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Abstract

We treat rotation matrices of given axes and angles in the space R* = ImH
of pure imaginary quaternions. We give a product formula of rotation matrices
of given axes vectors and so explain the group structure on SO(3) ~ RP3 from
the view point of axes and angles.

1 Introduction

We give the matrix expression g(f;u) € SO(3) of rotation in R* of given axis
u € R3, |u| = 1 and angle 6 by using the adjoint representation Ad: S* = Sp(1) —
SO(3), as the following form:

9(6;u) = g(fu) = Ad (exp gu>

where u € R? is identified with a quaternion in ImH and fu € R? is called the
axis vector of the rotation. ¢(#;u) is to rotate clockwise around the axis u with
angle 6. The description is classically known as the Cayley-Klein parameter, and is
equivalent to that given by the adjoint representation of SU(2). We next give the
product formula:

9(91;U1)9(92;U2) = 9(93;113)

and so look closely at the group structure in SO(3) = RP? which is a closed ball of
radius 7 in R® whose antipodal points in the boundary are identified.
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2 Description of Rotational Transformation
by Quaternions

We identify the set ImH of all pure imaginary quaternions with the real 3-dimensional
space R® by a linear isomorphism over R:

~

R3 — ImH
W

(1)

— ai+bj + ck

o o Q €&

Let £ = 211 + 297 + 23k, y = y1t + y2J + ysk € ImH. Define an inner product in
ImH by
(z,9) = T1y1 + Taya + T3Yys.

Then identification (1) is an isomorphism of Euclidean spaces.
Let S* = Sp(1) = {p € H| |p| = 1}. For p € S3 we denote the adjoint
representation of S® = Sp(1) by F,:

F,=Adp:z+ prp~', ImH — ImH. (2)
For any u € ImH, |u| = 1, we have u? = —1. Hence the exponential is given by
e’ = cosf + usinf, 6 € R.
The exponential map exp : ImH — S? is then surjective. We show that
1. The sequence: 1 — {+1} — S3 LN SO(3) — 1 is exact,

2. If p = e2*(u € ImH, |u| = 1) then F, has u as axis and ¢ as angle.

2.1 F(S?%) =S0(3) and Ker F = {+1}

Ker F = {1} is a consequence of center(H)=R because R N S* = {£1}. The
formula

(@0) = —5 ey + o) 0

shows not changing an inner product by F),, i.e.,
(Fp(z), Fply)) = (z,y).

So F(S3) € O(3). The map p — det F, is a continous map from a connected S*
to {£1}, we have det F, = +1 and so F(S?) C SO(3). Since dim S* = dim SO(3)
= 3 and F' is a continuous homomorphism between connected groups with discrete
kernel, we know that F'(S%) = SO(3).
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2.2 Axes and Angles

We show that F, (p = €?*/2) has u as axis and 6 as clockwise angle of rotation. We
use the formula

Fy(z) =z cosf + (u x z)sin b + (u, z)u(l — cos ) (4)
where u X z is an outer product given by

1 %N
T2 Y2

3 Y3
1

T2 Y2
I3 Y3

TXY=

F, has u as axis because by (4),

Fy(u) = wucosf+ (ux u)sinf + (u, upu(l — cos )
ucos 4+ u(l — cos )

Il

= u.

7 U2

Changing basis from ¢, j, k to u; = w, ug, uz which is orthonormal basis of right hand
system, we get F), from (4) as,

Fo(u1) = wy
F,(u2) = ugcos6 + ugsiné
F,(u3) = —ugsinf + uz cosf

Hence
1 0 0

F,=1 0 cosf —sinf |,
0 sinf cosf

with respect to basis uq, ug, us. It follows that F, has 6 as angle of rotation. Com-
puting F,(3), F,(5), F,(k) with standard basis, we summarize as:
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4 N
Theorem 1 The rotation g(6;u) € SO(3) of R®* = ImH with azis u € ImH,

|u| =1 and angle 9, is given by
0
9(0;u) = Ad (exp §u)

(1—-a?)cosf+a® ab—csinf —abcosh ca+bsinh — cacosb
= | ab+csinf —abcosf (1 —b*)cosO+b?> bc— asinf — becos o
ca —bsin@ — cacos@ bc+asinf —bccosd (1 —c?)cosf + c?

And every rotation g € SO(3) can be written as the form: g = g(8;u) for some

axis u and angle 6.
- /

3 Product of Rotations

Bu/2 f1u1/2 = cos & + ursin @ and py = e22/2 =

Let p=ce cosg+using,p1=e 5

cos %Z + ugsin 2. Consider the product of rotations:

e |l

9(0;u) = g(Ou2)g(01;w1), ie,
Fy = FpFp = Fpp

Then since kernel of p +— F, is {1},
p=cppr (e==%1)

From the formula

Iy = —<.’E,y> +IT XY, T,YyE ImHa (6)
we get
= | cos 02+u sin 2 cos—dil—-}-u sin o
P2p1 = 5 2 5 5 1 5
= o 92c0s91+u sing—Qcosﬁ—%u cos@sin-g—l—kuu sin-oizsinﬁ
T 08 COS Ty T UzSI, COS o T HLCOR T Sl TR B A
= Cos@cosﬁ—(u u)sin@siné
T2 N
60 0 60 [ 0
+uy sin%zcosgl + uq cos%sin;l + (ug X ul)singsin -21
Hence,
9—1— n? - @cosﬁ—< u)sin@sin?l
cos g fusing = £qcos 5 Ug, U 5 5

0 o 6 0 Z
—|—’U,QSiI1§2COS§1 + Uy cos;zsing1 + (ug X ul)singsin El} .

Comparing real and imaginary parts we get the product formula:
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- ™
7 to th ( ) si Oy . 0,
- = — — — sin — sin —
cos2 € { Ccos 5 cos 5 Ug, Up) SIN 2 2
0 o 0 0 0 0 0 (7)
n — in 2 cos %2 i 2 in 2gin 2
usmi —e<ugsm 9 cos 2 + uy Ccos 5 sin 5 +(u2 ><u1)31n 9 sin 2)
o 4

The axis © and angle 8 of product rotation is determined by this formula.
Consider the easy case u; = ug = u'. Then rotations in 3-space is in a plane.
Since (v, u') = 1,0’ x u' =0,

cosg = ¢ cosg-z-cosgl—sin@sinﬁ —5(:0302+91
9 22 272 )" 2

using = eu sin@cosﬁnLcos@sinﬁ -—x—:u’sineerg1
2 2 2 2 2/ 2

It is addition formula of sine and cosine.

4 Group Structure on SO(3) ~ RP3

We have several relations among g(6;u)’s:
9(0;u) = g(6;0) =1,
(0 + 2mu) = g(6;w), 9(05u)™" = g(=6;u) = g(0; —u),
for any u € R?, |u| =1, 6 € R and hence,
9(6+ ) = g(6 — mu) = glm — 0 —u).

Therefore we can strengthen theorem 1 in part: every rotation g € SO(3) is of the
form: g = ¢(6;u) with 0 < 8 < 7. For any v € ImH, v # 0, let v = u, § = |v],
u = v/|v| be its polar decomposition. Define g(v) € SO(3) by

g(v) = g(0;u) = Ad (exp g)

and call v € ImH the axis vector of g(v) € SO(3). An axis vector indicates the axis
and angle of a rotation by its direction and length. We then have a surjection

g :ImH 25 5% L, 50(3).

We know g(D?) = SO(3) where D?* = {v € ImH] |v| < 7}. Since g(m;u) = g(m; —u),
g|D? induces a homeomorphism of topological spaces:

g:D¥ (v~ —v, v|=7)5 83/ (x ~ —z) 5 SO(3).

RP?* = S$3/(z ~ —z) is the 3-dimensional real projective space. Since D3/(v ~
—v, |v| = m) = ImH/~ where v ~ w < g(v) = g(w), we here look on RP3 as
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the set of all the axes vectors modulo some equivalence. The rotation group SO(3)
induces a group structure on this RP? as:

4 I
Theorem 2 Let RP? = D?/(v ~ —v, |v| = 7) = the set of all the azes vectors
of rotations modulo equivalence. Then the above g induces a group structure on

RP3 = SO(3). In the group,

1. the unit element is zero vector.
2. the inverse of v is —wv.

3. the product of 2 azxes vectors is computed by the product formula (7) modulo

equivalence.
. , %

5 Proof of Formulas

We give proofs of some facts and formulas. Refer to [2].
The exponential map exp : ImH — S? is surjective.

Proof. Let p=a+bu e S% a,bc Ru € ImH, |u| = 1. From |p> = a? +b* =1,
we get a = cosf, b = sin 6 for some 6. So exp(fu) = e®* = cosf + usind = p. O

(3) zy=—(z,y) +z xy, (6) (w,y>=—%(zy+yw)

Proof. Let © = x1t + x27 + 3k, y = 11t + y27 + ysk € ImH,

zy = (z10+ x5 + x3k) (1t + yoi + ysk)
—(z1y1 + T2y2 + 23y3) + (X2y3 — Yox3)i + (z3y1 — ya1)] + (Z1Y2 — Y122)k

' T2 Y2 T3 Y3 | . 1 N
= —(T1h + 22+ + +
(1?/1 292 3y3) r3 Y3 1T N J T2 Y2
For
(T,y) = ziyr + Toy2 + Tays,
cxy = |29 T3 Y3 A
T3 Y3 1 W% T2 Y2
we have
zy = —(z,y) +z x ¥.
It follows that immediately,
1
(r,y) = 4§($y+y:c)
1
rxy = s(ry—yz). (8)

2
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This completes the proof. [
(4) Fy(z) =xcosd+ (ux x)sinf 4 (1 — cos §)(u, z)u
Proof. Let p = e%/? = cos £0 + usin 36 € Sp(1), = € ImH.

Fy(z) = pzp™
1 1 1 1
= (cos 59 + usin 50) z (cos 59 — usin —9)

2
= zcos’ l@ — ugusin® l0 + uzxsin l(9 cos —f — zusin —f cos l9
B 2 2 202 22
1 1 1 1
= xcos® 59 — ugusin® 50 + (u X z)2sin 59 cos 59.
Here uzu = x — 2(u, ) because by (6),
uzu = {—(u,z) + (u x z)}u = —(u, z)u + (u X z)u.
And by (8),
uru = —(u, z)u + §(ua:u +z) = uzu =z — 2(u, T)u.
Therefore

1
F,(z) = zcos? 50 + (2{u, T)u — ) sin’ %9 + (u x x)sinf

2

1
= xcosf+ (u X z)sinf — 2sin 59(u, z)u

= zcosf+ (u x z)sinf + (1 — cos 0)(u, z)u.

This completes the proof. [
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