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Locating Facilities Which Interact: Some Solvable Cases

Abstract

The network version of the m-median problem with mutual communication

(MMMC) is to find the location ofm new facilities on a network with n nodes such that the

sum of a.) the cost of interaction between the new facilities and n existing facilities on the

network, and b.) the cost of interaction between pairs of new facilities is rninimized. The

existing facilities are located at nodes of the network and the interaction cost between a pair

of facilities is a function of the network distance between the facilities. This problem is

shown to be equivalent to a graph theoretic Node Selection Problem (NSP). We show that

many other problems can be formulated as an NSP. We then provide a polynomial time

algorithm to solve NSP for the case when the flow graph is Halin. Extensions to other

graph-families is provided.





1. Introduction

The network version of the m-median problem with mutual communication

(MMMC) is to find the location ofm new facilities on a transport network, X , with n nodes

such that the sum of a.) the cost of interaction between the new facilities and n existing

facilities on the network, and b.) the cost of interaction between pairs of new facilities is

minimized. The existing facilities are located at nodes of the network and the interaction

cost between a pair of facilities is a function of the network distance between the facilities.

The new facilites can be m production plants, each producing some end products as

well as several components/by-products which are used by other plants. The existing

facilities may be the customer locations or the distribution centers where the customer

demand for the product(s) produced by each plant is known. The transport network is the

road network whose nodes include the customer points/distribution centers and other points

which are candidate sites for the location of new plants.

Another application ofMMMC is the location of several new machine centers in a

production area. Material movements are made on a transport network (e.g. network of

aisles). Each new machine center will send and/or receive material to/from one or more

existing machine centers whose locations on the transport network are known. In addition,

each new machine will have material flow interaction with some subset of the other new

machines. We assume that the existing machines are located at nodes of the transport

network. There is no loss of generality here, since as long as each existing machine is on

the network, its location can be declared as a node. We consider problems where the set of

possible locations on the network for each new facility is finite. We can also declare these

locations as nodes of the network.

In the above examples ofMMMC (as well as other examples) it is most likely the

case that the cost of interaction between certain pairs of facilities will not depend upon the



network distance between their locations. This would occur in the above examples if there

was no material flow between a pair of facilities. In what follows, we say a pair of facilities

interacts only if the cost of interaction is a function of the network distance between the

facilities.

Most of the literature associated with (MMMC) deals with the case where the

interaction costs are linear in network distances. Kolen [1982] has shown that the problem

is NP-hard, when X is a general network, but is polynomially solvable when X is a tree.

Picard and Ratliff [1978] also give a polynomial time algorithm for the problem when X is a

tree. Dearing, Francis, and Lowe [1976] have shown that the problem is a convex

optimization problem for all data choices if and only if X is a tree. Erkut, Francis, Lowe,

and Tamir [1989] consider a constrained version of the problem and make use of separation

conditions [Francis, Lowe, and Ratliff , 1978] to obtain a mathematical program. The

mathematical program is equivalent to the original problem if X is tree; otherwise the

solution to the mathematical program provides a lower bound. A computational study of the

lower bound vis-a-vis the original problem is given in Erkut, Francis, and Lowe [1988].

Xu, Francis, and Lowe [1988] consider the version of (MMMC) where the

transport network, X, is not necessarily a tree, but X does contain two or more blocks

(maximal, nonseparable subgraphs of X). They show that by solving a related problem on a

"blocking graph" (which is a tree), information can be obtained which localizes each

optimal new facility to some vertex or block of X. The problem then decomposes into a

collection of independent problems, one for each localizing block of X.

In this paper we give a polynomial time algorithm for a class of network MMMC

problems in which the transport network, X is general and where the interaction costs are

general functions of network distances as long as these cost functions are such that node

optimality conditions hold, i.e. there is at least one optimal solution in which each new

facility is located at a node of the transport network. However, we do require a certain

structure with respect to the pairs of new facilities that interact.



In what follows in this section, we formulate a problem known as the Node

Selection Problem (NSP) and show that MMMC can be represented as an NSP. The

problem transformation, which also appears in Chhajed and Lowe [19901, makes use of a

graph we call a G-partite graph (to be defined shortly), which captures the essence of the

underlying problem. We end the first section of the paper by citing four other problems that

can be formulated as an NSP.

1.1 Node Selection Problem: Given a graph G=(V(G),E(G)) with node set V(G) and arc

set E(G), consider the following G-partite graph, G°: Corresponding to each node u e

V(G) we have a node-family , ou , in G° which contains nu nodes {u^ : k = 1, ...,nu }.

Two nodes u^ and vr (v*u) are adjacent in G° if and only if arc (v,u) e E(G). Arc (uk,vr )

in G° is assigned a weight co^.. Thus if (v,u) exists in G, nodes of node-families u and v

form a complete bi-partite subgraph of G°. Figure 1 gives an example of graph G and a

corresponding G-partite graph. Figure 2 shows the weights on the arcs in G° which are

presented in the form of matrices. The entry in row 1 and column 3 of the first of the

matrices in Figure 2 is the weight of the arc joining node 1 of oc and node 3 of o~d. Node-

families ou and av are said to be adjacent if and only if every node in au is adjacent with

every node in ov . We will use the notation (ou,ov) to denote all arcs between nodes in ou

and nodes in o~v . The graph G is also referred to as theflow-graph. Given a G-partite

graph G°, let S(G°) be an induced subgraph of G° with one node of each node-family and

Z(S(G )) be the sum of the weights on the arcs in S(G°).

The following Node Selection Problem (NSP) was defined in Chhajed and Lowe,

[1990]: Given a graph G and the corresponding G-partite graph, G°, with arc weights co,

find an S(G°) such that Z(S(G )) is minimum. We will denote an optimum solution of NSP

by S*(G°).

The version of the NSP in which there are also weights on nodes in G° and

Z(S(G )) includes the node weights as well as arc weights can be easily transformed to a



problem with no weights on the nodes. Let nw(vr) denote the node-weight on node vr. For

those nodes with nw(vr) * 0, we identify a node-family au , adjacent to ov > and set the

weight, co
u
^, of arc (vr,uk) as co

u
^. <- co

u
^ + nw(vr), V %£ cu . Finally we delete all

node-weights. If node vr is in S(G°), Z(S(G°)) will include the arc weight nw(vr). Thus an

NSP in which there are weights on nodes can be transformed to an equivalent NSP in

which there are no weights on nodes.

1.2 MMMC as NSP: To represent MMMC as an NSP, the flow graph has m nodes (one

node for each new facility). For nodes u and v of G, (u,v) e E(G) if and only if new

facilities u and v interact, i.e., the cost of interaction between the pair depends upon the

distance between them. We then construct a G-partite graph G° with m node-families, one

corresponding to each new facility. The node-family for node u of G consists of nu nodes,

one node corresponding to each of the nu possible locations for new facility u on the

transport graph X. For each new facility u, we select a new facility u° such that there is an

interaction between new facilities u and u° and define a function 5(u,u°) = 1 and 5(u,v) =

for all other new facilities v * u°. Note that 5(u,v) may not be equal to 5(v,u). The weight

on the arc (uk,vr ) in G° is equal to the sum of a) 5(u,v)*(interaction costs between new

facility u and all existing facilities if new facility u is located at node k), b)

8(v,u)*(interaction costs between new facility v and all existing facilities if new facility v is

located at node r), and c) interaction cost between new facilities u and v if u is located at

node k and v is located at node r.

S(G°) gives a feasible solution to MMMC with a cost Z(S(G )). Thus solving NSP

on a G-partite graph as defined in the preceding paragraph provides a solution to the

MMMC. In Chhajed and Lowe, [1990] a version of the MMMC in which there is a fixed

cost of locating a new facility u at node k, is modeled as an NSP.

1.3 Additional Problems as NSP: We now cite four additional problems that can be posed



as Node Selection Problems.

Problem 1:0-1 Quadratic Programming

A 0-1 quadratic programming problem is [Barahona, 86]:

(QP) min l/2xtQx + ex = Zi=i..nSj=i+l...n qijXjXj + Xi=i..nCiXi, x e { 1,0}.

To model QP as an NSP we create a G-partite graph, G°, (and a flow graph G(Q)) with a

node-family for each xj (a node for each xj in G(Q)) which has two nodes, nio and n^.

Node njo (nn) corresponds to the variable xj taking the value (1). Join two node-families

(two nodes in G(Q)) if and only if qy > 0. The weight on arc (nji, nji) is initially set equal

to qjj and all other arcs between C[ and Cj are initially given weight 0. To account for the

linear costs q, we select an index j such that qy > and add q to the weight on arcs (n^,

njo) and (nji, nji). It is easy to see that NSP on G° is a reformulation of QP.

Problem 2: Product Design - Marketing

Consider the following variation of a product design problem arising in marketing

[Eriksen and Berger, 1987]: A product has to be designed with m attributes.

Corresponding to an attribute u there are nu discrete levels of the attribute (e.g., color is an

attribute with blue, green and red as three possible "levels"). For each level of each attribute

we have a measure of customer preference (main effect). In addition, there are two-way

interaction effects between level k of attribute u and level r of attribute v. The objective is to

design a product by choosing a level of each attribute such that the sum of the main effects

and the two-way interaction effects is maximum. Transforming this product design

problem to NSP is similar to the transformation for MMMC with the fixed locational costs.

Problem 3: Product Design - Engineering

Askin and Goldberg, [1988], have looked at a product design model focussing on

the engineering attributes of a product, similar to the product design problem from the

marketing perspective, described above. Again, a level of each attribute is to be selected to

minimize the sum of production cost and average cost of quality, which is a function of

target design and the actual performance of a design. Production costs and the distribution



of a quality variable can be an arbitrary function of attribute levels. A design point is

defined by the setting for each attribute. Experimentation is carried out by selecting a set of

design points and making multiple observations for each design point. The mean and

variance of the quality of each design point are computed. One way to select a design is to

minimize the cost of each attribute level (main effect) and the cost of quality defined by the

square of the bias (difference between mean quality and the target quality of a design

point), multiplied by a cost coefficient for quality loss. Askin and Goldberg develop a

model, called the quadratic selection model, (equivalent to NSP) to solve the problem.

Problem 4: Public Transit Schedule:

Consider a public mass transit system (trains, subways, busses) [Domschke, 1989]

where we are given a set of transfer stations and a set of routes connecting these transfer

stations, a cycle time (amount of time between successive departures at any station along its

route) for each train, known number of passengers who want to change between routes at

transfer stations, and known running times between stations and stopping times at stations.

We want to determine the departure time of each train within its given cycle at the initial

station of its route such that the sum of all waiting times for all passengers changing routes

is minimized. To represent this problem as an NSP we construct one node-family for each

route. The nodes in a node-family correspond to different possible departure times for the

train from its initial station and two node-families are adjacent if there are passengers who

want to change between those two routes. The weight on an arc is the total waiting time of

all passengers who want to change between the routes (represented by node-families) at the

departure times represented by the end nodes of the arc.

The quadratic assignment problem ( and hence the traveling salesman problem)

also can be posed as an NSP. For these two problems the flow graph will be complete and

so the results of this paper cannot be applied to these two problems (if the results were

applicable, we would have shown that P=NP !). However, the results of this paper can be

used to obtain lower bounds to the QAP and the TSP by deleting (through Lagrangian



relaxation) some of the arcs of the flow graph.

We would like to point out that NSP is a special case of nonserial dynamic

programming. Lipton and Tarjan [1980] had given a planar separator theorem and shown

that a nonserial dynamic programming problem when each variable can take only two

values and the flow graph is planar, can be solved in 2°( v m) where m is the number of

nodes in the flow graph. We will return to this in Section 5 to compare the efficiency of our

algorithm versus theirs.

In the remainder of this paper we give a polynomial time algorithm for a class of

NSP which is characterized by the structure of the flow graph G. In section 2 we

summarize the results from our earlier paper, Chhajed and Lowe [1990], on solving NSP

when the flow graph is series-parallel. These results will be used in the later sections. In

section 3, we define a reduction operation on the G-partite graph which is similar to the

contraction operation defined for a graph. In section 4 we define a Halin graph and present

a polynomial time algorithm for NSP when the flow graph is Halin. In concluding the

paper in section 5, we show how the results can be extended to other flow graphs.

2. Previous Results

In this section we report some results from our previous paper [Chhajed and Lowe,

1990] in which a polynomial time algorithm for NSP when the flow graph is series-parallel

is given.

Definition : A graph is series-parallel [Richey, 1989] if it can be reduced to an arc by

repeated applications of the following operations:

(Gl) Series Reduction: Replace any degree-2 node q, and the incident arcs (u,q) and (v,q),

u * v, by a new arc, a'(u,v), incident to u and v.

(G2) Cut Reduction: If q is a pendant node (a node of degree one) adjacent to node u, find

a node v * q adjacent to u, delete node q and add an additional arc a'(u,v).



(G3) Parallel Reduction: Replace two arcs e and f which are both incident to nodes u and v,

by a new arc, g, incident to u and v.

The new arcs that are added to the graph in the above operations are named

pseudo-arcs in [Richey, 1989]. Richey describes an operation similar to operation (G2),

calling it a Jackknife reduction, but does not add the new arc a'(u,v). If we perform parallel

reduction on (u,v) immediately after the cut reduction, we get Richey 's Jackknife

reduction. Thus, although there is a minor difference in the definition of one operator,

which we need for our algorithm, the above definition of a series-parallel graph is identical

to that of Richey.

Three graph operations (GP1, GP2, and GP3) on a G-partite graph are defined

which are similar to the operations (Gl), (G2), and (G3) discussed above so that the new

G-partite graph corresponds to G after the elementary operation. The outcome of two of

these operations will result in parallel arcs in the graph. We emphasize here that if there are

parallel arcs between two given nodes of a G-partite graph G°, and if this pair of nodes is in

a feasible solution S(G°) to NSP, then the parallel arcs are also in S(G°), so that the arc

weights of both arcs contribute to Z(S(G )).

With each node and each arc of G° a label is associated in the form of a set of

nodes. Initially, the label of each arc e is set as La(e) = { }, where { } denotes the empty set,

and the label of each node ujc is set as Ln(uk) = {u^}. We will represent the label of an arc e

defined by two nodes p and q by La(p,q) rather than La((p,q)). During the graph operations

on G°, arcs and nodes of graph G° are deleted, in some cases (new) arcs are added, and

labels of the remaining arcs, as well as the arc weights, are modified to reflect the change.

The labels are used, basically, to carry pertinent information about the deleted portion of the

graph. In modifying the labels, we typically add two labels, where addition of labels is

defined as the set union operation on the sets corresponding to the two labels. In the

remainder of the paper we will denote X = max {nu : u g V(G)}.

(GP1): Series-Reduction: In this process a node-family a
q
such that node q is adjacent to



exactly two distinct nodes u and v of G, where q*v*u, is eliminated in G° and node-

families cu and ov are made adjacent. Thus the reduced graph has one less node-family.

This reduction has time complexity OQJ1

).

(GP2) Cut Reduction: Given two node-families oq and
0"
u such that node q has degree one

in G and {(u,v), (q,u) eE(G)} we delete node-family aq and add parallel arcs ( ou , av)

between nodes of au and ov in the G-partite graph. Also, cut-reduction can be done in

0(k2) time

(GP3) Parallel Reduction: Given two node-families cu and ov such that there are two arcs

between every node Uk e au and vr e av , we replace the parallel arcs by a single arc. The

weights and the labels associated with the two parallel arcs are added and they form the

weight and label, respectively, of the new arc. Furthermore, parallel-reduction can be

performed in 0(X.2) time.

Additional details about these three reduction operations can be found in the

Appendix where they are presented as procedures. In Chhajed and Lowe [1990], it has

been proven that each of these operations preserves the solution to NSP. Finally, an

algorithm (Algorithm SP) which repeatedly uses the above three reductions to solve NSP

on a G-partite graph when the flow graph is series-parallel is presented in the Appendix. If

the flow graph has m nodes (m node-families in G°) and each node-family has no more

than X members, then Algorithm SP is 0(m^3
).

3. Contraction Reduction

In this section we define a fourth elementary operation (G4) on G and (GP4) on G°.

In what follows, given two nodes u and v ofG (node-families au and av of G°), when we

refer to the set of nodes adjacent to {u,v} (node-families adjacent to {tfu,av }), we mean

those nodes s in G (node-families os in G°) adjacent to u or v or both (adjacent to ou or av

or both), where s*u*v.
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(G4): Contraction Reduction: Contraction of two nodes u and v in G is defined as the

removal of u and v, the insertion of a new node w, and the insertion of an arc between w

and each node which was adjacent to {u,v}.

(GP4): Contract Reduction of two Super-nodes: In this operation we reduce two node-

families, Gu and Gv , in G° to a single node-family cw . IfG denotes the graph G after nodes

u and v are contracted then contracting node-families ou and ov will result in a G-partite

graph corresponding to graph G. The number of nodes in aw is nu * nv . The following

procedure gives details of this process:

PROCEDURE CO(au,ov)

Step 1: Create a node-family ow with nu * nv nodes {wr : r = 1,..., nu * nv } of color w.

For each i = l,...,nu and j = l,...,nv , with nu > nv , choose the unlabeled node

wr of color w, where r satisfies r = nu*(i-l) +j, and set its label Ln(wr) as

Ln(ui)uLn(vj). Let the function K(r) = [i,j].

Step 2: Choose a node-family as adjacent to {ou , ov }.

For every node sk e os and wr e aw where K(r) = [i,j]:

Add a new arc a'(Sk,wr) with weight,

°*ta
<~ "ki

+
"kj

andlabQl

La(sk,wr)<- La(sk,Ui) u La(sk,Vj).

{Here coj^ and La(sk,ui) (co^
v

, and La(sk,vj)) are defined to be zero and the

null set, respectively, if as and ou (av) are not adjacent).

Step 3: Remove all the arcs connecting node-family os to ou and av . If cu and av

become disconnected from the remainder of G° then go to Step 4; else go to

Step 2.

Step 4: If au and ov are connected then choose any node-family os connected to ow .

Set the weight of arcs joining nodes in Gs and Gw as:
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-SW . . sw . uv
co^ <- co^ + a>jj

v
: K(r) = (i,j); V (sk,wr) € E(G°)

La(sk,wr) <r- La(sk,wr) u La(ui,vj) : K(r) = (i,j);V (Sk,wr) £ E(G°).

Step 5: Delete ou and av • Return.

As an example consider the G-partite graph, G°, shown in Figure 1 and the arc

weight data shown in Figure 2. Suppose we want to contract-reduce node-families Ga and

Gc . Since na=nb=2, we first create a node-family ow with four nodes as shown in Figure 3

and set the labels as Ln(wi)={ai ci), Ln(w2)={ai C2}, Ln(w3)={ a2,clK and

Ln(w4)={a2 c2 }. Also let k(1) = (1,1), k(2) = (1,2), k(3) = (2,1), and k(4) = (2,2). In

Step 2 we choose node-family Gt>, which happens to be connected to both aa and oc . We

connect Ob and aw (Figure 3) and compute the weights and labels. Since the labels on arcs

in (o~a,Gb) and (cc,<Jb) are emPty> the labels on the new arcs are also empty sets and are not

shown in Figure 3. In Step 3 we delete arcs (Ob,o~a ) and (Ob,(Jc ) and go back to Step 2

since aa and ac are still connected to G°.

We now choose node Gd which is connected to oc , connect ow and ad, and compute

the weight and label of these arcs. We then delete the arcs connecting nodes in ad and ac .

This disconnects aa and ac from the rest of the graph (Figure 4), so we go to Step 4. Since

ac and aa are connected, we select node ab which is connected to aw and modify the

weights and labels of arcs joining o"b and aw . Node-families ac and oa are now deleted.

The final result of applying procedure CO is shown in Figure 5.

The complexity of Step 1 is nu*nv . Step 2 can be carried out in ns*nu*nv time which

is repeated for all cs connected to au or ov giving it a complexity of 0((Xs is adjacent to {u,v}

n s )*nu*nv ). The complexity of Steps 4 and 5 is no larger than of Step 2. Thus, the

complexity ofCO is 0((Ls is adjacent to {u,v} "s )*nu*nv )). We now show that contract-

reduction preserves an NSP solution on G°.

Let V be an arbitrary subset of nodes of a G-partite graph G° such that there is at

most one node from each node-family in \|/. Let S*(G°,\}/) be an optimal solution of a
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constrained version of NSP on G° with the set of nodes \j/ fixed, and let Z(S*(G°,\}/)) be

the value of this solution. Thus, S*(G°,{}) is a solution to NSP.

Lemma 1

:

For a G-Partite graph G° with node-families cu and ov , let G° and G be the

results of contracting node-families Gu and Gv in G° and nodes u and v in G. Given an

optimal solution S*(G°) to NSP(G°), an optimal solution to NSP(G°) can be constructed

using the nodes and arc labels of S*(G°).

Proof: Let S*(G°) be an optimal solution to NSP(G°) and let Wf*e ow be in this optimal

solution, where ow is the node-family introduced in G° as a result of contraction of Gu and

ov . Let Uj*e ou and vj*€ Gv be such that K(r*) = (i*,j*). Let \j/* = {qp
* : (wr*,qp*) e

S*(G°)} i.e., \|f* is the set of nodes adjacent to Wr* in S*(G°). All nodes in vji* are also in

graph G° and belong to node-families adjacent to ou and/or ov . Let A* denote the set of

arcs between Wr* and the nodes in \\f*.

In order to obtain a solution to NSP(G°\cw , \j/*) we can delete the arcs in A* from

S*(G°). That is, S*(G°\ow , y*) = S*(G°)\A* . S*(G°\ow , y*) is also an optimal solution to

NSP(G°\{ ou,ov }, y*) and has the same objective function value on graphs G°\aw and

G°\{au,cv } because these two graphs are the same. If A* is the set of arcs between

{ui*,Vj* } and nodes in \j/*, including the arc (uj*,vj*) if it exists, then the sum of the

weights and labels on the arcs in A* are the same as the sum of the weights and labels on

arcs in A*. Thus, S*(G°\aw, y*)uA* is a feasible solution to NSP(G°) with the objective

function value Z(S*(G )).

What remains to be shown is that S*(G°^cjw , \|/)uA* is also an optimal solution to

NSP(G°). To do so, we first assume that a solution, S*'(G°) with objective function value

better (lower) than Z(S*(G )) exists and then arrive at a contradiction. Let uj'G gu and

vj'€ Gv be such that they are in this optimal solution. Let wr
' g gw be such that K(r') =

(i',j'). Let y'^qp'iqp'G S*'(G°), q is in the set of nodes adjacent to {u,v} }, A' is the set

of arcs between { Ui\Vj' } and nodes in \|/', including the arc (ujsvj') if it exists, and A' is
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the set of arcs between wr
' and the nodes in \j/'. Now, S*'(G°)\A' is an optimal solution to

NSP(G°\{au,av K V') and NSP(G°\aw , \|/'). Also {S*'(G°)W }uA' is a feasible solution

to NSP(G°). However, the sum weights and and labels on A' and A' are the same. Thus,

we have obtained a feasible solution to NSP(G°) with a value smaller than Z(S*(G )), a

contradiction. «»

In the next section we define a Halin graph and give an algorithm to solve NSP

when the flow graph is Halin. This algorithm makes use of GP1,. . .,GP4 defined in the

previous two sections.

4. Halin Graphs

In this section we give an algorithm to solve (NSP) on a G-partite graph

corresponding to a Halin flow graph. A Halin Graph is constructed as follows: Take a tree

T having no nodes of degree two, with a planar embedding and add a cycle C formed by all

the leaf nodes of T such that G = TuC remains planar (Figure 6). A procedure to recognize

a Halin graph in polynomial time is given in Cornuejols, Naddef, and Pulleyblank [1985].

Our solution procedure to solve NSP on a Halin flow graph proceeds by first

identifying a set of pairs of nodes of G. Each pair of nodes is contracted after which the

original flow-graph reduces to an outerplanar graph, which is known to be a series-parallel

graph [Wimer, 1987]. Corresponding operations are also performed on G°. Subsequently

we use Algorithm SP to solve NSP on this resulting outerplanar graph and recover the

solution to the original problem on the Halin graph. We begin by introducing some

additional notation.

Given a Halin graph, G, let C be the set of cycle nodes (i.e. V(C)) and let / be the

non-cycle nodes (non-tip nodes of T). We assume that G has no nodes of degree 2 (see

section 5 for relaxation of this assumption). Let \C I = and 1/ 1 = rj, so that 6+r|=m. Select
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a node re /which is adjacent to no more than one non-cycle node. Letting v be the number

of cycle nodes adjacent to r, we now number all of the cycle nodes ofG consecutively in a

counterclockwise fashion, in such a way that the cycle nodes adjacent to r are numbered

1 ,z>, . . . , v.

Now direct all of the arcs of T away from node r. If there is a directed path from

node pel to node qe V(G), we say that q is a descendant of p, and if p is adjacent to q,

then p (q) is the parent (child) of q (p). Given any node i g /, we denote the set of cycle

nodes (C-nodes) which are descendants of i by C(i). We also define C(i) = {i} for node ie

C. With this construction we note that for any i e /, the member(s) of C(i) are numbered

consecutively. In fact C(r) = { 1 , . . . ,0 } and { 1 , 6 } is a subset of C(i) if and only if i = r.

Also, if q g / is a descendant of p, then C(p) => C(q). We also note that if q is not a

descendant of p then C(q)nC(p) =
(J).

For any node i g /, we call the youngest child of i that child , denoted by yj, which

has the lowest numbered C-node as a descendant. If one or more children of i are

themselves C-nodes, the indices of the C-node children are used to define the youngest

child of i.

As an overview, we will contract every non-cycle node with an appropriately

selected cycle node, i.e., rj pairs will be contracted and each pair to be contracted will be

made up of a non-cycle node and a matched cycle node. We now specify for each i e /, a

cycle node (denoted by c(i)) to contract with i. As will be shown shortly, we choose the

nodes c(i) so that:

i) c(i) * c(j) for i * j so that each node-family of 0° contains no more than X2 nodes,

ii) The graph, G, resulting after the rj contractions is planar, and

iii) Each node ofG is in the exterior boundary of G so that G is outerplanar.

The nodes c(i) are chosen as follows: For each node i e/, if yj g C, then c(i) = y[.

Otherwise, if yj g /, then c(i) is the largest indexed member (oldest member) of C(yj). We
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note in particular that c(r) is that cycle node which is numbered 1 since node r is adjacent to

the cycle node numbered 1. An example of the above construction and definitions is shown

in Figure 7. The dashed lines in the figure are between nodes i and c(i) to be contracted.

The graph G which results from the contraction is shown in Figure 8. We note that G

contains parallel arcs. Figure 9 shows the result of performing all parallel reductions on the

graph in Figure 8 (after some rearrangement of the embedding).

We first show part i) for the above choice of c(i)s.

Lemma 2: c(i) * c(j) for any i,j € /, i * j.

Proof: Letting yj (yj) be the youngest child of i (j) we have two cases.

Case I: yj is not on a directed path from i to j.

In this case, C(yj) n C(yj) = so that c(i) * c(j).

(A similar argument holds for yj not on a directed path from j to i.)

Case II: yj is on a directed path from i to j.

Letting q denote the index of the node with the largest number in C(j), we note that c(i) > q.

Since j has at least two descendants, q is strictly greater than any member of C(yj) so that q

> c(j). Thus c(i) > c(j).

(A similar argument holds for yj on a directed path from j to i.) «»

Parts ii) and iii) are established in the following:

Theorem 1: Let G be the graph resulting from contracting the pairs { (ij, c(ij), j=l,. . .,r| }

.

Then,

a) G is planar, and

b) each node of G is on the exterior boundary of G, so that G is outerplanar.

Proof: Each pair of consecutive cycle nodes ofG is in a unique face of G. From Lemma 2,

c(i) * c(j) for all i,j e /, i *j, so the face of G containing c(i) and c(i)+l, denoted by Fj, is

distinct from the face Fj containing c(j) and c(j)+l, for every ij e I. For every ie /
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construct an artificial edge in Fj connecting i and c(i). Note that the resulting graph, denoted

by G, is planar.

From the definition of contraction of nodes, the contraction of i and c(i) in G is

equivalent to "shrinking" (as defined in Lipton and Tarjan [1979]), the (artificial) edge

(i,c(i)) in G. In Lemma 1 of Lipton and Tarjan, it is shown that shrinking an edge of a

planar graph preserves planarity . It now follows that contracting of the pairs { (i,c(i)) } of G

results in G planar.

That G is outerplanar again follows from the definition of contraction and the fact

that every node i € / is contracted with a cycle node of G. «»

The above results provide a justification for the following algorithm:

ALGORITHM HALIN

Given: A G-partite graph, G°, corresponding to a Halin flow graph, G=TuC.

Output: Solution to NSP on G°.

Step 0: Let C=V{C); 7=V(G)W(C); re / : r is adjacent to two or more nodes in C. Number

these nodes of C adjacent to r in a counter-clockwise fashion, starting with 1 and continue

numbering the remainder of the nodes of C.

Step 1: Root T at r. Let C(i) = (j: j is a descendant of i; je C), V i e /, and let C(i) = {i}

Vie C.

For all i e / let yi be that child of node i : min {j: je C(i)} e C(yj).

Define c(i) = yj if yi e C; otherwise c(i) = max {j: j e C(yi)}, Vie/.

Step 3: Contract pairs (i, c(i)) V i e / in G and the corresponding node-families in G°,

using (G4) and procedure CO, respectively, deriving graphs G, and G°.

Step 4: Call Algorithm SP to solve NSP on G, and G°.
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Lemma 3: The complexity of solving NSP for a Halin flow graph using Algorithm HALIN

is 0(mX6).

Proof: As we will show, the total effort is dominated by the work in Step 4, i.e., solving

the NSP on G° when G is series-parallel.

We have argued earlier that to contract ou and ov takes 0(nu*nv*£ns :s adjacent to

{u,v}) effort. Thus the total effort to create graphs G and G° is 0(Xie/ (lail*lGc(i)l*£lasl : s

adjacent to {i, c(i)}). Again, letting X be an upper bound on the number of nodes in any

family of the original G-partite graph G°, some os in the above expression may be the result

of a previous contraction operation, in which case it may have up to X2 members.

However, in any case, los l < X2 . It is always the case that ICjl < X and loc(i)l - X.

Letting kj be the number of nodes adjacent to ie/ and noting that the number of

nodes adjacent to c(i) is 3, we have Xie / (ki +3) = O(m). Thus the total effort for creating

graphs G and G° is 0(m?i4). In Step 4 we call algorithm SP with input graphs G and G°,

where G is a series-parallel graph with O(m) nodes and each node-family of G° has no

more than X2 members. Thus using algorithm SP on G and G° takes 0(mX6) effort, which

is the complexity of Algorithm HALIN.«»

Corollary: Problem MMMC on a transport graph x with n nodes, a Halin flow graph, and

each new facility can be at any one of the n nodes of T, can be solved in 0(mn6).

5. Extensions

In this section we give examples of other graphs for which NSP can be solved by

using GP1,. . .,GP4 in polynomial time. Specifically we define a generalized Halin graph

and 7t-Halin graphs. Finally, we show that using our results, we get a linear time algorithm

for 0-1 quadratic programming problem when G° representing the 0-1 quadratic program

corresponds to a Halin flow graph.
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5.1 Generalized Halin Graphs: We can generalize the definition of a Halin graph to a graph

constructed as G'=TuC, where T is a tree (which could have nodes of degree two) and

C is a cycle connecting a subset of the leaf nodes of T. Thus, there may be tip nodes of T

not on the cycle C (G' could have nodes of degree one), and G' could have nodes of

degree two on the cycle and on the tree. After maximal application of series and cut-

reductions to G', the resulting graph will be Halin, therefore recognition of these graphs

and solving NSP on them can be done in the same time complexity as before.

5.2 7t-Decomposible Graphs: We now give a further generalization of the class of graphs

which are solvable by the repeated applications of GP1,. . .,GP4 in polynomial time. In

defining this class there are two important factors to be kept in mind; i) a graph in the class

should be recognizable in time complexity no larger than the time it will take to solve NSP,

and ii) there should be limited applications of the contraction-reduction. In particular, if w

is the result of contracting two nodes, then w should not be used in further contractions (in

order to bound the number of nodes in any node-family of the G-partite graph).

We first introduce some definitions. The connectivity of a graph is the minimum

number of nodes whose removal results in a disconnected graph. A graph is said to be n-

connected if its connectivity is at least as large as n. The t-decomposition of a graph, which

is unique, [Hopcroft and Tarjan, 73; Bixby and Wagner, 88] is a tree, T, the nodes of

which are graphs. Two nodes in T are adjacent if and only if they have a common arc,

called the marker arc. In the t-decomposition, (i) every member of V(T) has at least three

arcs and is a polygon (cycle), bond (graph on two nodes with parallel arcs), or a prime (a

graph which is 3-connected after deleting all loops and all but one arc in each parallel

class), (ii) only bond members of V(T) have arcs parallel to their parent marker (defined

below), and (iii) no two polygons or bonds have a marker arc in common. The reverse of

decomposition is a merge operation; while merging two adjacent nodes of T, the common
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marker arc is identified and then erased. If we perform all the merge operations (in any

order) we get the graph G. An 0(V(G)+E(G)) algorithm to compute the t-decomposition is

given in [Hopcroft and Tarjan, 73].

If we direct all arcs of a tree T away from a node De V(T), T is rooted at D. Given

a rooted T, and two nodes H,Kg V(T) such that arc (a,b) € E(H)nE(K) (i.e., (a,b) is a

marker arc ofH and K), H is parent ofK if there is a directed arc from H to K in the rooted

tree T. Arc (a,b) is called the child marker of K. Note that every node of rooted tree T,

except the root node, has one and only one child marker. For a rooting at node R, let

cmn(K,R) denote the nodes { a,b } corresponding to the end nodes of the child marker of K

for all K g V(T)\R.

We now define [Chhajed and Lowe, 90] a family of graphs, tl Graph B is a

member of n if and only if there are two terminal (nodes) u and v of B, such that for

arbitrary fixed nodes, Uk° e CJU and vr
° e ov , S*(G°(B), {uk°, vr<>}) can be computed in

polynomial time, where G°(B) is the G-partite graph corresponding to B. In addition,

graph B should be recognizable in polynomial time. Note that Jt may contain non-planar

graphs, e.g. K5 with any pair of nodes as terminals is in n. Members of n include Halin

graphs, series-parallel graphs, as well as graphs obtained by taking a series-parallel graph

or a Halin graph, G, two additional nodes (which will be terminals), {u,v}, and connecting

node u (v) to an arbitrary subset of nodes of G. The graphs in Figure 10 are examples of

members of jc.

G is said to be K-Decomposible graph, if there exists a node R such that when the t-

decomposition tree of G is rooted at R , each component Hg V(T)\R is in tc with terminals

cmn(H,R ) and R is in 7C for some pair of nodes as terminals. Note that if R is series-

parallel or Halin then R is in tc. Figure 1 1 gives an example of a TC-Decomposible graph

along with its t-decomposition.

To recognize a TC-decomposible graph G, we first find its t-decomposition. Then we

select a node R of this tree, root T at R, and test whether R is in tc for some pair of nodes
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of R. This can be done in polynomial time as there are at most 0(V(R)2) pairs of nodes to

be tested. If R is k, we then test for each member of V(T)\R whether it is in n with

terminals cmn(H,R). If the answer is affirmative for each component in V(T)\R we are

done, otherwise we select another unselected node of T and continue. Thus determining

whether a graph is 7t-decomposible can be done in polynomial time.

In order to solve NSP on a 7t-decomposible flow graph, we first find the node R

and root the tree at R . The following recursive step is carried out until node R is obtained.

Consider a component H (* R ) which is a leaf node in the t-decomposition tree.

Case I: IfH is a polygon, we perform series-reduction on both H and G°(H) until only the

marker arc remains. Merge H with the component adjacent to it and perform parallel

reduction, if necessary.

Case II: IfH is prime, connect (arcs initially have zero costs) the node-families

corresponding to the cmn(H,R ) = {u,v} in G°(H). Select two nodes u^e ou and v^ av and

compute S*(G°(H),{uk,vr }). This can be done in polynomial time as H is in n with

terminals cmn(H,R ). Set the weight on the arc (uk,vr) as Z(S*(G°(H),{uic,vr })) and label

as nodes in S*(G°(H),{uk,vr }). Perform this operation for every choice of a node in au and

a node in ov . Delete all arcs and nodes ofH except the marker arc. Merge H with the

component adjacent to it and perform parallel reduction, if necessary.

Case HI: IfH is bond, merge H with the component adjacent to it and perform parallel

reduction, if necessary.

In either case, the resulting tree T will have one less node. At the end of the process

we get graph R for which NSP can be solved in polynomial time.

5.3 Quadratic zero-one programming: Pardalos and Jha, [1990] have provided an

algorithm which uses the planar separator theorem [Upton and Tarjan, 1980; Lipton and

Tarjan, 1979] and runs in 0(mlog(m)2c v mlogm) with c>0, for quadratic zero-one

programming (See Problem 1, Section 1) for planar graphs. Halin graphs have a 3-
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separator which will make the algorithm in [Pardalos and Jha, 1990] of 0(mlog(m)231°grn
).

The initial m is an upper bound on the complexity of finding a separator and updating

weights. It may be that due to the special structure of a Halin graph and the resulting

components, this can be done in constant time. In addition, the exponent of 3 comes from

the fact that a Halin graph has a 3-separator, but the resulting components and

subcomponents will have 2-separator. Thus it may be possible to reduce the overall upper

bound to 0(log(m)22,°gm
) = 0(m2logm). If we represent the quadratic 0-1 programming

problem as an NSP with flow graph G(Q) (see Section 1) then there will be two nodes in

every node-family, i.e. X=2. Thus applying Algorithm Halin to solve the quadratic 0-1

programming problem, when G(Q) is Halin graph, will result in a time complexity of

0(m26), which is linear. These results are also applicable when G(Q) is Tt-decomposible.

We note that Barahona [86] has provided a linear time algorithm for quadratic 0-1

programming when G(Q) is series-parallel which can also be achieved by formulating the

problem as an NSP and applying Algorithm SP.
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Appendix

PROCEDURE SR(a
q)

Step 1: Let u and v be the two nodes adjacent to node q in G, where q*u*v.

Step 2 For each pair of nodes Uk e o~u , vr e av , find qp
<> giving

°^S°
+
^ro

= m*n
^ ^kD

+
^ro ^ ^*es can ^e arbitrarily broken).

Add an arc a'(uk , vr) with weight equal to co^ + co^ and

let the label of this new arc be La '(vr,uk) <— La(vr,qp°)uLa(uk,qp°)u Ln(qp°)

.

Step 3: Delete node-family o
q

. Return (to the calling algorithm).

PROCEDURE PR(tfu , CTV )

Step 1: Let nodes Uk e au and vr e av be such that there are two arcs between them. Delete

one of these arcs and add its weight to the weight of the other arc. Also add the label of

this deleted arc to the label of the second arc.

Step 2: Continue Step 1 until no parallel arcs between nodes of ou and ov remain.

Step 3: Return.

PROCEDURE CR(G
q , cu)

Step 1: With q a pendant node of G adjacent to u, select an arc (u,v) of G, v*q. (Such an

arc exists because we have assumed that (u,q) is not the only arc of G and throughout

we assume that G is connected.)

Step 2: For each node Uk of au ,

Find a node qp° of node-family oq such that coJ*L = min {^jS) (^es can ^e

arbitrarily broken).

In G° add new arcs a'(uk , vr) for all vr e cv with weight co^ and

set the label of these new arcs La'(uk , vr) <— Ln(qp°) uLa(qp°,Uk).

Step 3: Delete all the nodes of node-family av in G°, i.e. delete av .

Step 4: Return.

ALGORITHM SP

Step 0: Set k<- 1, G°k «- G°, Gk <- G.

Let 2D denote the list of nodes in Gk with degree 2. PA is the list of node pairs having

parallel arcs in Gk-
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Step J: If Gk is a single arc then go to Step 6 else find a node q e V(Gk) with degree one

and go to Step 2. If there exists no such node then go to Step 3.

Step 2: Let (q,u) e E(Gk) be the arc connecting q to another node u.

Cut Reduce node-families Gu and oq
in G\ by calling procedure CR(o

q
,ou ).

™

Cut Reduce nodes u and q in Gk.

Let node v be such that it is adjacent to u in Gk and is used in CR(.). Add (u,v) to PA.

Set Gk+i <— Gk (after cut-reduction)

G°k+ i
<— G°k (after cut-reduction)

k<-k+l.

Go to Step 5.

Step 3: If I2DI = then go to Step 5; else choose a node qe 2D. Let nodes u and v be

adjacent to q in Gk-

Step 4: If (u, v) € E(Gk) then add (u, v) to PA.

Series-reduce node-family a
q
by calling procedure SR(o

q).

Series-reduce node q.

Set Gk+i <— Gk (after series-reduction)

G°k+i <— G°k (after series-reduction)

k<-k+l

Delete q from 2D and go to Step 5.

Step 5: If IPAI = then go to Step 1; else let (u, v) e PA.

Parallel-reduce arcs between node-families cu and av by calling procedure PR(au,ov).

Parallel-reduce arcs between nodes u and v.

Set Gk+i <— Gk (after parallel-reduction)

G°k+ i
<— G°k (after parallel-reduction)

k<-k+l

If u (or v) has degree 2 in Gk, add it to 2D.

Go to Step 1.

Step 6: At this stage G is a single arc (u, v). Find

cojjo
r
o = mmk6 rg

{ co I™ } . This is the value of the optimal solution and the

solution can be constructed by La(uko ,vro)uLn(uk°)uLn(vro). Stop.

i
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Graph G
(a)

na = nc = 2, nb = n<i =3

G-Partite Graph G°

(b)

Figure 1. Graphs G and G c

Weights

x 2 3

1 5 4 8

2 7 9 6

Weights

V 1 2

1 5 7

2 7 10

Weights

* 1 2 3

1 9 11 14

2 19 6 12

Weight:

* 1 2 3

1 7 4 8

2 4 5 4

Figure 2. Weights on graph G c
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12 3 4

Ow

Step 1

Weights

V 1 2 3 4

1 16 26 13 23

2 15 10 16 9

3 22 20 18 16

3 4

Step 4

Figure 3. Contraction-Reduction: Example



27

Weights

\ 1 2 3 4

1 5 7 5 7

2 4 9 4 9

3 8 6 8 6

Figure 4. Contraction-Reduction Example: Partial Solution

3 4

Weights

* 1 2 3 4

1 5 7 5 7

2 4 9 4 9

3 8 6 8 6

Weights

* 1 2 3 4

1 21 33 20 33

2 20 13 23 19

3 27 23 25 26

Label on Each Arc: {

}

Node Labels

Ln(wi)={ai,ci}, Ln(w2)={ai,C2}, Ln(w3)={a2,ci), Ln(w3)={a2,C2)

Ln(bi)={bi},Ln(b2)={b2 },Ln(bi)={b2}

Ln(di)={di}, Ln(d2)={d2 }, Ln(di)={d2 }

Figure 5. Contract-Reduction: Final Solution
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Figure 6. A Halin Graph

C(r) = {1,...,14}, C(s) = {2,3,4}, C(u)=C(x)uC(y)uC(z) = {5,6,7,8,9,10,11,12}

The youngest child of node t is node u.

c(r) = 1, c(s) = 2, c(t) = 12, c(u) = 6, c(y) = 7, c(z) = 10, c(v) = 13, c(x) = 5

Figure 7. An Example to Show c(.)
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11

Figure 8. Graph After Contraction of pairs (*,c(*))

14
vl3

Figure 9. Simplification of Figure 8 to Show an Outerplanar Graph



Figure 10. Examples of Graphs Which are in n

Graph G

The t-Decomposition of Graph G

Figure 1 1. A 7t-Decomposible Graph
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