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Abstract

Hardware and software co-design is becoming increasingly important

due to complexities in supercomputing architectures. Simulating ap-

plications before there is access to the real hardware can assist ma-

chine architects in making better design decisions that can optimize

application performance. At the same time, the application and run-

time can be optimized and tuned beforehand. BigSim is a simulation-

based performance prediction framework designed for these purposes.

It can be used to perform packet-level network simulations of par-

allel applications using existing parallel machines. In this thesis, we

demonstrate the utility of BigSim in analyzing and optimizing parallel

application performance for future systems based on the PERCS net-

work. We present simulation studies using benchmarks and real appli-

cations expected to run on future supercomputers. Future peta-scale

systems will have more than 100,000 cores, and we present simulations

at that scale.
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Professor Laxmikant V. Kalé, and all our group members. Sincere

thanks to my family for their endless patience, love and support.

iv



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 Introduction and Motivation . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . 4

3 PERCS Architecture . . . . . . . . . . . . . . . . . . . 6

4 BigSim Simulation Framework . . . . . . . . . . . . . 9
4.1 BigFastSim Simulator . . . . . . . . . . . . . . . . . . . 11

5 Validation Results . . . . . . . . . . . . . . . . . . . . . 15
5.1 Comparison to MERCURY . . . . . . . . . . . . . . . . 15
5.2 Validation on a Power 775 Drawer . . . . . . . . . . . . 16

6 Topology Aware Mapping . . . . . . . . . . . . . . . . 18

7 System Noise . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1 Noise Simulation Support in BigSim . . . . . . . . . . . 22
7.2 Examples of Noise Studies . . . . . . . . . . . . . . . . 23

8 Effect of Network Parameters . . . . . . . . . . . . . . 28

9 All-to-all Optimizations . . . . . . . . . . . . . . . . . 30
9.1 New Communication Scheme . . . . . . . . . . . . . . . 32
9.2 Performance Comparison . . . . . . . . . . . . . . . . . 33

10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 35

References . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



List of Figures

3.1 High-level view of the two-level PERCS topology: 32
fully-connected nodes form supernodes, which are in
turn fully connected. . . . . . . . . . . . . . . . . . . . 7

3.2 Components of the PERCS Interconnect Hub chip rel-
evant for this thesis. Based on Figure 2 of the PERCS
interconnect paper [13]. The labeled bandwidths are
bidirectional. . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 BigSim architecture overview . . . . . . . . . . . . . . 10
4.2 Example of dependencies between SEBs . . . . . . . . 12

5.1 Detailed view of simulated MPI Alltoall in a Power
775 drawer . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.1 Link utilization for different mappings of a 3D Stencil
on to 64 supernodes of the PERCS system. Each col-
umn represents utilization of the LL, LR and D links
for a different mapping. . . . . . . . . . . . . . . . . . . 20

6.2 Communication and overall execution time (in seconds)
of 3D Stencil on 64 supernodes . . . . . . . . . . . . . 21

7.1 Effect of increase in frequency of noise patterns on ap-
plication performance . . . . . . . . . . . . . . . . . . . 24

7.2 Effect of increase in amplitude of noise pattern on ap-
plication performance . . . . . . . . . . . . . . . . . . . 26

7.3 Effect of combining two noise patterns on application
performance . . . . . . . . . . . . . . . . . . . . . . . . 27

8.1 Effect of network latency on application performance . 29

9.1 Link utilization in base and new all-to-all . . . . . . . . 31
9.2 Sends in first phase of all-to-all . . . . . . . . . . . . . 32
9.3 Performance comparison for all-to-all . . . . . . . . . . 34

vi



1 Introduction and Motivation

Some of the largest supercomputers available today cost tens or even

hundreds of millions of dollars. They include more than a hundred

thousand processor cores, and complex and sophisticated intercon-

nection topologies. Porting and tuning science and engineering ap-

plications to these machines, after their deployment, can easily take

months to years. To run them with lower efficiencies than feasible

in the intervening months, which is necessary to utilize the machine,

represents a huge waste of resources. Although some aspects of port-

ing and tuning can be carried out ahead of time, much effort depends

on the specific features of the target machine.

The BigSim project is aimed at assisting with this situation. It

uses a unique “emulation followed by simulation” approach. The em-

ulation phase allows the users to run their applications at the target

scale while using a much smaller machine. For example, a one mil-

lion core application run can be emulated using 100,000 cores of an

existing machine. This aspect is supported by an adaptive runtime

system in Charm++ and Adaptive MPI [2]. Emulation helps appli-

cation developers identify any scaling bugs in the data structures and

code. More importantly, it records the dependencies between com-

putations and messages. It also records a few salient features about

each computational block. The obtained traces are then used by a

multi-resolution simulator to produce performance traces and timings

as if the whole application had been run on the target machine.

BigSim’s multi-resolution aspects cover both sequential execution

and communication. For sequential execution, one can use either

a simple scaling factor, or a detailed model based on performance

counters, or even the ability to plug-in timings based on cycle ac-

curate simulations of the processor. Another option is to run the

sequential blocks on an existing machine with the same processor and
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get the timings. For communication, one can use a simple latency-

bandwidth model or a fully detailed model of the network including

all the switches and buffers.

The BigSim methodology has been validated on older machines in

the past [3, 4]. We are now using it to tune performance of some

applications for the upcoming PERCS systems that will have a novel

interconnection topology, and nodes based on IBM’s POWER7 pro-

cessors.

In this thesis, we describe some of the performance analysis and

tuning experiments that we have carried out with BigSim targeting

PERCS systems. The experiments include alternate schemes for map-

ping processes to processors for a simple application prototype, anal-

ysis and design of an all-to-all operation within a “Supernode” – a

hierarchical component of the system, and simulation-based analysis

of the effect of noise and latency on a few simple applications/ker-

nels. The studies include some important applications, such as MILC

and NAMD. Collectively, these studies demonstrate the utility of our

BigSim framework.

The major contributions arising from this study in using BigSim to

predict performance of a future system include: (a) we show that a

careful mapping of tasks to processors can improve overall application

performance by 20% in the presented case; (b) we provide a practical

technique to quantify the effect of system noise on application per-

formance; (c) we show how to use variations in network parameters

of the simulator to quantify the overall impact on application perfor-

mance; and (d) we demonstrate that the level of detail produced by

BigSim may provide insights leading to a more advanced algorithm for

a collective operation, potentially resulting in a five-fold improvement

in its performance.

Unlike other simulators that focus on specific parts of a system

(e.g., cycle-accurate simulators of processors, or network simulators),

BigSim has the unique feature of allowing the simulation of full appli-

cations on the future machine. As an example, BigSim is not limited

to analyzing certain communication patterns, or specific code frag-

ments. Instead, it will simulate the actual computation and com-

munication behavior expected on the target system, and thus it can
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provide a much more realistic prediction of application behavior and

potential bottlenecks. This is particularly important on a large sys-

tem, where applications and hardware may interact in very complex

ways; those interactions might be very hard to capture in analytical

models, or to represent in simulators with a limited scope.

The rest of this thesis is organized as follows. §2 reviews related

work in the area. §3 and §4 briefly describe the PERCS systems and

BigSim, respectively. §5 presents results of BigSim validations for

PERCS systems. §6 analyzes the gains that can be obtained with

proper mapping of tasks on the machine. §7 discusses BigSim’s ca-

pabilities to model the effects of system noise on an application. §8
shows similar effects arising from variations in network parameters.

We provide a concrete case of optimization in §9, with an example

of an important collective operation, and conclude our presentation

in §10.
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2 Related Work

The Structural Simulation Toolkit (SST) [5] has been used to model

the Red Storm system and perform “what if” analysis. However, the

focus was on effect of hardware details on MPI latency and bandwidth,

and full application performance was not modeled. Furthermore, the

framework works on instruction level traces, which may not be needed

and even become unfeasible for simulations at large scale.

PSINS [6] is a trace driven simulation framework for MPI applica-

tions similar to BigSim. It intercepts MPI calls of the application to

produce traces of computation and communication. Although their

traces may look like BigSim traces, those traces have to be produced

on the same number of MPI processes (in contrast to the user-level

threads of BigSim), which makes the approach intractable for large

target supercomputers. In addition, it uses buses to model the net-

work, and it does not consider different topologies. Dimemas [7] also

uses buses to model the network, which is not accurate for our pur-

poses. As will be seen in later chapters, the topology, PERCS topology

in particular, is very important for tuning many aspects of the system

and applications.

IBM’s MARS [8] (also called MERCURY) is a framework to simu-

late full HPC systems. It simulates the details of the system down to

the instruction and flit level. This approach is very useful for detailed

network design and tuning, but it is an overkill for large-scale applica-

tion studies. BigSim’s level of abstraction for networks is at the packet

level, which is efficient and sufficient for its purposes. Nevertheless,

MERCURY was used to validate the network simulation component

of BigSim for PERCS network.

Full execution-driven system simulators (like SIMICS [9]) have been

used in different contexts. They model to a level of detail such that

one can run the operating system on top of the simulator. In paral-
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lel computing, they are particularly useful in the cases of new chip

designs, but they cannot simulate beyond small clusters, due to per-

formance reasons. Moreover, large-scale HPC applications generally

do not need those details (such as OS details) in most cases. Never-

theless, their simulation output for sequential code segments can be

used in BigSim studies for future systems.

Hoefler et al [10] showed that simulation is necessary to realistically

inspect noise’s influence. However, their approach used existing MPI

traces, and it cannot generate traces for machines larger than those

currently existing. In addition, the largest simulation conducted for

real applications was for 32K processors, which is relatively small con-

sidering the current peta-scale systems. Some of the other noise stud-

ies were only focused on collective operations [11, 12], but as shown

in previous work [10], other communication patterns of applications

also have crucial impact on performance.
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3 PERCS Architecture

PERCS is a supercomputer design by IBM that uses POWER7 pro-

cessors and a two-level directly-connected network [13]. This was the

intended design for the Blue Waters system at Illinois, however, the

plans changed later. In the PERCS design, the system is divided into

supernodes containing 32 nodes each; those nodes are evenly grouped

into four drawers (hence, eight nodes per drawer). Each node is con-

nected to the seven other nodes in its drawer with a 24 GB/s LLocal

(LL) link, and to the 24 other nodes in its supernode with a 5 GB/s

LRemote (LR) link. All supernodes are then connected to each other

with 10 GB/s D links. This unique, high level of connectivity requires

at most three hops for a direct route between any pair of nodes (L-

D-L), and at most five hops for an indirect route between any pair of

nodes (L-D-L-D-L).

Figure 3.1 shows a high-level view of the PERCS network. As can

be seen, this network is not similar to any of today’s common topolo-

gies (such as mesh or torus). In fact, it has very different performance

properties, which have various implications. For example, existing ap-

plications and runtimes are designed and optimized for common net-

works and may not perform efficiently on this new machine. Moreover,

there is no body of theory and legacy about optimizing applications

or common operations (like collectives) on this network. Thus, ef-

fective simulations seem to be the only way to analyze and optimize

applications and runtimes before the system comes online.

A compute node contains four POWER7 chips, each with eight

processing cores. These POWER7 chips, which form a Quad Chip

Module (QCM), have access to 192 GB/s of bandwidth over four

links (24 GB/s per link in each direction) for sending messages to

the Hub chip. The Hub chip, depicted in Figure 3.2, interfaces the

QCM with the network through two Host Fabric Interface (HFI) com-
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Figure 3.1: High-level view of the two-level PERCS topology: 32
fully-connected nodes form supernodes, which are in turn fully
connected.

ponents, and provides network switching via the Integrated Switch

Router (ISR). The Hub chip also takes part in the cache coherency of

the four POWER7 chips, as well as in increasing the speed of collec-

tives through the Collective Acceleration Unit (CAU). The presence

of this advanced chip adds more complexity to the understanding of

this network for analyzing applications, without detailed simulation.
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Figure 3.2: Components of the PERCS Interconnect Hub chip
relevant for this thesis. Based on Figure 2 of the PERCS
interconnect paper [13]. The labeled bandwidths are bidirectional.
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4 BigSim Simulation
Framework

BigSim is a simulation-based framework used for simulating the be-

havior of real applications on large parallel machines [14, 15]. To cor-

rectly predict the performance of an application, one must compute

both the execution time of sequential portions of the code and the

communication time. BigSim handles these predictions with two sep-

arate components. The application, which must be written in either

Charm++ or MPI, is run on the BigSim emulator, which records

the time required to process the code’s SEBs for that particular ma-

chine [3] and the time for communication events. These times are

written to trace files, which are then fed into the BigSim simulator.

See Figure 4.1 for an architectural overview. It supports large simula-

tions with different levels of fidelity. Being itself a parallel application,

BigSim is built on Charm++, which allows it to use Charm++’s

processor virtualization ability to simulate multiple target processors

on each physical processor [16]. The emulation of parallel applications

largely depends on the memory footprint of these applications. For

applications that have a small memory footprint, such as NAMD [17],

a molecular dynamics simulation program, BigSim can emulate a ma-

chine with hundreds of thousands of processors; those studies can be

run on only a few thousand physical processors, as demonstrated later

in this thesis. For applications with a large memory footprint, BigSim

uses various techniques such as out-of-core execution.

The BigSim simulator uses a network model, selected by the user,

to adjust the send and receive times of the messages recorded in the

logs, thereby producing the final simulation result [18]. These net-

work models include objects that represent processors, nodes, network

interface cards, switches, and network links, and they can simulate

contention in the network. Several different topologies and routing

algorithms are available, as well as virtual channel routing strategies
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Figure 4.1: BigSim architecture overview

and adaptive routing. The user may choose between direct and indi-

rect routing, and may configure a number of network parameters such

as link latencies, link bandwidths, and buffer sizes. Finally, instead

of selecting a particular network, the user may also select a simple

bandwidth-latency calculation for predicting communication times.

BigSim was designed more to assist the user in investigating the

behavior of an application on a particular network than to simply

predict the execution time of the application. As a result, BigSim

offers several forms of output: end-of-simulation network link utiliza-

tion statistics; link utilization and contention traces; print statements

inserted by the user in the application that are stamped with the

simulation’s current virtual time; and log files of when the SEBs are

executed in virtual time, which can be graphically displayed using an

existing visualization tool called Projections.

One goal of the BigSim project is to give application programmers

the opportunity to tune their codes for a new machine, even before

it comes online. To that end, over the past couple years and in col-

laboration with IBM, we have built a BigSim model of the PERCS

network and validated it against IBM’s MERCURY simulator. Our

model simulates processors, nodes, HFIs, ISRs, and all of the LL, LR,

and D links. It implements virtual channels and Hub chip buffers,

and it delays packets in the network appropriately if congestion or

contention exist. Since it is a packet-level simulator rather than a flit-

level one, it is efficient, while still correctly modeling link contention

and buffers. Having such a model now allows us to tune and look for

bottlenecks, not only in applications that will eventually be run on the
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PERCS systems, but even in simple, widely-used algorithms such as

MPI Alltoall, which we explore later in this thesis. Our simulation ap-

proach has been validated before on various machines, including Linux

clusters and Blue Gene/P, with NAS Benchmarks and NAMD [3, 4].

4.1 BigFastSim Simulator

BigFastSim is a new version of BigSim’s simulator component, in-

tended for easier development and higher efficiency. Because of the

overheads and inefficiencies of PDES (like BigSim’s original simulator

BigNetSim), it is sequential and written in C++. This makes the

code much simpler for development and creation of new features. In

addition, the simulator will be efficient and will run with much less

total resources.

For large-scale simulation studies, it is necessary to be able to run

many simulations with minimum possible resources. Each of the anal-

ysis that we present later took many simulations to understand the

behavior of the applications and the completely new network of the

system. In each simulation, the number of target cores is enormous

which increases the overheads of the PDES simulation.

Optimization to Avoid Irregular Memory Access Patterns

According to performance data, BigSim simulator is memory access

bound rather than computation bound. Thus, the emphasis should be

on improving locality and avoiding irregular memory access patterns.

The major memory footprint and access of the core of the simulator

consists of SEBs. These SEBs have many-to-many dependencies to

other local (on the same target PE) SEBs meaning that each SEB

can have multiple backward and forward dependencies. Furthermore,

they have message dependencies to SEBs of other target PEs. These

dependencies are shown in Figure 4.2 with solid lines representing

local dependencies and dashed lines showing message dependencies.

For various reasons, such as flexibility of specific function time re-

placement and semantics of different languages, computation blocks

are divided into separate local tasks in this way. One source of irregu-

lar memory accesses is checking backward dependencies and executing

11



forward dependencies in chains. In the general case, for each SEB, all

the backward dependencies should be checked and all the forward de-

pendencies should be executed if had not executed before. However,

in our observations, the common case is that most of the SEBs can be

executed in sequence. So the algorithm tries to execute as much tasks

(we use tasks and SEBs interchangeably) in sequence as possible and

avoid checking many dependencies in different locations of memory

and using pointers. To do this, one variable (currentTask) is assigned

to each PE that shows the earliest SEB that needs to be executed.

Each time a PE can execute SEBs, it tries to advance currentTask

and execute the longest possible run. In this way, checking backward

dependencies is not needed anymore and forward dependencies are

likely to execute. For validity, the forward dependencies that were

not done will be checked afterwards and executed in general mode.

This variable can also be used in general mode to keep away from

checking backward dependencies in many cases (if a backward depen-

dency is before currentTask it has been done for sure and no memory

check is needed). In addition, it can be used in “windowing scheme”

to keep track of SEBs that are already executed.

SEB

Dependency

Message

PE 0

PE 1

Figure 4.2: Example of dependencies between SEBs

Optimization to Target PE’s Message Queue: Another critical

optimization in that scale concerns message receipt of a target PE.

When a PE receives a message, the task that is dependent on that

message should be found. Without optimization it involves search-

ing through tasks for each message which becomes bottleneck. The

solution implemented in BigSim is to add a mapping data structure

to keep destinations of messages. During initialization and loading

of tasks, the message id that the tasks depend on is recorded for
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each task. This does not add significant overhead to the initializa-

tion. Thus, during execution, no search through tasks is needed to

receive a message. This optimization has improved the performance

of BigFastSim up to two orders of magnitude.

Other New Features: In the scale of peta-scale systems, trace files

will be so big that they do not fit into memory. One solution which

is implemented into BigSim is windowing scheme. By windowing,

only a number of tasks (a window) are loaded in the memory at a

time and the window shifts during the execution. Because of the

dependencies among tasks, the window has to be adaptive to load

more tasks if needed. Another useful feature to save execution time

and memory is skip points. Skip points are marks in the program to

skip uninteresting parts to accelerate the simulation. For example,

an skip point after startup is useful in most of the cases. Another

use case is having skip points before and after iterations of scientific

applications to predict only certain iterations. To complement the

flexibility and control of BigSim, a user can have “BgPrints” to print

text and/or timings at desired points in the program to get insight of

the execution on the target system.

To enable simulations of large systems with hundreds of thousands

of processors, we added new features to BigSim that improve pro-

ductivity significantly. For example, to reduce the need to re-run

the emulation of user applications, we use a parameter replacement

scheme. In this approach, the user can specify (on the command line)

all the message sizes of the traces above a cut-off to be replaced by

another size during the simulation. The purpose of the cut-off is to

ignore the small messages of startup or synchronization and only con-

sider data messages to preserve correctness. The user can also replace

the duration times of Sequential Execution Blocks (SEBs) with a par-

ticular name and with a timing above a cut-off with another duration

time. With this feature, re-emulation or changing the traces for each

simulation is not necessary anymore in many cases. In addition, some

large emulations that are constrained by memory usage or execution

time are avoided. Replacements have been particularly used to accel-

erate the studies of all-to-all and topology mapping in later chapters,
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as they employ regular size messages.
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5 Validation Results

Validation of a simulator, by a team distinct from the designers of

the target system, prior to the construction of the system, presents

several important challenges. In the absence of a physical environ-

ment to perform experiments, the simulator can be validated against

analytical models to achieve a modicum of confidence in the result.

Additional confidence can be gained by comparisons against a sim-

ulator implemented by the design team. Finally, in later stages of

the project, basic validation can be performed against hardware as it

becomes available at various scales. Presentation of data from these

studies is complicated by the fact that fundamental components of

the PERCS network design will remain undisclosed proprietary intel-

lectual property of IBM, and part of the data obtained on pre-release

hardware is covered by non-disclosure agreements, until sometime af-

ter the hardware itself becomes generally available.

5.1 Comparison to MERCURY

Several early tests were conducted to validate the PERCS network

model in BigSim against IBM’s MERCURY simulator. In all of those

early tests, BigSim was used in its network traffic-pattern mode. In

that mode, instead of performing a trace-driven simulation as usual,

BigSim can reproduce one of various pre-programmed patterns rep-

resenting how packets are sent over the network. Those simulations

can include any number of nodes or supernodes, and patterns were

selected such that they could be also produced by MERCURY.

Several ping-pong experiments were performed, primarily to mea-

sure latency differences. Tiny, 2-byte messages were passed between

nodes, exercising all possible combinations of LL, LR, and D links.

MERCURY’s results were 0.6% to 1.1% greater than BigSim’s. An-
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other test, primarily intended to examine bandwidth, involved exe-

cuting an all-to-all communication pattern within a supernode. Each

of the 1,024 cores sent a 51 KByte message to all other cores. The

results between the two simulators only differed by 0.5%.

5.2 Validation on a Power 775 Drawer

During recent months, our group has periodically had remote access,

for brief periods, to a prototype of a Power 775 drawer installed at

IBM. This prototype drawer contains eight nodes, with four POWER7

chips each (256 cores total), and a development version the of the Hub

interconnect. It must be noted that this prototype is still significantly

different from the planned Power 775 drawer, both in terms of hard-

ware configuration and of the software stack. Nevertheless, it is a good

platform for minimally validating some of the BigSim components.

We conducted experiments to validate BigSim’s results with those

observed on this prototype drawer. One of those experiments involved

the same all-to-all operation mentioned previously, with exchanges of

size 51 KBytes. In this test, the simulation was based on a regular

MPI program that contained a few calls to MPI Alltoall followed by

a barrier. We simulated this code in BigSim, for a target configuration

of eight nodes (256 cores), and also ran it on the prototype drawer.

The execution on the drawer resulted in a time of 22.6 ms for the

MPI Alltoall. Meanwhile, BigSim’s trace-driven simulation of that

code produced a prediction of 20.2 ms for that operation. Hence,

BigSim’s prediction was within nearly 10% of what we observed on

the actual drawer.

A major advantage of using BigSim is the level of information that

one can gather from a particular simulation. BigSim can produce

detailed traces of link utilization (for an example illustrating this,

see §9). It can also generate detailed event logs with computation

and communication events during the simulation. These logs can be

viewed in our Projections visualizer, as if the application had actually

been run on the target machine. As an example, Figure 5.1 shows

timelines of the above-mentioned MPI Alltoall operation being sim-
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Figure 5.1: Detailed view of simulated MPI Alltoall in a Power 775
drawer

ulated for a Power 775 drawer (only 16 of the 256 simulated cores

are presented). The red boxes on the left correspond to the processor

activity to send data in the all-to-all, and the red boxes on the right

correspond to the respective receives. The middle region corresponds

to the period of network activity. This kind of view can greatly help

application developers understand what might be causing a bottleneck

in their applications. Similarly, it may provide insights about how to

change an algorithm in a certain phase to improve overall application

performance.
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6 Topology Aware Mapping

The PERCS topology provides a hierarchical two-level fully connected

network topology. Each node is connected to every other node within

the same supernode by a direct (LL or LR) link. Every supernode is

connected to every other supernode by a D link. Two things make

this topology interesting – 1. Link bandwidths on LL, LR and D links

are different, so mapping and routing can significantly impact conges-

tion and application performance also in some cases, and 2. There is

only one D link connecting a pair of supernodes and hence, all traffic

between a pair goes through a single D link in case of direct routing.

The PERCS network leads to various design choices for job schedul-

ing, routing and mapping of tasks on to physical processors. Using

simulations we can answer questions such as:

• Should the job schedulers be topology aware? Should the node

allocation for a particular job be at the granularity of supernodes

or drawers or nodes?

• Should the routing be direct or indirect? Can indirect routing

alleviate congestion on the PERCS network?

• Should tasks in applications be mapped in a topology aware

fashion?

In this chapter, we demonstrate the utility of BigSim in making

some of these design choices before the machine is installed. We use

a simple three-dimensional seven-point stencil to study some of the

questions raised above and simulate various mappings for 64 supern-

odes of the PERCS machine. Each MPI task holds a data array of

256 × 256 × 256 doubles and sends ghost layers to six neighbors for

the jacobi exchange. Hence the size of each message exchange on the

boundary is 256× 256× 8 bytes = 512 KB.
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We tried three different mappings of the 65,536 MPI tasks onto the

64 supernodes. The first mapping is the default MPI rank ordered

mapping where the first 32 tasks are placed on the first node, the

next 32 on the second and so on. To compare with this, we tried two

other mappings that attempt to block MPI tasks into 3D cuboids that

can nicely map onto the nodes and drawers of the PERCS machine.

For example, the second mapping places blocks of 4 × 4 × 2 on each

node and blocks of 8 × 8 × 4 on each drawer. In the third mapping,

in addition to the blocking for the node and drawer, tasks are also

blocked on to supernodes with block dimensions being 16× 8× 8.

Figure 6.1 presents histograms depicting the number of bytes sent

over the LL, LR and D links in the 64 supernode subsystem. The

first column represents the results for the default mapping and the

second and third column for the two intelligent mappings described

above. Each bin shows the number of links that had a a certain range

of bytes passing through them. It can be seen that the intelligent

mappings for 3D Stencil reduce the number of links that have a very

high utilization. The aim is to reduce hot-spots that might appear on

a few links, which can slow down the application. Intelligent mappings

are able to lower the maximum data being sent over any links (as fewer

bins on the right have any links).

Figure 6.2 shows the time spent in communication and overall ex-

ecution of one iteration of 3D Stencil with different mappings. The

communication reduces by 80% using an intelligent mapping and the

overall time per iterations reduces by 20%. Hence, reducing conges-

tion and hot-spots on the links translates into improvement in appli-

cation performance also. This illustrates the use of BigSim as a tool

to evaluate different mappings without access to the actual machine

and to decide on the best mapping to be used for actual runs.
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Figure 6.1: Link utilization for different mappings of a 3D Stencil on
to 64 supernodes of the PERCS system. Each column represents
utilization of the LL, LR and D links for a different mapping.
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7 System Noise

Many supercomputers use full-fledged operating systems (OS) on their

compute nodes. This is important for several applications that require

a full kernel running on the compute nodes. However, current super-

computers that made the same design choice (such as Jaguar and

Ranger) demonstrate significant OS jitter on their compute nodes.

OS jitter can affect certain categories of parallel applications – those

that are fine-grained and also those that have long critical paths.

Using BigSim, we can study the impact of OS jitter on applica-

tions that will run on large-scale supercomputers like those with the

PERCS network. Different kinds of noise can be introduced in BigSim

simulations:

• Noise traces can be collected from an existing POWER7 node

and then a statistically similar noise can be introduced on dif-

ferent nodes of the full simulated system.

• Artificial noise can be introduced by simulating perturbations

of different periodicities and durations.

7.1 Noise Simulation Support in BigSim

BigSim has comprehensive support for system noise to realistically

simulate the effects on applications. It has two noise simulation modes

to support different “what-if” analysis studies. The first mode uses

previously captured noise from an existing system, and the second

mode uses synthetic noise patterns, characterized by their periodicity

and amplitude. Although this second mode only considers periodic

kinds of noise, this is the common case for many types of noise sources,

such as OS daemons and interrupts.

The captured-noise mode takes separate files with noise traces for
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each core of a node, because noise effects are different on distinct cores.

This might be due to different OS daemons running on different cores

or to architectural features. Each file contains all the perturbations

that happened during the noise capture on an existing core, in the

form of initial timestamp of the perturbation and its duration. This

format is compatible with the output of many noise-capture programs,

such as Netgauge [19]. A collection of captured-noise files, correspond-

ing to all the cores of the node, is then created. During simulation,

this collection is replicated on different nodes with different random

offsets. It is also replicated in time if the application’s simulated ex-

ecution duration is longer that the noise capture duration.

BigSim can also use noise patterns. It reads separate pattern files

for each core of a node. Each file can contain many noise patterns

to be combined. A pattern is specified by its periodicity, amplitude

and offset (phase). The simulator then considers the start time and

duration of each Sequential Execution Block (SEB) and the various

perturbations produced by the patterns in the underlying core. If a

perturbation has occurred during the execution of an SEB, BigSim

will extend the SEB’s duration by an amount equal to the ampli-

tude of that perturbation. The send time of each message in the

SEB is adjusted accordingly if a perturbation has happened before

the message is sent. Using these features, an application developer

can “inject” noise, and examine its effects directly, without carrying

out sophisticated analysis requiring detailed knowledge of the appli-

cation’s structure.

7.2 Examples of Noise Studies

Several noise studies can be done with this tool to assess the im-

pact of noise on applications. The applications that we used for the

studies are NAMD [20], which is a scalable molecular dynamics code,

and MILC (MIMD Lattice Computation) [21], a quantum chromo-

dynamics program. We also used two versions of a synthetic micro-

benchmark (K-Neighbor) that iteratively executes a nearest-neighbor

communication followed by some amount of sequential computation;
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Figure 7.1: Effect of increase in frequency of noise patterns on
application performance

one version of K-Neighbor contained an Allreduce at the end of each

iteration, and the other version did not have the Allreduce. The goal

was to illustrate the communication effect under the presence of noise.

For NAMD, the number of target processors was 256K, and a

10 million-atom Water dataset was used as the input; we only simu-

lated a few timesteps of NAMD. The baseline time per step for NAMD

is about 1.29 ms. In MILC, the simulation involved the entire su3 rmd

code, with a lattice of size 4×4×3×6 on each core; a target configura-

tion of 4K processors was used. The baseline for MILC is 491.9 ms for

the execution simulated. K-Neighbor was calibrated to have 1 ms of

computation per step, and each processor communicated with eight

neighbors. For the version with Allreduce, the original simulated time

per step was about 2.4 ms while in the other version it was around

1.6 ms. Each of the simulations conducted in that scale was done in

tens of minutes to a couple of hours using BigSim on just a single

node, which shows the efficiency of this tool.

Figure 7.1 shows how increasing the frequency of a noise pattern

can increase its effect on applications. With a study like this, system

designers can gain insight about the frequency where applications get

affected by noise of a certain duration (such as an OS daemon), and

they can try to take measures to avoid those effects in the future sys-
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tem. Meanwhile, application developers can characterize and compare

their applications’ noise sensitivity and improve them if they are not

acceptable. As one can see in Figure 7.1, with the decrease of the

noise period (i.e. increase in noise frequency), the overhead on appli-

cations increases, as expected. However, many noise characteristics of

applications are not easy to identify without detailed simulations. As

an example, NAMD is tolerant to low-frequency noise (the curve is

mostly flat near the left of Figure 7.1) but, at some frequencies, there

is a sudden increase in execution time and then the curve becomes flat

again. Thus, it is sensitive to a certain range of frequencies, suggest-

ing that tuning of the OS daemons’ frequencies (or any other source

of noise) can have significant impact on application’s performance.

For K-Neighbor, with naive intuition one would expect the version

with Allreduce to have at most 4% increase in its execution time.

This is because the computation quantum is 1 ms and, during that

interval, there can be only one occurrence of a perturbation (since

the perturbation periods in Figure 7.1 are always greater than 1 ms).

Given that these perturbations have an amplitude of 0.1 ms, the max-

imum duration for an iteration would be extended from 2.4 ms to

2.5 ms, representing a 4% overhead. However, with the increase in

noise frequency, there is a higher chance that very short MPI calls,

used in the communication needed to implement the Allreduce, get

perturbed by the noise too. This phenomenon is reflected towards

the right end of Figure 7.1; we confirmed this effect through detailed

analysis of the BigSim traces. Meanwhile, because MILC is more sen-

sitive to noise in general (due to a global-sum on each iteration of its

conjugate-gradient solver), even executions with just 4K processors

get as affected by noise as much larger executions of other applica-

tions (e.g. the 300K processor run of NAMD). This shows that noise

may be a concern for small-scale jobs of supercomputers as well.

Figure 7.2 shows a similar study that inspects different amplitudes

of a fixed-frequency noise. In this figure, the NAMD’s curve is flat up

to some extent, probably due to noise absorption (elaborated in previ-

ous works [10]). Comparing Figure 7.2 to Figure 7.1, one can conclude

that trading amplitude for frequency is beneficial for this type of ap-

plication. On the other hand, MILC is sensitive to noise amplitude
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and is not in that category. This illustrates the usefulness of this

technique for comparing design alternatives. Suppose there are two

choices like a high-amplitude, less-frequent noise, and a low-amplitude

but more frequent noise. For instance, these could correspond to dif-

ferent garbage collection strategies in runtime systems, such as full or

incremental garbage collection which one wants to choose. This anal-

ysis can be done by using the two graphs discussed and comparing

the two points on them, corresponding to those alternatives. In the

case of NAMD, for example, our results indicate that low-frequency

noise will win in many cases.

The effect of combining different noise patterns is another interest-

ing analysis. One concern may be whether having two different noise

patterns magnifies their effects on certain applications or not. Figure

7.3 shows the results of combining two noise patterns on our example

applications. In this figure, the two noise patterns do not amplify or

absorb each other, and the execution overhead is close to the sum of

the individual overheads. Using these studies increases the level of

certainty about applications’ behavior on the future system.

One can also simulate the noise behavior of the future system by

using early prototypes. For example, it is known that PERCS systems

will have POWER7 processors, possibly running the Linux operating

26



 0

 1

 2

 3

 4

 5

 6

 7

 8

20µs noise
every 1ms

200µs noise
every 10ms

Both Combined

A
pp

lic
at

io
n 

ov
er

he
ad

 (%
)

Effect of Combining Two Noise Patterns

K-Neighbor 300K PEs No Allreduce
K-Neighbor 300K PEs Allreduce

NAMD 256K PEs 10M Atoms
MILC 4K PEs

Figure 7.3: Effect of combining two noise patterns on application
performance

system. One can capture noise on a POWER7 node and add it to sim-

ulation of different applications to measure the resulting overheads.

Care must be taken to use noiseless emulation trace files for a more re-

alistic modeling of this type. These traces can be collected by running

BigSim emulations on noise-free machines (such as Blue Gene/P) or

by using various BigSim tools to replace and normalize serial compu-

tations. Using this method, further tuning and optimizations can be

done before the system comes online.
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8 Effect of Network
Parameters

One helpful use of a BigSim simulation is to analyze performance of

applications under different values of network parameters. While de-

signing networks, there are various tradeoffs of parameters that need

to be addressed effectively. For example, a network designer may

have the choice of increasing bandwidth at the cost of increasing la-

tency, or improving latency while spending a relatively larger budget.

Simulation can be used to determine what parameters are more crit-

ical to the applications under consideration. The designer can thus

make better choices by having more knowledge about the sensitivity

of applications to various network parameters.

To illustrate the use of BigSim in the study of application sensi-

tivity to network parameters, we considered the same codes of the

previous chapter. We conducted several BigSim simulations, varying

the parameters of a simple network model used by the simulator. This

network model assumes that communication time is a linear function

of message size, characterized by latency and bandwidth values. The

results of these experiments are in Figure 8.1, and reveal performance

degradation in some applications when network latency increases. As

can be seen, the K-Neighbor version with Allreduce is sensitive to

latency, while the one without Allreduce remains unchanged. Thus,

applications with collectives and global synchronizations are good can-

didates for this study. Also, comparing MILC and NAMD, we see

that MILC is more sensitive to variations in latency, thus it should be

studied more carefully in this regard. Note that although this analy-

sis used a simple latency/bandwidth model and considered changes in

the latency of the network as a whole, one could change the latency

of specific parts of a network, such as PERCS different link types, for

the purpose of tuning applications before the machine is deployed.
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9 All-to-all Optimizations

MPI Alltoall is an important collective operation over a given set of

tasks, with extensive usage in applications, such as FFT and matrix

transpose. It is also among the most communication intensive collec-

tive operations performed in modern day parallel applications. As a

result, it may suffer from scaling problems for large data exchanges

over large systems. Several algorithms have been proposed for it in

the literature; most of them perform well for a certain range of data

size exchanged. We narrow our focus to MPI AlltoAll for large data

sizes. This chapter shows how simulation can provide insight about

internal behavior and details of a system. Moreover, it shows how

this insight may result in up to five-fold improvement of an important

operation like all-to-all, before the future system arrives.

The Pairwise-Exchange algorithm [22] has been found to achieve

better results on most machines. In each step of the algorithm, P
2

pairs of tasks perform a tightly coupled send-recv operation. The

communication pattern has been found to have minimal congestion for

topologies like torus and fat trees, with a small number of independent

paths between nodes. However, as we show, current implementations

of the algorithm will perform poorly on the PERCS network.

We simulated MPI Alltoall using the Pairwise-Exchange algorithm

for a supernode of PERCS system, with large data sizes being sent

to each task. This scenario is of practical interest; as an example, it

is desirable to allocate on the same supernode all the tasks of each

subcommunicator in a typical FFT implementation. Thus, the all-to-

all only happens inside supernodes. Figure 9.1(a) presents a stacked

chart for link utilization of three arbitrarily selected links of a QCM

during an MPI Alltoall of size 1 MB. The three links utilizations are

stacked to show the overlap of usage (so it can go beyond 100%).

One can observe that the utilization of these links is interleaved. A
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Figure 9.1: Link utilization in base and new all-to-all

similar pattern is observed if all the links of a QCM are plotted. This

observation shows that some bottleneck makes the links to be used in

a shifted manner. However, given the contention-free, fully-connected

nature of a supernode’s network in PERCS, it is desirable to utilize

all links stemming from a QCM simultaneously. This motivated us

to consider a more advanced implementation of all-to-all, to enable

simultaneous data transfers on all links.
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Figure 9.2: Sends in first phase of all-to-all

9.1 New Communication Scheme

We propose the following carefully-determined ordering in which the

sends from a task should be performed, to (a) simultaneously utilize

links stemming from a QCM of PERCS, and (b) avoid the undesired

congestion and link contention. We describe the scheme assuming a

node-level all-to-all network with n nodes, each containing c cores:

1. Consider a list of t = n∗c tasks running on n nodes with c cores

each.

2. Each task has to send t− 1 messages, of which sets of c destina-

tion cores lie on a given node. Any core can reach a particular

set of c cores by using the direct link between the destination

node and its home node.

3. In phase i (0 ≤ i ≤ n− 1), core j (0 ≤ j ≤ c− 1) on every node

sends data to the set of cores in the ((j + i) mod n)th node.

This scheme ensures that different cores of a node use different links,

for better utilization. For example, consider the communication for

phase 0, as shown in Figure 9.2. This figure assumes an application

consisting of 16 tasks running on a four-node system, with four cores

per node. The circles represent a core/task and a box represents a
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node containing the cores. An edge from a core to a box means that

the source core sends data to all cores in that destination node. In

phase 0, core 0 of each node sends data to the set of cores residing

on node 0, as shown by blue edges. The sends to node 1, 2 and 3

are represented by orange, red and cyan edges, respectively. Such

a communication pattern ensures that all the links of each node are

being utilized simultaneously. On PERCS system, for cases in which

all the cores of a supernode execute MPI Alltoall, this scheme will use

all 31 links stemming from a QCM simultaneously.

Figure 9.1(b) presents a stacked chart for link utilization in the new

scheme, for the same three links shown earlier in Figure 9.1(a). These

results demonstrate that we have been able to overlap the usage of

links for most of the simulation period. Thus, the sequential usage of

different links no longer exists, and utilization improved significantly.

9.2 Performance Comparison

We consider an application with 1024 tasks running on one supernode

of PERCS system. Let the amount of one-way data being exchanged

between two cores be m bytes. Consider the volume of data exchanged

between two QCMs: QCM-1 contains 32 cores, each of which has to

send m bytes to 32 cores in QCM-2. Thus, the total data communi-

cated from QCM-1 to QCM-2 is d = 1024 ∗m bytes. A QCM sends

d bytes to every other QCM over independent links. In the best sce-

nario, the lower bound for the time taken for MPI Alltoall will be

determined by the time taken to send this data on the slowest link.

LR links, with bandwith of 5 GB/s, are the slowest links, and thus a

lower bound for the time taken will be d
5

nanoseconds.

We present a comparison between our scheme and the default im-

plementation of MPI AlltoAll in Figure 9.3. The chart consists of

simulation times for base all-to-all, our new all-to-all and a bandwidth-

based lower bound, for message sizes from 32 KB to 4 MB. Note that

the impact of message startup time has been ignored in the theoret-

ical numbers. We demonstrate 3× to 5× speedups for message sizes

beyond 256 KB. More importantly, as the message size increases, the
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performance in our new scheme remains closer to the theoretical lower

bound. One can also observe that the enormity of bandwidth capacity

in the PERCS network results in near constant transmission time for

messages of size below 256 KB.
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10 Conclusion

Porting and tuning applications for a new system is typically a time-

consuming task. This task becomes harder when the new system is

significantly larger than existing systems. Simulation is one of the

most effective techniques to prepare applications for future machines.

With a simulator such as BigSim, which has the capability to emulate

a full application’s behavior on a target system, one can predict the

interactions between a given application and the underlying hardware

of the machine. This technique can pinpoint potential bottlenecks

or help programmers focus their attention to specific parts of the

application where performance is expected to be problematic on the

upcoming system.

In this thesis, we have demonstrated the utility of the BigSim sim-

ulator to predict application performance on the upcoming PERCS

systems. We showed various benefits that BigSim can provide to a

future user of those systems, namely: (a) the effects of different map-

pings of tasks to processors across the machine: we showed that a 20%

performance gain was achieved via an intelligent mapping; (b) the po-

tential impact of system noise on applications: we show a practical

technique to introduce noise in the simulation and assess its effects on

application performance; (c) the assessment of application’s sensitiv-

ity to network parameters, by rerunning the simulator with different

values for a given parameter of interest; and (d) the performance gains

that one can achieve by changing the algorithm employed for certain

collective operations with large data sizes: we showed that a five-fold

improvement is expected for an MPI Alltoall in a PERCS supernode.

With a tool such as BigSim, users can concretely start preparing

their applications before the system arrives. As we gain access to

larger portions of the actual machine, we plan to continuously cal-

ibrate BigSim to ensure that it accurately models PERCS system.
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A possible future work would be the development of other types of

network models for BigSim, such as a model for Blue Gene/Q.

36



References

[1] E. Totoni, A. Bhatele, E. Bohm, N. Jain, C. Mendes, R. Mokos,
G. Zheng, and L. Kale, “Simulation-based performance analysis
and tuning for a two-level directly connected system,” in Pro-
ceedings of the 17th IEEE International Conference on Parallel
and Distributed Systems, December 2011.

[2] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé, “Performance
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