Note on the $\bar{\partial}$ -problem on the complex ellipsoid

Kenzō Adachi and Hikaru Hori*

Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki 852, Japan (Received Oct. 31, 1997)

abstract

Let D be a complex ellipsoid in \mathbb{C}^n . In this paper we study Hölder estimates for solutions of the $\bar{\partial}$ -problem in D.

1. Introduction.

Let D be a complex ellipsoid in $\mathbb{C}^{\mathbf{n}}$. Then D can be written in the following form.

$$D = \{z : r(z) < 0\}, \qquad r(z) = \sum_{i=1}^{n} |z_i|^{2m_i} - 1,$$

where $m_i(i=1,\cdots,n)$ are positive integers. We denote by $C_{(0,q)}(\overline{D})$ the space of all C^1 (0,q)-forms on \overline{D} . We also denote by $\Lambda_{\alpha,(0,q)}(D)$ the space of all (0,q)-forms in D whose coefficients are Lipschitz functions of order α . Let $M=\max\{2m_i\}$. Let f be a $C^1(0,1)$ -form in \overline{D} with $\bar{\partial} f=0$. Then Range[2] proved that there exists a Lipschitz function u of order $\alpha(\alpha<1/M)$ in D such that $\bar{\partial} u=f$. On the other hand, Diederich-Fornaess-Wiegerinck[1] obtained Lipschitz solutions of the $\bar{\partial}$ -problem in real ellipsoids. In their paper they pointed out that Range's result is still valid in the case where $\alpha=1/M$. In the present paper we shall prove the following:

Theorem. Let D be the complex ellipsoid defined as above. For $f \in C^1_{(0,q)}(\overline{D}), 1 \leq q \leq n$, with $\bar{\partial} f = 0$, there exists $u \in \Lambda_{1/M,(0,q-1)}(D)$ such that $\bar{\partial} u = f$.

2. Some lemmas.

Define

$$r_j(z) = rac{\partial r}{\partial z_j}(z), \qquad \quad \Phi(\zeta,z) = \sum_{j=1}^n r_j(\zeta)(\zeta_j - z_j).$$

^{*}Iki High School

Further we set

$$eta = |\zeta - z|^2, \qquad W = \sum_{j=1}^n rac{r_j(\zeta)}{\Phi(\zeta, z)} d\zeta_j, \qquad B = rac{\partial eta}{eta} = \sum_{j=1}^n rac{ar{\zeta}_j - ar{z}_j}{|\zeta - z|^2} d\zeta_j.$$

For $\hat{W} = \lambda W + (1 - \lambda)B$, we define

$$\Omega_q(\hat{W}) = c_{n,q} \hat{W} \wedge (\bar{\partial}_{\zeta,\lambda} \hat{W})^{n-q-1} \wedge (\bar{\partial}_z \hat{W})^q,$$

where $c_{q,n}$ are numerical constants. Now we define for a continuous (0,q)-form $f(1 \le q \le n)$ on \overline{D}

$$T_q^W f = \int_{\partial D \times I} f \wedge \Omega_{q-1}(\hat{W}) - \int_D f \wedge \Omega_{q-1}(B).$$

Then $T_q^W f$ satisfies $\bar{\partial} T_q^W f = f$.

If we set $\Omega_{q-1}(\hat{W}) = d\lambda \wedge \Omega^{(1)} + \Omega^{(0)}$, then after integrating with respect to $d\lambda$ we have

$$\int_{\partial D\times I} f\wedge \Omega_{q-1}(\hat{W}) = \int_{\partial D\times I} f\wedge d\lambda \wedge \Omega^{(1)} = \int_{\partial D} \Omega^{(2)},$$

where $\Omega^{(2)}$ is written by using a symbol $P = \sum_{j=1}^{n} r_j(\zeta) d\zeta_j$, $Q = \sum_{k=1}^{n} d\bar{\zeta}_k \wedge d\zeta_k$,

$$\Omega^{(2)} = \sum_{j=1}^{n-q-1} b_{j,k} \frac{\partial_{\zeta} \beta \wedge P \wedge (\bar{\partial}_{\zeta} P)^{j} \wedge Q^{n-q-1-j} \wedge (\sum_{j=1}^{n} d\bar{z}_{j} \wedge d\zeta_{j})^{q-1}}{\Phi^{j+1} \beta^{n-j-1}}.$$

Range[2] proved the following:

LEMMA 1. Let $M = \max_{i}(2m_i)$. Then it holds that for $(\zeta, z) \in \partial D \times D$,

$$(2.1) \qquad |\Phi(\zeta,z)| \gtrsim |\mathrm{Im}\Phi(\zeta,z)| + |r(z)| + \sum_{i=1}^n |\zeta_i|^{2m_i-2} |z_i - \zeta_i|^2 + |z - \zeta|^M.$$

Let $\zeta \in \partial D$. Then $r_i(\zeta) \neq 0$ for some i. We may assume without loss of generality that i = n. Then we can choose a small ball \tilde{U} with center ζ . We denote by U a ball with center ζ such that $U \subset \subset \tilde{U}$. By using the partition of unity argument it is sufficient to estimate $\int_{\partial D \cap U} f \wedge \Omega^{(2)}$. Now we have the following.

LEMMA 2. For $z, \zeta \in U$, we define $x_{2j-1}(\zeta) = \text{Re}(\zeta_j - z_j)$, $x_{2j}(\zeta) = \text{Im}(\zeta_j - z_j)$, $j = 1, \dots, n-1$, $y(\zeta) = \text{Im}\Phi(\zeta, z)$, $t(\zeta) = r(\zeta) + |r(z)|$, then $t, y, x_1, \dots, x_{2n-2}$ constitute coordinates system in U.

PROOF. In view of the equality

$$\frac{\partial y}{\partial x_{2j}}(z) = -\frac{1}{2} \frac{\partial r}{\partial x_{2j-1}}(z), \qquad \frac{\partial y}{\partial x_{2j-1}}(z) = \frac{1}{2} \frac{\partial r}{\partial x_{2j}}(z),$$

we have

$$\frac{\partial(x_1,\cdots,x_{2n-2},y,t)}{\partial(x_1,\cdots,x_{2n})}=-2\left|\frac{\partial r}{\partial\zeta_n}\right|^2\neq0.$$

This completes the proof of Lemma 2.

We need the following(cf. [1]):

LEMMA 3. Let R be a positive constant and j a non-negative integer. For $A > 0, q \ge 1$ and z = x + iy it holds that

$$\int_{|z| < R} \frac{|z + w|^j dx dy}{(A + |z + w|^j |z|^2)^q} = \begin{cases} O(A^{1-q}) & (q > 1) \\ O(\log A) & (q = 1). \end{cases}$$

PROOF. We divide the domain of integration into three parts.

We only estimate

$$I_1 = \int_{|z| < R, |z| < \frac{1}{2}|w|} \frac{|z+w|^j}{(A+|z+w|^j|z|^2)^q} dx dy.$$

Using polar coordinates we have

$$I_1 \lesssim \int_{|z| < R} \frac{(\frac{3}{2}|w|)^j}{(A + (\frac{1}{2}|w|)^j |z|^2)^q} dx dy = 2\pi \int_0^R \frac{(\frac{3}{2}|w|)^j}{(A + (\frac{1}{2}|w|)^j r^2)^q} dr.$$

Thus we have

$$I_1 = \begin{cases} O(A^{1-q}) & (q > 1) \\ O(\log A) & (q = 1). \end{cases}$$

Using similar methods, we can prove the other cases. This completes the proof of Lemma 3.

In order to prove our theorem we use the following Hardy-Littlewood argument.

LEMMA 4. Let D be a bounded domain in \mathbb{R}^n with smooth boundary. Then there exists a positive constant C with the following property: If g is a C^1 function in D such that for some K>0 and $0<\alpha<1$

$$||dg(x)|| \leq K|dist(x,\partial D)|^{-\alpha}(x \in D),$$

then it holds that

$$|g(x) - g(y)| \le CK|x - y|^{1 - \alpha}(x, y \in D).$$

3. Proof of the theorem.

We set

$$g = \int_{\partial D} f \wedge \Omega^{(2)}.$$

Then we have

$$dg = \int_{\partial D} f \wedge d\Omega^{(2)}.$$

Thus it is sufficient to estimate the following two integrals:

$$I_1 = \int_{\partial D} \left| \frac{\partial_{\zeta} \beta \wedge P \wedge (\bar{\partial}_{\zeta} P)^j}{\Phi^{j+2} \beta^{n-j-1}} \right|, \qquad I_2 = \int_{\partial D} \left| \frac{P \wedge (\bar{\partial}_{\zeta} P)^j}{\Phi^{j+1} \beta^{n-j-1}} \right|.$$

We set $x = (t, y, x_1, \dots, x_{2n-2})$ and $x' = (x_{2j+1}, \dots, x_{2n-2})$. Then we have by using (2.1)

$$\begin{split} I_1 & \lesssim & \int_{|x| < c} \frac{|\zeta_1|^{2m_1 - 2} \cdots |\zeta_j|^{2m_j - 2} dy dx_1 \cdots dx_{2n - 2}}{(|y| + t + \sum_{i = 1}^n |\zeta_i|^{2m_i - 2} |z_i - \zeta_i|^2 + |z - \zeta|^M)^{j + 2} |\zeta - z|^{2n - 2j - 3}} \\ & \lesssim & \int_{|x| < c} \frac{|\zeta_1|^{2m_1 - 2} \cdots |\zeta_j|^{2m_j - 2} dy dx_1 \cdots dx_{2n - 2}}{(|y| + t + \sum_{i = 1}^j |\zeta_i|^{2m_i - 2} |z_i - \zeta_i|^2 + |x'|^M)^{j + 2} |x'|^{2n - 2j - 3}} \\ & \lesssim & \int_{|x| < c} \frac{|\zeta_1|^{2m_1 - 2} \cdots |\zeta_j|^{2m_j - 2} dx_1 \cdots dx_{2n - 2}}{(t + \sum_{i = 1}^j |\zeta_i|^{2m_i - 2} |z_i - \zeta_i|^2 + |x'|^M)^{j + 1} |x'|^{2n - 2j - 3}}. \end{split}$$

We set $\zeta_i - z_i = w_i$. Using Lemma 3 we have

$$\begin{split} I_{1} &\lesssim \int_{|x| < c} \frac{|z_{1} + w_{1}|^{2m_{1} - 2} \cdots |z_{j} + w_{j}|^{2m_{j} - 2} dx_{1} \cdots dx_{2n - 2}}{(t + \sum_{i=1}^{j} |z_{i} + w_{i}|^{2m_{i} - 2} |w_{i}|^{2} + |x'|^{m})^{j+1} |x'|^{2n - 2j - 3}} \\ &\lesssim \int_{|x| < c} \frac{|z_{2} + w_{2}|^{2m_{2} - 2} \cdots |z_{j} + w_{j}|^{2m_{j} - 2} dx_{3} \cdots dx_{2n - 2}}{(t + \sum_{i=2}^{j} |z_{i} + w_{i}|^{2m_{i} - 2} |w_{i}|^{2} + |x'|^{M})^{j+1} |x'|^{2n - 2j - 3}} \\ &\lesssim \int_{|x'| < c} \frac{dx_{2j+1} \cdots dx_{2n - 2}}{(t + |x'|^{M}) |x'|^{2n - 2j - 3}} \\ &\lesssim \int_{0}^{c} \frac{dr}{(t + r^{M})}. \end{split}$$

We set $t^{-1/M}r = u$. Then we have

$$I_1 \lesssim \int_0^\infty rac{t^{1/M-1}}{1+u^M}du \lesssim (dist(z,\partial D))^{1/M-1}.$$

Next we estimate I_2 . Following the estimate of I_1 , we obtain

$$I_2 \lesssim \int_{|x'| < c} rac{|\log(t + |x'|^M)| dx_{2j+1} \cdots dx_{2n-2}}{(t + |x'|)^{2n-2j-2}} \lesssim \int_0^c rac{|\log(t + r^M)|}{r+t} dr \lesssim \int_0^c rac{|\log t|}{r+t} dr \lesssim (\log t)^2.$$

This completes the proof of the theorem.

References

- [1] Diederich, Fornaess and Wiegerinck, Sharp Hölder estimates for $\bar{\partial}$ on ellipsoids, Manuscripta Math., **56**(1986), 399-417.
- [2] R. M. Range, On Hölder estimates for $\bar{\partial}u = f$ on weakly pseudoconvex domains, Proc. Int. Conf. Cortona, Italy, 1977.
- [3] R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer, 1986.