322 - 9.101 8.776 8.359 - 0.1
6 7.539 7.462 7.362 - 8.641 8.552 8.436 -
7 8.521 8.392 8.226 - 9.775 9.624 9.430 -
8 9.909 9.633 8.903 - 11.547 10. 831 9.910 -
9 10. 200 9.551 9.091 - 11.377 11.055 10. 641 - 0.8
10 10.550 10.307 9.995 - 14.574 13.145 11.308 -
11 12.992 11.673 9.977 - 12.072 11.791 11.430 -
12 10.949 10.706 10.393 - 12.533 12.250 11.886 - « nodal patterns
13 11.770 11.173 10. 405 - 13.529 12.833 11.938 - 15 18 17 18 19 20 21
14 16.682 14.132 10.853 - 18.498 15.784 12.295 -
15 11.647 11.373 11.021 - 13.336 13.017 12.813 - 0.1
16 14.262 13.036 11.460 - 16.4.7 14.984 13.154 - .
17 12.695 112.315 11.826 - 14.545 14.102 13.532 -
18 14.262 13.552 12.728 - 16.275 15.527 14.565 -
19 14. 605 13.980 13.177 - 6.698 15.977 15.050 - 0.8
20 14.896 14.276 13.479 - 17.033 16.317 15. 396 -
21 15.414 14.781 13.967 - 17.628 16.897 15.957 -

6.5 Fixed square plate with variable
thickness
Numerical solutions for the lowest twenty one natural
frequency parameters 1 of a fixed square with a
sinusoidal thickness variation in the 7, {-directons
given by
h{(n,8) =hy(1—asinzy) (1 —asinz)

are shown in Table 6 for two cases of «=0.3 and 0. 5.

Table 6 Natural frequency parameter 1 for fixed square plate with variable

thickness;y =0.3

a=0.3 a=0.5
m Extra- m Extra-
mode 12 16 polation 12 16 polation
1 5.097 5.071 5.038 4.315 4.292 4.262
2 7.225 7.128 7.003 5.944 5.863 5.758
3 7.225 7.128 7.003 5.944 5.863 5.758
4 8.866 8.736 8.570 7.360 7.243 7.093
5 9.858 9.563 9.185 7.965 7.724 7.415
6 9.894 9.599 9.220 7.965 7.726 7.420
7 11.172 10.878 10. 500 9.218 8.961 8.631
8 11.172 10.878 10.500 9.218 8.961 8.631
9 13.027 12.329 11.431 10.381 9.824 9.108
10 13.027 12.329 11.431 10. 381 9.824 9.108
11 13.033 12. 640 12.135 10. 811 10.459 10.006
12 14.119 13.438 12.561 11.560 10.986 10.248
13 14.167 13.481 12.599 11.601 11.023 10.280
14 16. 844 15.393 13.528 13.318 12.174 10.703
15 16.846 15.397 13.534 13.315 12.174 10.707
16 15.630 14.913 13.990 12.961 12.327 11.512
17 15.630 14.913 13.990 12.961 12.327 11.512
18 17.885 16.447 14.599 14.535 13.357 11.842
19 17.885 16.447 14.599 14.535 13.357 11.842
20 17.885 16.842 15.642 14.795 13.962 12.890
21 19.095 17.670 15.837 15.780 14.545 12.957

6.6 Cantilever square plate with variable

thickness

Numerical solutions for the lowest twenty one natural

parameters 2 of a cantilever square plate with a linear

thickness variation in the »—directions given by
h(,0)=hy [a+ (1—a)y]

are shown in Table 7 for two cases of a=1/2 and 1/8.

The convergent values of numerical solutions were ob-
tained for the two cases of divisional numbers m(=n)
of 12 and 16 for the whole part of the plate. The nodal
lines of twenty one modes of free vibration of the two
plates of «=0.3,0.5 are shown in Figure 10. There
are some changes of mode order in 12th, 13th and 21th

modes.

Fig.10 Nodal patterns for fixed square plate with variable
thickess
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The convergent values of numerical solutions were ob-
tained for the two cases of divisional numbers m (=n)
of 12 and 16 for the whole part of the plate.The nodal
lines of twenty one modes of free vibration of the two
plates of a=1/2,1/8 are shown in Figure 11. There
are some differences of mode shape and mode order
between the two cantilever plates.
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Table 7 Natural frequency parameter A for cantilever square plate with variable

thickness;y=0.3
a=1/2 a=1/8
m Extra- m Extra-
mode 12 16 polation 12 16 polation
1 1.990 1.989 1.987 2.166 2.164 2.162
2 2.799 2.794 2.789 2.675 2.670 2.664
3 4.324 4.300 4.270 3.745 3.720 3.687
4 4.604 4.576 4.541 4.033 4.006 3.971
5 5.015 4.986 4.949 4.337 4.308 4.269
6 6.524 6.477 6.416 5.148 5.046 4.914
7 6.861 6.747 6.601 5.378 5.324 5.253
8 7.274 7.153 6.997 6.178 6.063 5.914
9 7.695 7.575 7.421 6.447 6.332 6.183
10 8.677 8.540 8.363 6.671 6.423 6.103
11 8.869 8.736 8.564 6.993 6.843 6.650
12 9.592 9.282 8.885 7.328 7.189 7.009
13 10. 466 10.116 9.666 8.434 7.905 7.225
14 10. 665 10. 380 10.014 8.701 8.379
15 10.793 10.523 10.176 8.766 8.522 8.208
16 11.375 11.034 10.595 8.942 8.597 8.155
17 11.716 11.373 10.932 8.963 8.637 8.219
18 12.697 11.987 11.074 9.633 9.282 8.831
19 13.114 12.716 12. 204 10. 58 9.585 8.304
20 13.260 12.849 12.321 10.832 10.370 9.776
21 14.113 13.305 12. 265 10. 869 10.424 9.852

7 CONCLUTION

Under the concept that the behaviour of a rectangular
plate can be analyzed from the geometrical, material
and mechanical properties at the discrete points
uniformly distributed on the plate,an approximate
method was proposed for analyzing the free vibration
problem of various types of rectangular plates with
uniform or non-uniform thickness. As a result of
numerical works, it was shown that the numerical solu-
tions by the proposed method had the good convergen-
cy and satisfiable accuracy for various type of rec-
tangular plates with uniform or non-uniform
thickness.
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Appendix I
Fu=Fip=Fuy=Fg=Fg=Fp=Fg=1, Fu=
Fops=Fopy=Fosy=Fpes=pt, Fiss=v, Faur=vp, Fip=
Fyy=—p, Fayy=Fss=—1, Fy3=—], Fyp=—k, F3py
=1, Fsy=—pk, Fi=p, other Fy,=Fj,=F3=0,
I=p(1—v?®) (he/B)®%, J=2p(1+v) (ho/R)3, k= (1/10)
(E/G) (ho/a)2 (ho/h)

Appendix 1

Apn=1s Ap=0, Ap=rmn Ap=1p Ap=0, Ap=rm
75 Apr=7p6 Ap=1p1, Bn=0, Bp=tirp, Bu=p
753 Bpu=0, Bps=p7p0, Bps=p7s6 Br=1 Wrp+7s5)s
Bps =718 pr =M (Tps + kkzhﬂ) , szu =prpet+ kleﬁSf
Com=Jurper Com=Iurpsr Cosm=Iurss, Cpomur=— 177,
Com=—17m Cou=0, [rp]=[rp] ™Y T0=Pir T2=p
Bi» T22=—tBy T53=Bii T=0Bir Tu=—pPij T=1
Bii» 734=Bii» Tuu=—I;Bs, T46=Bis» Tu=mBj T55=—1I;
Bi» Ts6=vBi» Ts1=1855 Tes=—JiBii» T66=Bs» Te1=Pii
rn=—tkiBi, 116= 1B 118=Bii» r2= —kiiBijp Ter=Psj»
7ss=Bj other 7,4=0, B;=BiBj;

Aappendix Il
Q115011 = B13ioiz = B14i0i3 = B16i0ia = B17i0i5 = B1sioie = 1 A15i03 =V,
A22051 = 23052 = B250jj3 = Az605i4 = B27055 = B2sojie — 1> Bagjjz =

v, @z30002=0
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where h=1,2, p=1,2,---,8, i=1,2,-,m,j=1,2, -,
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