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ABSTRACT  

 

This thesis presents different types of membranes fabricated by microfabrication processes 

for applications on micro fuel cell, proton exchange membrane, and removal process of 

nanoscale colloids. First, the development of a millimeter-scale fuel cell with on-board fuel is 

enabled by implementing a passive control mechanism and porous silicon for residual 

filtration. The regulating membrane can control a delivery of water into a chamber of 

chemical hydride by the internal pressure in the hydride chamber. Consequently, the 

generated hydrogen exits to the Nafion-based Membrane Electrode Assembly (MEA) 

through the porous silicon membrane at the bottom of the hydride chamber. Within a total 

volume of 9 μL, which makes it the smallest fully integrated fuel cell reported in the 

literature, these devices deliver an energy density of ~250 Wh/L. Tentative applications for 

this device are microelectronics, microsystems, and micro robots. Another membrane 

development in this study is a silicon-based Proton Exchange Membrane (PEM) with self-

assembly molecules. After anodization processes of a 20 m thick silicon membrane in a 

hydrofluoric (HF) solution, techniques for self-assembly of molecules with sulfonate (SO3H) 

functional groups within extremely high aspect ratio silicon nanopores are examined. The set 

up was used to continuously extract solvent to functionalize a porous membrane with pore 

sizes of ~5-10 nm. The assembled molecule is 3-mercaptopropyl-trimethoxysilane (MPTMS). 

Then, the thiol end group of the MPTMS molecule was subsequently oxidized to sulfonate 

group to enhance proton transport through the pores. Penetration of the MPTMS molecules 

down to the bottom of the pores was verified through characterizing the membrane thickness 

by using Time of Flight-Secondary Ion Mass Spectroscopy (ToF-SIMS) and X-ray 
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Photoemission Spectroscopy (XPS), as well as the water desorption isotherm technique. 

These porous silicon membranes can influence developments of proton exchange membrane, 

self-assembled layer deposition, and micro fuel cells. Last, the possibility of Electrokinetics-

based device with alternating current (AC) traveling waveform membrane is validated for the 

applications of water purification and colloidal removal. The development of the membrane 

is simulated by engineering software. The membrane is nanostructured with embedded 

electrodes that are connected with different spatial phase of AC voltage supplies. The testing 

of fabricated membranes shows a concentration of colloids with ~25% removal efficiency of 

93 nm fluorescent latex colloids across the membrane. With a possibility of pumping 

particles into another chamber, this traveling wave membrane can be an alternative for a 

colloidal separation in microfluidic systems. 
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CHAPTER 1:  

INTRODUCTION 

 

1.1. Membrane Technologies 

1.1.1. Membranes 

 A membrane is a layer of material that can serve as a semipermeable barrier for 

certain substances. Some particles are impermeable through the thin membrane, while the 

other can pass through. Examples of processes related to synthetic membranes are reverse 

osmosis, dehydrogenation, water purification, gas purification, and removal of 

microorganisms. Membranes can be fabricated from organic, inorganic, and biological 

materials. They can also be categorized into several classifications based on structure, 

production method, chemistry, functionality, driving force,  flow configuration, pore size, 

pore geometry, cost, and lifetime. Relationships between common membrane separation 

processes, pore diameter, and size of permeates are listed in Figure 1.1.  
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Figure 1.1. Figure of merit shows relationships between pore size of the membrane, 

membrane separation process, and their applications 

 

1.1.2. Objective 

The main overall purpose of this project is to implement micro- and nanofabrication 

to develop membranes used for Microelectromechanical systems (MEMS). Even length 

scales of permeates are different, this study focuses on membranes for energy and water 

applications. First, the membranes for a passive water delivery system and membrane for 

filter small molecule residuals from the hydride reaction that can enhance a development of 

millimeter-scale fuel cells are studied. Moreover, the proton exchange membranes were 

investigated from a porous silicon material and sulfonate functional group. This type of 

inorganic and organic membrane can be alternative for recent commercial polymeric 

membrane because it has an outstanding mechanical property to resist to deformation. Last, a 
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design of water purification membrane with an alternating current electrodialysis (ACED) 

membrane was examined. The membrane is constructed by multiple electrodes that are 

supplied with different phase of AC voltage. Simulations are also implemented to design 

traveling waveform schemes and to anticipate some testing results. This type of membranes 

is aimed for facilitation of nanoscale colloidal separation in microfluidic devices. These 

membranes are widely different for certain applications, in term of their development, 

functionality, mechanism, and science. Therefore, detailed fabrications and discussions are 

provided separately. 

 

1.2. Micro Fuel Cells 

1.2.1.  Overview 

Energy consumption has increased dramatically during the past decades in order to 

functionalize electrical appliances, provide heat sources, generate light sources, and 

communicate in daily routine. With breakthroughs in technological developments, these 

electrical needs are intensified. Researches and study aimed to reduce energy consumption, 

generate alternative renewable energy, and plan for recent reserved energy sources are 

diversified over variety ranges. One of the most interesting prospective of energy generation 

is to generate electrical energy from a chemical energy in a fuel.  

 

1.2.2.  Fuel Cells 

Initiated in 1839, Sir William Grove invented the first electro chemical cells that can 

convert this chemical energy to electrical energy. Followed by this experiment, several 

researches have focused on developing fuel cells for better performance, higher efficiencies, 
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lower cost, and more environmental friendliness. Several advantages of fuel cell are claimed 

as follows; 

1) More efficiency than combustion engines 

2) No moving parts 

3) Quite operation 

4) Highly reliable 

5) Long-lasting systems 

6) No particular NOx and SOx emission  

 

1.2.3.  Fuel Energy Density 

 Several fuels can be used directly and indirectly for fuel cell technologies. The direct 

fuel cells are the cells that a fuel is directly contact the membrane to produce energy. The 

indirect fuel cells are the cells that implement a reformer to convert a chemical component 

into simple elements before feeding into the membrane. Compared to hydrocarbon fuels and 

recent batteries, common fuels that can be used in the fuel cell are listed in the following 

table. 
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Table 1.1. Fuel energy density (not including external components) 

Storage Type Specific energy density [W h/L] 

Natural gas 10.1 

Hydrogen, liquid 2500 

Hydrogen, gas at 700 bar 1555.1 

Gasoline 9497.3 

Methanol 4332.1 

Ethanol 6664.8 

Lead acid battery 80 

Nickel metal hydride 200 

Zinc-air battery 260 

Lithium ion battery 100 – 800 

Lithium Borohydride 11663.4 
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1.2.4.  Applications for Fuel Cells 

As an alternation for power generation, fuel cells are studies for different 

applications. The applications of power sources depend on size, power density, and energy 

density of fuel cells. For instance, the applications for fuel cells are stationary power 

generator, portable power sources (such as cell phones and notebooks), medical devices, 

military applications, micro devices, and microsystems. 

 

1.2.5.  Fuel Cells Components 

An ideal reaction of fuel cells and batteries are similar. However, many researches 

differentiate batteries from fuel cells in a sense that both reactants on cathode and anode 

reaction are packed together in batteries, while fuel cells can use external sources, for 

example, replaceable hydrogen gas tanks. Also, a partial component of oxygen in air can be 

used in H2-O2 fuel cells. 

A schematic design of a simple fuel cell consists of a conducting electrolyte 

membrane and two electrodes for electrochemical half reaction of oxidation and reduction. In 

a majority of operations, catalysts are implemented to both electrodes to enhance a cell 

reaction. An example of H2-O2 fuel cells consists of two platinum electrodes dipped into 

sulfuric acid (an aqueous acid electrolyte). When hydrogen is introduced across an electrode, 

it is split into protons (H+) and electrons. This reaction is referred to as a hydrogen oxidation 

which occurs at the anode side where electrons are removed from a specie. Consequently, the 

protons can flow through the electrolyte which allows only protons to pass, and the electrons 

flow into the external electrical circuit through a piece of wire that connects to the opposite 

electrode. When an electron is at the other electrode, it is combined with protons and 
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supplied oxygen to generate a product of water. This chemical reaction is called oxygen 

reduction at the cathode side where electrons are added to a specie. The schematic diagram 

for common fuel cell is shown in Figure 1.2. 

 

Figure 1.2. Schematics diagram for fuel cell 

 

Many categories of fuel cells are characterized based on their electrolytes, fuel 

sources, temperature ranges, and flow types. However, the most straightforward divisions 

differentiate them by considering their electrolytes and charge carriers. This can separate fuel 

cells into five major groups: phosphoric acid fuel cell (PAFC), polymer electrolyte 

membrane fuel cell (PEMFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), 

and solid-oxide fuel cell (SOFC). 

 

1.2.6.  Proton Exchange Membranes Fuel Cells 

Proton exchange membrane fuel cells (PEMFCs) are attractive for many applications 

because they operate at low temperatures, compared to the other type of fuel cells. The 

H2 

O2 

Pt 

H+ 
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operating temperature of PEMFCs can be widely ranged from room temperature to a few 

hundred degrees Celsius. A common electrolyte for PEMFCs is a thin polymer membrane 

that can transport proton as an ionic charge carrier. The thickness of the membranes is in the 

range of a few microns and a few hundreds microns. The common materials for proton 

exchange membranes are sulfulnated polymers that will selectively allow only proton to pass 

through. While the electrons are emitted and collected at the current collectors, it is passed to 

electrical circuit to external loads and collected again on the other side of the membrane. 

Catalysts are always implemented to improve the performance of typical PEMFCs 

within choices of precious materials, for example, platinum (Pt), ruthenium (Ru), Palladium 

(Pd). Moreover, gas diffusion layers (GDLs) are implemented to provide a uniform 

distribution of fuel to a contact of the catalysts. The schematics for proton exchange 

membrane fuel cells (PEMFCs) are shown in Figure 1.3. 

 

 

Figure 1.3. Schematics of proton exchange membrane fuel cells (PEMFCs) 
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1.2.7.  PEMFC Developments 

 Many researchers study the development of the proton exchange membranes and the 

membrane electrode assembly (MEAs) to improve the efficiency and power density of the 

fuel cells. The common methods include modifying of the membranes, optimizing the 

parameters for operations, discovering new membranes, etc. The parameters in operations are 

temperatures, humidity, catalyst loading, catalyst preparations, shapes of gas diffusion layers, 

cathode backing pressure, operating voltages, fuel types, membrane thickness, membrane 

preparation, etc. The main goal is to perform better at required conditions for different 

applications. 

 

1.2.8.  Performance Characterizations 

Generally, the cell performances of fuel cells involve four major losses in 

electrochemical reaction; reactant transport, electrochemical reaction, ionic and electronic 

conduction, and product removal. An actual current output of a fuel cell is measured by 

applying a load into the system. A typical current-voltage relationship is a curve that starts at 

the open cell voltage (OCV) when a potential of the cell is maximum and the current is zero 

or no current is drawn to external circuit. The values of current are then increased when 

electrons are allowed to pass through the circuit when the voltage is reduced. Typically, a 

fuel cell encounters a mass transport limit at the maximum value of the current and the 

potential difference between the two electrodes is reduced to zero. These components of 

voltage drop from ideal (thermodynamic) fuel cell voltage are resulted from various 

components: activation loss due to electrochemical reaction, ohmic loss due to ionic and 

electronic conduction in the membrane, and concentration limit due to mass transport. In this 
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characterization, a Solartron SI 1287 potentiostat was commonly used to conduct the 

performance tests. With a linear sweep voltammetry, the testing components were installed in 

a test stand with anode and cathode electrodes connected to the potentiostat. The potentiostat 

will record amounts of voltage at different drawing currents. Moreover, the lifetime test of 

the fuel cells can be examined using this configuration. 

 

1.2.9.  Scope of the Study 

In this document, recent developments focused on micro fuel cells that the membrane 

electrode assembly has a size of a millimeter scale (less than 5 millimeter) are investigated. 

Readers will find this document useful for a progressive and concise report on development 

of micro fuel cells to replace a battery in many aspects. In Chapter 1, readers will acquire 

with general information on fuel cells chemistry, components, reactions, especially for proton 

exchange membrane fuel cells. In Chapter 2 and 3, previous researches on micro fuel cells 

are mentioned to discuss main challenges, potential applications, scopes of this research, and 

this approaches. The developments in micro fuel cells for this project are reported for a 

millimeter-scale micro fuel cell with onboard hydrogen sources and controllable operation. 

The schematic and parametric study of each component is studied from generation to 

generation.  

In Chapter 4, a nanoporous silicon proton conducting membrane is characterized for a 

H2-O2 fuel cell. A method of fabrication and functionalization of a nanoporous silicon 

membrane is investigated for alternative of proton exchange membranes (PEMs). This 

membrane development can provide mechanically and thermally stable PEMs. The approach 

is also to covalently bond molecules with functional groups inside silicon nanopores. 



11 
 

Through the assembly of functional groups within a porous solid structure, this membrane 

technology can enable development of the next generation membrane electrode assembly 

(MEAs) with enhanced performance, lifetime, and reliability. With these nanoporous 

channels and atomic layer deposition of metals, as a result, high level performance of a H2-

O2 fuel cells are demonstrated for various humidity conditions. 
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1.3. Colloidal Separation 

1.3.1. Overview 

  A colloidal system consists of a dispersed phase and a continuous phase. In this 

study, we focused on a solid phase in liquid. The size of colloids can range from 10 nm to 

500 nm in general. The concentrations of colloids are various depended on water sources. 

Typically, membrane technology is also used in filtration and water purification process, for 

example, microfiltration, reverse osmosis, and electrodialysis as shown in Figure 1.1. 

Examples of these membranes include microfiltration membrane, ultrafiltration membrane, 

nanofiltration membrane, and reverse osmosis membrane. The principle of these membranes 

is porous structure that can filter residuals and provide clean water. However, a crucial 

challenge is an irreversible fouling of the membrane during operation period. With a 

collection of colloids in the filtration system, caking and blocking of water path can result to 

lower efficiency and high energy cost as well. 

In this study, microfluidic devices with a traveling electrode membrane are developed 

for a purpose of colloidal separations with a particle size in nanoscale. An alternating current 

(AC) electrokinetic technique is implemented to create non-uniform electric field with spatial 

phase variation to manipulate colloidal transportation. The range of colloids that we are 

interested for our preliminary testing is ~100 nanometers in diameter in water medium.  

Engineering design rules and simulation tools are implemented in this project to 

forecast separation of colloids using a traveling waveform on dielectric and charged particles.  

Development of membrane and fabrication processes will be discussed in this study. 
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1.3.2. Particle Transportations 

The mathematic model for charged particles transport involves a set of equations 

governing ionic transport, electric potential, fluid flow, and particle motions. The total flux of 

the ith species (ion) is given by the following expression, where F is the Faraday’s constant, zi 

is the valence, Di is the diffusion coefficient, i is the ionic mobility, i is the flux, ci is the 

concentration of the ith species, u is the velocity vector of the fluid flow, and  is the 

electrical potential. The three terms on the right-hand side of Equation 1 define the fluxes due 

to diffusion, electromigration, and convection, respectively. The Nernst-Planck (NP) 

equation describes the transfer of each dissolved species and is given by Equation 2. 

uΓ iiiiiii cFczcD                                                     (1) 

i
i

t
c Γ

                                                                       (2) 

The electrical potential distribution is governed by the Poisson equation as shown in 

Equation 3, where 0 is the permittivity of vacuum, r is the relative permittivity. 

0

)(


  ii
r

czF
                                                          (3) 

 

1.3.3.  Preliminary Results 

The first generation of the device is based on microchannel devices with embedded 

planar electrodes. From observations, there was no significant particle transport that shows in 

testing. While it was established that asymmetric biasing could preferentially move surface 

charged particles, based on the fact that the momentum transfer in one direction under the 
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electric field is greater than in the reverse as we switch pulses. The colloids in the bulk of the 

microchannel experienced only a mild electric field. Owing to the aspect ratio of deep 

channels, the electric field was focused largely in-plane and did not act upon colloids that are 

suspended in the out-of-plane region. 

In the second efforts, we are developing a separation scheme that attracts charged 

colloids, and transports them using traveling wave electric fields using a membrane/electrode 

stacks. The state-of-art to prove a concept of travelling wave electric fields was tested on an 

assembly of metal mesh and filter membrane.  The metal mesh was stainless steel is 100 um 

in thickness and 35 um in pore size.  The polycarbonate track etching (PCTE) membrane was 

10 um in thickness and 3 um in pore size. The chamber and the test-set-up are presented in 

Figure 1.4.   

   

 

           



15 
 

  

              (a)                                                            (b) 

     

(c)   (d)   (e) 

Figure 1.4. Chamber for holding multi-electrode (a), the test set-up (b), a fluorescent image 

of the clean stream before supplying voltages (c), after supplying voltages (d), and 

fluorescent image of the feed stream (e). 

 

The assembly was tested with different frequencies with feed stream of 93 nm 

polystyrene particles of 500 ppm concentration on one side of the chamber and the clean 

stream on the other side. According to the test, a colloid was observed at the clean stream 

when the traveling waveform was supplied to each electrode.  However, there was no 

difference in the stream of the clean stream as output when we changed the frequency as the 
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theories predicted.  Also, after turning off the voltage supply, the fluorescent colloidal 

particles were still observed in the fluorescent chip. 

 

1.3.4.  Scope of the Study 

  In order to gain benefits from a smaller scale and prevent a leakage from the previous 

design, we further study the transportation of colloid in the MEMS-based-travelling 

membrane. Details of development and fabrication are discussed in Chapter 5. With a path of 

fluidic channels across traveling electrode arrays, spatial phase variation is able to induce a 

motion of colloids from a feed stream to a clean stream. To summarize a scope of alternating 

current-based device for nanoscale colloidal separation, there are three main masks to be 

completed as follows; 

 Device fabrication work will focus on assembling test devices along with 

fluorescent detection chips.  Further work would entail beginning preliminary 

colloid transport tests.   

 Computational work will study the particles behavior at different excitation 

signals and refine the model to account for other effects within and close to a 

nanopore. 
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CHAPTER 2:  

MICRO FUEL CELLS WITH ON-BOARD HYDROGEN SOURCE AND            

SELF-REGULATING CONTROL 

 

2.1.  Introduction 

The need for better energy storage has been widely recognized in applications not 

only for large scale systems but also micro-devices [1-3]. Developments of a viable high 

energy density millimeter-scale fuel cell can enhance the portable electronics technology and 

enable next-generation MEMS devices (e.g., sensors and actuators) with integrated power 

sources. As better and/or faster devices, new technologies are being introduced with 

limitations of the existing power sources [4]. Although in some applications increasing 

functionality has been met by improvements in battery technology or reasonable reduction in 

time between charges, there are emerging applications (e.g. intelligent insect-sized robots, 

cognitive arthropods, and smart dust) [5-9] that demand far more powerful and smaller 

(microliterscale) energy sources than those that exist today. Moreover, micro fuel cell (MFC) 

technology that has been under development for some time [10-15] has the potential to 

bridge this power gap. The energy density of fuels (as shown in Table 2.1) used in MFCs can 

exceed that of batteries by an order of magnitude. Choices of fuels for metal hydrides for 

micro fuel cells, compared to recent batteries are also shown in Figure 2.1.  

 

 

The content in this chapter is adapted from the published articles as follows; 
o S. Moghaddam, E. Pengwang, K. Lin, R.I. Masel, and M.A. Shannon, “Millimeter-scale Fuel Cell with On-Board Fuel and Passive 

Control System,” Journal of Microelectromechanical Systems (JMEMS), vol. 17(6), pp. 1388-1395, 2008. 
o S. Moghaddam, E. Pengwang, R.I. Masel, and M.A. Shannon, “A Self-Regulating Hydrogen Generator for Micro Fuel Cells,” Journal 

of Power Sources, vol. 185, pp. 445-450, 2008. 
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Table 2.1: Energy density of different fuels. 

Fuel  Energy density 
(kWh/kg) 

LiAlH4+4H2O 2.4 
Methanol 5.5 

 
Most liquid 
hydrocarbons ~12.4 

Hydrogen gas 33.2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1. Comparison of the energy density of metal hydrides (operation voltage of 0.7 V 

is assumed in calculations) with different batteries. 
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  Wh/L 
                         

                                                                                                                     
Zn/Carbon     150-212 
     Zn/HgO          629 
    Zn/Ag2O         207-543 
           Li/I2                820-1030 
     Li/FeS2          487-579 
    Li/MnO2             280-789 
   Li/SOCl2                700-1100 
      Li/SO2          33-498 
    Alkaline          250-520 
      

  LiAlH4                                              3623 
 NaBH4                                                          4585 
   CaH2                                            3384 
      LiH                                                  3866                                        
                                                                                                                             

      
    LiFePO4       160-350 
      LiCoO2         200-450 
   Zn/MnO2             210-789 
MH/NiOOH       360 
     Zn/AgO     180                                                           
         NiMH          53-479 
         Ni/Cd     55-150 
     Pd Acid       70-355 

Secondary batteries  

Primary batteries  
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2.2.  Literature Reviews 

The increasing demand for high energy density power sources driven by 

advancements in portable electronics and MEMS devices has generated significant interest in 

development of micro fuel cells and batteries [12, 16]. Micro fuel cells, however, can 

potentially outperform the batteries only if their fuel to device volume ratio can be 

maximized and the power consumption of their auxiliary systems to regulate fuel delivery 

and power output is significantly reduced. The micro fuel cell architectures proposed in the 

literature [17-20] are the scaled-downed versions of large-scale systems with numerous 

auxiliary components. Although microfabrication of these components (e.g., microvalves 

[21-36], micropumps [37-45], sensors, distribution components, power supply, and control 

electronics for these components) has been reported in the literature, their integration into a 

millimeter-scale device has remained a major challenge [46-51]. While this might be 

somewhat feasible in centimeter-scale fuel cells, fitting all the auxiliary components within a 

few cubic millimeters volume is quite a challenge. 

Auxiliary components for micro fuel cells operation normally require numerous 

microfabrication steps and have integration difficulties that can result in higher production 

costs and added complexity. Examples of fuel delivery and control systems can be found in 

[52-57]. Sarata et al. [52] proposed a pressure-based control system for a hydrogen generator 

comprising of a hydride reactor and water for hydrolysis. The hydrogen generation rate is 

controlled by monitoring the reactor pressure and then stopping the pumping of water to the 

hydride chamber when the hydride chamber pressure increases above a reference value. The 

pressure sensor, pump, valve, and electronics to conduct this control operation occupy 

significant space, which directly translate to lower energy density and high cost for micro 
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fuel cells. In another approach [57], the pressure increase in a macro-scale hydride chamber 

was used to automatically push the water out of a conduit that connected the water reservoir 

to the hydride reactor (as shown in Figure 2.2). This results in an increase in the diffusion 

length between the water front and the hydride and consequently a reduction of the hydrogen 

generation rate. This passive approach may be more suitable for miniaturization (e.g. 

fabrication of a microchannel between the water and hydride reservoirs and so on) but, 

unfortunately, since water diffusion and thereby hydrogen generation is not completely 

stopped, pressure continues to rise such that failure can occur. Furthermore, the movements 

of the water front inside the microchannel (i.e. dynamics of the advancing and receding 

contact lines) and the pressure of the excess hydrogen inside the device that pushes against 

the water front can be complicated to predict and control. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Schematic diagram of an existing control scheme. Hydrogen pressure buildup 

forces water away from the hydrophobic membrane and reduces water vapor diffusion into 

hydride chamber. 
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Although numerous studies have been conducted on the development of micro fuel 

cells, there are still a whole host of technical challenges that must be overcome to make 

millimeter-scale fuel cells a reality. At the heart of these issues is the architectural 

complexity of the MFC’s that has lead to fabrication, operation, reliability, size, and cost 

issues. 

In summary, typical auxiliary components in a micro fuel cell normally require 

numerous microfabrication steps, have integration difficulties, and require external 

electronics. These components result in high production costs and complexity of operation. 

Due to their relative size to membrane electrode assembly, the overall device energy density 

is greatly reduced. In addition, the auxiliary components can consume some of the generated 

power by the device, which for a millimeter-scale device can be a great portion of the entire 

device power. Developing a new means of fuel delivery and control that can be scaled 

downed and consume little to no power opens an opportunity for fabricating millimeter-scale 

fuel cells and realizing new devices that are tied to the existence of such power sources.  

To enable development of viable millimeter-scale fuel cells, the following 

fundamental approaches should be taken. 

1) An on-board supply for hydrogen generator is investigated in millimeter-scale. 

2) Alternative and scalable means for micro-fuel-cell control should be introduced. 

3) Power consumption of the auxiliary components must be minimized. 

4) Microfabrication steps, complexity, and production costs should be reduced. 
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2.3.  Selections of Hydrogen Sources 

In the following sections, adequacy of the three hydrogen sources mentioned earlier 

for the millimeter-scale fuel cell of this study is discussed.   

A. Hydrogen Storage Medium  

The two main means of storing hydrogen currently being researched in literature are 

storage in carbon nanotubes and metallic and intermetallic compounds (as shown in Table 

2.2). The storage capacity and the release temperature and pressure of different hydrogen 

storage media are the main factors limiting their application. Many experimental studies on 

different carbon nanotubes [58-64] and nanostructured carbon samples [65] have suggested a 

hydrogen storage capacity of up to 1.5 mass% (a review of these studies can be found in 

[66]). Züttel et al. [67] have suggested that charging carbon nanotubes (with hydrogen at 

liquid nitrogen temperature or cathodically at ambient conditions) is limited to 2 mass%, 

since the amount of adsorbed hydrogen is proportional to the specific surface area of the 

carbon nanotube.  
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Table 2.2: Hydrogen content of different storage means. 
 

 

 

 

 

 

 

 

 

 

The second approach is the use of condensed-phase hydride materials. Many 

elemental metals form hydrides (e.g., PdH0.6), but none at an attractive temperature and 

pressure range for MEMS applications. Fortunately, the discovery of hydrogen sorption by 

intermetallic compounds at reasonable temperatures and pressures has created great hope for 

hydrogen storage close to ambient conditions (a list of these compounds can be found in 

[68]). Some of these compounds also release unwanted by-products during dehydrogenation 

process. In a recent study, Xiong et al. [69] showed that more than 10% of hydrogen desorbs 

from lithium amidoborane (LiNH2BH3) at a temperature of around 90ºC (without the by-

product borazine typical of dehydrogenation process of ammonia borane, NH3BH3, 

compounds). 

 

Hydrogen source Weight % of 
hydrogen 

Carbon nanotube < 2 
  
PdH0.6 0.56 
Mg2NiH4 3.59 
LiNH2BH3 10.6 
  
CH4 25 
C4H10 17.2 
C8H18 15.8 
  
CaH2 9.6 
NaBH4 21.3 
LiAlH4 21.2 
LiBH4 37.0 



 
 

24 

B. Fuel Reformers 

Hydrocarbon fuel and organic solvents are also rich sources of hydrogen. However, 

unfortunately, hydrogen extraction from them is quite energy and process intensive. The 

reforming process is often involved in relatively high operation temperatures (in the range of 

300ºC–700ºC). In a millimeter scale silicon-based device, isolating the heat source from the 

rest of the device (particularly the MEA) is quite a challenge. More importantly, the heating 

system and other necessary auxiliary elements often required in a typical reformer (pump, 

sensors, distribution components, control system, power source/conditioning for heater, and 

means for separating hydrogen from other reaction products) are challenging to fit into a 

millimeter-scale device without significant sacrifices in fuel volume. 

 

C. Decomposable Hydrides  

Hydrogen generation through hydrolysis of a metal hydride (such as LiH, LiBH4, 

LiAlH4, and CaH2) is a rather simple process that generates clean hydrogen. An example of 

this type of reaction is LiAlH4 reaction with water as follows; 

 H2O + 0.25 LiAlH4  0.25 LiOH + 0.25 Al(OH)3 + H2 

These hydrides are great sources of hydrogen. For example, in the above reaction, 1 

mole of hydrogen is generated for every 1.25 moles of reactants. Hydrogen production by 

hydrolysis of hydrides is advantageous with respect to operation at low temperature and 

pressure. Provided a means for water delivery to the hydride, the hydrogen generation rate 

and its delivery to the MEA could be readily controlled. Moreover, these hydrides have a 

high rate of reaction with water vapor, which has been the key factor in designing a passive 

control technique for hydrogen generation, as discussed in the following section. 
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Proton Exchange Membrane Fuel Cells (PEMFCs) require relatively pure hydrogen 

to operate. Hydrogen can be supplied by a hydrogen storage medium, a reformer that 

converts hydrocarbon fuels or organic solvents to hydrogen, or decomposable hydrides (i.e., 

metal hydrides and chemical hydrides) that release hydrogen by hydrolysis reactions. For a 

non-rechargeable micro fuel cell, as presented here, selections of hydrogen generation 

depend on the following factors:  

1)  hydrogen storage capacity; 

2)  temperature and pressure of the hydrogen storage and release processes; 

3)  complexity of the dehydrogenation process and its impact on the micro-fuel-cell 

architecture; 

4)  power consumption of the auxiliary system for dehydrogenation and controlled 

delivery of hydrogen to the membrane electrode assembly (MEA); 

5)  microfabrication issues. 

 

2.4.  Main Approach 

The overall device consists of four layers, including as follows: 1) water reservoir; 2) 

membrane; 3) hydride reactor; and 4) membrane electrode assembly (MEA) as shown in a 

3D schematic cross section in Figure 2.3. The no-power, self-regulating hydrogen generator 

is developed using a regulating valve separating between a hydride reactor and a water 

reservoir. The regulating valve consists of a port and a membrane with holes in it. Water 

flows through the port towards the hydride chamber, but stops within the membrane via holes 

due to capillary forces. Water vapor then diffuses into the hydride chamber resulting in 
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hydrogen generation (metal hydrides such as LiH, LiAlH4, and CaH2 react with water vapor 

to produce H2 [70]). When the rate of hydrogen consumption by the fuel cell is lower than 

generation rate, gas pressure builds up inside the hydride reactor and deflects the membrane 

towards the water port, blocking the port and ceasing the water flow to the hydride after the 

water evaporates. This regulation action, however, assumes that the membrane deflects under 

a smaller pressure than needed to break into the liquid meniscus formed inside the membrane 

via holes. Under such conditions, complete isolation of the hydride reactor from the water 

reservoir can occur. When hydrogen consumption by the fuel cell is faster than the 

generation rate, the reverse happens, opening the membrane to allow water to diffuse into the 

hydride reactor, increasing the hydrogen generation. Essentially, the control mechanism is a 

passive valve that automatically regulates hydrogen production based on the hydride reactor 

pressure. Details of the valve operation and testing are discussed in the following sections. 

 

 

 

 

 

 

 

 

Figure 2.3. 3D schematic of the fully integrated device architecture. 
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2.5.  Operating Principle 

During the device operation (as shown in Figure 2.4), water enters the narrow space 

between the bottom of the reservoir and the membrane through a port at the bottom of the 

water reservoir. Capillary forces within the membrane holes keep the water from flowing into 

the hydride reactor. Water vapor diffuses into the hydride reactor (as shown in Figure 2.5) 

and hydrogen is consequently generated when water vapor reacts with the hydride. The 

generated hydrogen then leaves the hydride reactor through a porous wall at the bottom of 

the reactor and reaches the MEA. If hydrogen is not used by the MEA (i.e., open-circuit 

mode), pressure builds up inside the hydride reactor. The membrane is designed to deflect at 

a pressure (about 200 Pa) less than the capillary forces within the membrane holes. The 

deflection of the membrane plugs the water port and stops the flow of water from the 

reservoir. This control mechanism is essentially a passive valve that automatically closes 

when hydrogen is not consumed. Microfabrication of the device is described in the following 

section. 
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Figure 2.4. Schematic cross section of the self-regulating hydrogen generator and its 

operation principle. A) Membrane in release mode: water exits the reservoir and diffuses into 

the hydride reactor through the membrane holes. B) Membrane in closed mode: small 

pressure buildup in the hydride reactor, when hydrogen is not used, bends the membrane and 

closes the water gate. 

 

 

 

 

 

 

 

 

Figure 2.5. A 3D schematic showing vapor release when valve is open  

(i.e. membrane is in release mode). 
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2.6.  Valve Fabrication 

A 400-m-thick <100> p-doped silicon wafer was used to fabricate the water 

reservoir. Figure 2.6(a-b) shows the microfabrication sequence of the water reservoir. A 

300μm-diameter, 25μm deep hole was patterned and etched on one side of the wafer using 

the Bosch process. The wafer was then patterned and etched over a 2.4 × 2.4-mm2 square 

area on both sides. The etched depth was 3 um on the side of the 300μm hole and 380μm on 

the opposite side of the wafer. The device was then hydroxylated in SC-1 solution (a mixture 

of 10:2:1 ratio of H2O:H2O2:NH4OH) to make the surface hydrophilic. Figure 2.6(c-e) also 

shows the microfabrication sequence of the membrane. Prior to spinning the polyimide (PI) 

layer, the glass wafer was coated with a layer of a releasing agent [a mixture of water, 

Poly(aspartic acid)-PAA, and sodium hydroxide] that was later dissolved in water, in order to 

release the membrane from the glass substrate. The membrane was then made through spin 

coating of polyimide PI-5878 (from HD MicroSystems, Wilmington, DE) on a glass 

substrate and then baking in a nitrogen oven at 200ºC for 1 h and then 375ºC for 2 h. The 

final thickness of the membrane was 5μm. The PI layer was then sputter coated with a 

0.2μm-thick Au layer. A 150-Å Cr adhesion layer was used beneath the Au layer. In order to 

fabricate a circular array of 30μm-diameter holes through the PI membrane, the Cr/Au layer 

was patterned with photoresist and then etched. The PI layer was then etched using a reactive 

ion etching (RIE) process. The Cr/Au layer acted as a mask to protect the rest of the PI layer 

while being etched using a reactive ion etching (RIE) process. Finally, a circular area of 

1.3mm-diameter at the center of the PI membrane was protected with photoresist, while the 

rest of the Cr/Au layer was etched away. Assembly process of the PI membrane to the water 

reservoir is shown in Figure 2.6(f-h). The PI membrane, while supported by the glass 
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substrate, was bonded to the water reservoir by using a MEMS adhesive layer [71] with the 

component shown in Table 2.3. The assembly was immersed in water for 4–6 days to release 

from the glass substrate. Figure 2.7-2.10 shows the images of the water reservoir, polyimide 

membrane before assembly, and the water reservoir and membrane assembly respectively. 

 
 
 

Table 2.3: Content of the adhesion composition. 

 

 

 

 

 

 

 

Material Weight % 

Novalac-modified 
resin [DER 672] 12 

Curing agent 
[DEH 87] 5 

2-methoxyethanol 
solvent 29 

Anisole solvent 47 
Propylene Glycol 

Methyl Ether 
Acetate (PGMEA) 

solvent 

7 
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a) Etch water gate. 
 
 
 
 

b) Etch the front and back sides. 
 
 
 
 
 

c) Spin coat PI on glass wafer and deposit Cr/Au. 
 
 
 
 
 

d) Etch Cr/Au and PI layers to make membrane holes. 
 
 
 
 

 
e) Etch Cr/Au from outside circular area at the center of membrane. 

 
 
 
 
 

f) Transfer adhesive on the membrane side of the wafer reservoir. 
 
 
 
 
 
 
 

g) Bond glass-backed PI to water reservoir. 
 
 
 
 
 

h) Release PI from glass. 
 
 
Figure 2.6. Microfabrication sequence of the water reservoir and membrane assembly. 

Si             Glass 

  PI            Cr/Au 

Adhesive      
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Figure 2.7.  Top and bottom views of the water reservoir. The inset figure in the bottom view 

shows a 3μm deep recess that separates the reservoir from the PI membrane. Thickness of the 

reservoir bottom wall is 20m. 

 

 

 

 

 

 

 

 

Figure 2.8. Top view of the center of the polyimide membrane coated with Cr/Au to prevent 

water diffusion through the membrane. The holes are 40-μm in diameter. 
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Figure 2.9. Membrane and reservoir views of the 3×3 mm2 water reservoir and membrane 

assembly. Membrane holes can be seen in the inset figure. 

 

 

 

 

 

 

 

 

 

Figure 2.10.  Membrane and water reservoir assembly. The inset image shows the 

membrane-side view of the actual device. The schematic also shows how water diffuses out 

of the holes when membrane is in release mode. 
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2.7.  Fabrication of Hydride Reactor 

A 500μm-thick <100> p-doped wafer was used to fabricate the hydride reactor. The 

fabrication process was conducted in two KOH etching steps, as shown in Figure 2.11. A 

low-pressure chemical vapor deposition (LPCVD) nitride was used as the masking material. 

Note that the corner compensation method [72] was used for etching the mesa. The hydride 

reactor depth is 460μm. The hydride reactor was then installed in a two-chamber anodization 

bath. Figure 2.12 shows the arrangement of the apparatus used for the anodization process. 

Anodization was conducted in a 25% HF electrolyte at a current density of about 30 mA/cm2. 

The pores penetrated about 40 m-deep into the exposed silicon areas, which included side 

and bottom walls of the hydride reactor. Since sidewall thickness was about 80μm, the pores 

penetrated only through half of the wall thickness, whereas the bottom wall became entirely 

porous except for a 50 nm-thick layer at the bottom of the pores. The nonporous silicon layer 

was later dry etched. The bottom of porous wall, as well as its cross-section view, is shown in 

Figure 2.13 and 2.14. 

 
 
 
 

a) Etch SixNy from top side and etch Si. 
 
 
 
 
 

b) Etch SixNy from the bottom side except from back 
of mesa and then etch Si. 

 
 
 
 
 
 

c) Etch SixNy from back of mesa. 
 

Figure 2.11. Microfabrication sequence of the hydride reactor. 

Si             SixNy 
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Figure 2.12. Schematic of the apparatus used for anodization of the hydride reactor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13. Bottom and top views and cross section of the hydride reactor. The shallow 

recess on the porous silicon wall of the reactor formed after the etch process in ICP-DRIE. 

The etching process was conducted to removed nonporous silicon, but since etch rate of 

porous silicon is about 2-3 times faster than that of silicon, the porous wall got etched a few 

microns more than the sides.
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Figure 2.14. Cross-section view of the hydride reactor porous silicon wall. 

 
 

2.8.  Silicon/Nafion-based MEA Fabrication  

The first generation of MEA was made using a SOI wafer with a 300μm-thick <100> 

n-type handle wafer and a 40μm-thick device layer. A 0.25μm-thick LPCVD nitride layer 

was deposited on the wafer. Figure 2.15 shows the fabrication sequence for Si-MEA. The 

silicon nitride layer was patterned and etched from 2.4 × 2.4 mm2 square areas on the handle 

wafer side, and then silicon was etched in KOH solution until the oxide layer was reached. A 

0.2 m-thick Cr/Au layer was deposited on both sides of the membrane. The membrane was 

then etched (all five layers including Cr/Au on the front side, silicon nitride, silicon, silicon 

oxide, and Cr/Au on the backside) using wet and dry etch processes to open 100 × 100m2 

square openings that were 100 m apart, over a 2 × 2 mm2 area at the center of the 

membrane. Instead of the KOH wet etch, the 40m-thick device layer could be etched using 

DRIE process to open 100μm×100μm square openings that were 100m apart (as shown in 

Figure 2.16) over a 1mm×1mm area. The structures are similar for both methods. 
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After that, a solution of Nafion® solution (28μL of 5 wt.% Nafion® ionomer 1100EW 

from Solution Technology, Inc.), was then painted with a paintbrush on the perforated silicon 

membrane to fill the openings. A leak test was performed using an in-house device. Catalyst 

ink was then prepared by dispersing platinum black HiSPEC 1000 (from Alfa Aesar Co.) in 

Nafion® solution, Millipore water, and isopropanol via sonication. Using the direct paint 

method, the catalyst ink was painted on both sides of the membrane (i.e., anode and cathode). 

The resulting catalyst loading was approximately 20 mg/cm2. In addition to the membrane 

area, a small amount of catalyst ink was painted onto the gold current collectors to provide 

electrical connection. The current collectors were made through sputter deposition of 0.1 μm 

thick Cr/Au layers on the anode and cathode sides. The micro hydrogen generator was then 

epoxied (using Scotch- Weld 2216 B/A Gray epoxy from 3M Co.) onto the MEA to make an 

integrated hydrogen generator-fuel cell assembly. 

 
 
 
 
 
 

a) Etch SixNy and silicon until reach SiO2. 
 
 
 
 

b) Etch SixNy from top, pattern and etch SixNy, silicon, and oxide layers. 
 
 
 
 

c) Deposit electrodes (Cr/Au), fill the holes with Nafion®, and paint catalyst. 
 
 

Figure 2.15.  Microfabrication sequence of MEA. 
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Figure 2.16.  Images of different layers of device and their assembly. The SOI-based 

membrane electrode assembly (MEA) is shown in the most bottom of the assembly.   
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2.9.  Characterizations 

2.9.1.  Bulge Test 

A test piece was fabricated to determine the membrane deflection with pressure. The 

test piece was a silicon die (10mm×10mm) with 2.4mm×2.4mm opening at its middle, over 

which the PI membrane was bonded. The PI membrane was similar to that of the device in 

every aspect (i.e. size and microfabrication process) except that it did not have the 30m 

holes and the silicon membrane inside of the water reservoir. A bulge test setup was used to 

measure the membrane deflection at different pressures. The test piece was installed on the 

pressure chamber of the setup, as depicted in Figure 2.17. The chamber pressure was 

increased using a piezoelectric actuator. As the results in Figure 2.18, an applied pressure of 

approximately 150 Pa is sufficient to deform the membrane 3μm. This value corresponds to 

the calculated pressure required for the rectangular membrane with a 3μm deflection in 

literatures. Also, this pressure is significantly less than the typical water capillary pressure in 

the micro-scale via holes. For example, capillary pressure in a 30μm hole with a surface to 

liquid contact angle of  = 50 degrees is approximately 6 kPa (P = 2*cos /r). This suggests 

that the membrane will deflect and seal the water port before hydrogen can break the 

capillary meniscus formed inside the membrane holes. 
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Figure 2.17. Bulge test setup. Main system components: A) laser sensor model 812330-SLS 

700/15 from LMI Selcom, Inc., B) a jig for holding the test article, C) piezoelectric actuator 

model P-239.60 HVPZT from Physik Instrumente GmbH & Co. KG, D) water chamber, E) 

micro positioning stage, F) pressure transducer model PX 309-001GV S5V from OMEGA 

Co., and G) water inlet/outlet valves.  The test article is attached to the jig (A). The micro 

positioning stage is used to adjust the sample right below the optical sensor. Next, water 

chamber (D) is filled with water using the inlet/outlet valves (G). The water level reaches the 

top of the water chamber but doesn’t come into contact with the membrane. 
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Figure 2.18. Test results show the relationship of membrane deflection and applied pressure.  

 

2.9.2.  Humidity Set-up 

An experimental setup was fabricated to test the valve performance. The setup 

determines the open and close states of the valve as well as the water vapor released rate 

through the holes when the valve is open. Figure 2.19 shows a schematic of the setup. The 

setup consists of two main chambers C-1 and C-2. Pressure inside each chamber is adjusted 

by changing the liquid (Fomblin oil) level in manometers M-1 and M-2. Two push-button 

valves V-1 and V-2 allow purging of the C-2 chamber with dry nitrogen. A humidity sensor 

(Model SHT75, size 3.7mm×2.2mm×4.9mm, from Sensirion, Inc.) installed on the bottom of 

the C-2 chamber measures the relative humidity. The valve and water reservoir assembly was 

installed between the C-1 and C-2 chambers. Water was supplied to the water reservoir (i.e. 

topside of the valve). The two chambers were kept at the same pressure. The C-2 chamber 

was purged with nitrogen until a humidity level of less than 1% was reached  immediately 
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after purging the chamber (i.e. closing the V-1 and V 2 valves), the chamber humidity started 

to raise indicating water vapor release by the valve. The chamber was purged with nitrogen 

again and the increase in the relative humidity was measured. This process was repeated 

several times, as shown in in Figure 2.20. Finally, pressure inside the C-2 chamber was 

increased approximately 400 Pa above that of the C-1 chamber by adjusting the liquid level 

in manometer M-2. The chamber was purged with nitrogen for several minutes. As can be 

seen in the same figure, the humidity did not rise at this point, showing that the valve was 

closed.    

During the course of the experiment, no bubbles were observed to enter the water 

reservoir, indicating that the membrane deflection and capillary forces did not allow 

hydrogen to pass through the valve. Without the membrane, bubbles are observed to pass, 

even through long microchannels connecting the water reservoir to the hydride reactor. Also, 

the bottom wall of the water reservoir did not measurably bulge, suggesting that the 

hydrogen pressure did not increase measurably inside the device.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19. Schematic of the test setup for measuring the valve performance.  
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Figure 2.20. Valve performance test results showing its closure after a pressure of 

approximately 400 Pa was applied on the membrane. The chamber was purged for a few 

minutes after the fourth cycle. 

 

2.10.  Integrated Devices Testing (First Generation) 

The hydride reactor was fabricated from <100> p-doped silicon using DRIE process. 

A 20m recess was etched at the bottom of the hydride reservoir facing the MEA to facilitate 

its assembly on the MEA. The bottom wall of the hydride reactor was then anodized in a 

25% HF electrolyte to produce ~5 nm diameter pores (previously shown in Figure 2.14) that 

allow hydrogen to exit the reactor. Typically, 60–70% of the hydride reactor is charged with 

LiAlH4 (Sigma–Aldrich, Inc., St. Louis, MO). LiAlH4 has the highest reaction rate with 

water vapor among typical chemical hydrides (e.g. CaH2, NaAlH4, LiBH4, and NaBH4) [70]. 

Approximately 60% of the hydride reactor volume was filled with LiAlH4 powder 

(from Sigma-Aldrich, Inc., St. Louis, MO) inside a glove box. The membrane/water reservoir 

assembly was then attached on top of the hydride reservoir using Scotch-Weld 2261 B/A 

Gray epoxy (from 3M, Inc., St. Paul, MN). The entire assembly of the water reservoirs (as 
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shown in Figure 2.21) was then epoxied on the MEA. The device was left in a glove box for 

about 10 h for the epoxy to dry. Figure 2.22 shows the device assembly after pouring the 

epoxy between the hydrogen generator and the MEA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21. Schematic assembly of the self-regulating hydrogen generator and the actual 

images of the top and bottom of the hydrogen generator.  
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Figure 2.22. Self-regulating hydrogen generator assembled on a microfabricated hybrid 

silicon/Nafion MEA. The image was taken after epoxy (3M Scotch-Weld 2216 B/A Gray) 

was poured around the micro hydrogen generator to fix it on the MEA. 

 

A Solartron SI 1287 potentiostat was used to conduct the tests. The integrated device 

was installed in a test stand that connected the anode and cathode electrodes to the 

potentiostat. Several devices were fabricated to conduct the following: 1) a set of tests to 

determine device behavior under varying load conditions and 2) life tests to determine the 

device energy density.  

The primary goals of this experiment were the following. (1) To find out if hydrogen 

bubbles pass through the valve and enter the water reservoir. (2) Confirm valve closure 

through analysis of current transients as well as physical evidence (failure of the device due 

to fracture of its elements) suggesting continuous hydrogen generation and pressure build-up 

inside the device. In the second test, the device voltage was changed in saw-tooth wave form 

between 0.3 and 0.7V to evaluate the response of the control mechanism to gradual changes 

in load conditions. 
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During the course of the experiment, the humidity level in the test room was between 

30% and 50%. A typical test started by supplying water to the device water reservoir. The 

open-circuit potential quickly increased to a maximum of about 0.9 V, as water vapor was 

released by the control system into the hydride chamber and the generated hydrogen reached 

the MEA.  In the first run, the I–V characteristic curve of the device was determined. Figure 

2.23 shows a typical result and its comparison with the I–V curve of the MEA before 

integration (using hydrogen and oxygen gas). The comparison of the two performance curves 

clearly suggests that the activation and ohmic polarization losses of the MEA have increased 

after integration. More importantly, the results show that the device performance at voltages 

of less than 0.6 V is limited by hydrogen generation rate. In a second test, the potentiostat 

was set to switch the device voltage between the open-circuit voltage and 0.3 V several times 

(i.e., square wave form), as shown in Figure 2.24. During the open-circuit mode, the 

potentiostat simply measures the device output voltage when no current is drawn from the 

device. The integrated device was tested using a Solartron SI 1287 potentiostat. The water 

reservoir was filled and tests were conducted.  

Analysis of the device current output also provided interesting insight about hydrogen 

generation. As can be seen in Figure 2.24, after 3 min of the device not consuming any 

hydrogen (i.e. open circuit mode), no spike in current (beyond the steady-state value) was 

observed when the voltage was dropped to 0.3 V. This test suggests that hydrogen was not 

produced and did not accumulate inside the device when no current was drawn. Note that 

higher currents can be generated with increased hydrogen pressure, considering that the 

MEA is capable of delivering an order of magnitude higher current (700mAcm-2 at the 

operating voltage of 0.3 V), than what was delivered by the integrated device. The small 
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spike of ~1mA cm-2 versus 8mAcm-2 is mainly an artifact of the experiment. A similar 

negative spike can be seen when current goes to zero, which suggests the spikes are due to 

the measurement electronics on abrupt voltage changes. Also, the near square-wave variation 

of the current generated showed that the hydrogen generation due to changes in the valve 

responded in less than a second. The smooth variations of the output current in response to 

the gradual changes in voltage (i.e. saw-tooth wave form) suggested that the hydrogen 

generator provided sufficient hydrogen to the MEA when needed and reduced supply when 

the consumption rate was low.      

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23. Polarization curve of the hybrid Nafion®/silicon MEA.  
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Figure 2.24. Performance of the integrated device under different load conditions. Test was 

conducted using fuel cell test machine Model 10AI (from Fuel Cell Technologies, Inc.). 

Device was run at varying voltage (square and saw-tooth waves) conditions and its current 

response was determined.    

 

Three devices were tested to determine maximum achievable energy density. The 

devices were operated at 0.7 V until they ran out of fuel. Figure 2.25 shows the test results. 

The devices delivered a current of close to 0.1 mA at the beginning. Over time, however, the 

current decreased. It is suspected that this is due to the reduction in hydrogen generation rate 

over time. One explanation could be a decrease in the water vapor rate reaching the unreacted 

fuel at the bottom of the hydride reactor, as thickness of the reaction products gradually 

increased. One challenge with this reaction is the formation of compounds that are often 

impermeable to water vapor. More research is required to clearly find the main cause of this 
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behavior. The focus for this research group is currently to resolve this issue by conducting 

extensive research. 

The energy density of the devices was between 244 and 262 Wh/L (with an average 

value of 254 Wh/L), calculated by dividing the overall generated energy (integral of the 

generated power reported in Figure 2.25) by the device volume. Considering that the hydride 

reactor was filled with 1.2 mg of LiAlH4 (60% of the 2.22 μL reactor volume), which could 

generate hydrogen for 4.7-mWh energy (or 522.2 Wh/L) at an operating voltage of 0.7 V, 

suggested that only about 49% of the fuel was utilized in the device. The rest of the fuel 

could have either stayed unreacted in the reactor or the generated hydrogen leaked from the 

device through the adhesives that may not be hydrogen impermeable. Further studies are 

required to quantify and minimize these losses. Achieving an energy density on the order of 

400 Wh/L is feasible with a fuel utilization efficiency of about 80%. 

In addition, a calculation suggests that using the following reaction, a theoretical 

energy density of 756 Wh/L at the operating voltage of 0.7 V (or 863 Wh/L at 0.8 V) could 

be achieved: 

H2O + 0.55 NH4F + 0.8 LiBH4 → 0.55 LiF+ 0.55 BN + 0.25 LiOH + 0.25 H3BO3 + 3.2 H2. 

Through implementation of this chemistry, an energy density on the order of 700 Wh/L can 

be achieved. 
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Figure 2.25. Current output of three devices operated at a constant voltage of 0.7 V. The 

overall energy density of the three devices varied from 244 to 262 Wh/L. 

 

2.11.  Conclusion 

The development of a self-regulating micro hydrogen generator for micro fuel cells 

was reported. The device employs a regulator micro valve for controlling the rate of 

hydrogen generation in a hydride reactor, eliminating the need for complex auxiliary systems 

commonly suggested in hydrogen generators. The control mechanism takes advantage of 

capillary forces to maintain water inside a confined volume connected to a water reservoir. It 

delivers water vapor to the hydride reactor when hydrogen pressure inside the hydride reactor 

is low and relies on deflection of a membrane to seal off the water reservoir from the hydride 

reactor when the reactor pressure increases due to excess generation of hydrogen over that 

consumed by the fuel cell. A fully integrated millimeter-scale fuel-cell-based power source 

with onboard fuel and a control system was developed. Fabrication of this high energy 

density device in such a small volume (9 µL or 3 × 3 × 1 mm3) was enabled through 

implementation of a scalable design architecture and using a new passive control mechanism 
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that occupies very little volume (less than 0.5% of the device volume). The performance of 

the device under varying load conditions was successfully demonstrated. The operation of 

the device under a constant load over a long period of time (more than 32 h) resulted in a 

relatively stable performance and 254 Wh/L energy output. Simplicity of the design and 

microfabrication processes suggested in this paper has opened a new opportunity for 

commercialization of more cost-effective micro fuel cells. 

Several unique qualities of the hydrogen generator regulator are:  

(1) The control mechanism occupies a volume of less than 50 nL (approximately 

0.5% of the volume of the millimeter-scale integrated device developed in this study); 

(2) Unlike most other control mechanisms, the proposed design consumes no energy; 

(3) The device operates passively without a need for external electronics, allowing the 

fuel cells to operate similar to batteries; and 

(4) The fabrications of millimeter-scale fully integrated micro fuel cells are enable by 

MEMS processes for the development of membrane technologies. 

 



 
 

52 

2.12.  References  

[1]  J. N. Baker and A. Collinson, "Electrical energy storage at the turn of the 

Millennium," Power Engineering Journal, vol. 13, pp. 107-12, 1999.  

[2]  R. M. Dell and D. A. J. Rand, "Energy storage-a key technology for global energy 

sustainability," Journal of Power Sources, vol. 100, pp. 2-17, 2001.  

[3]  A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon and W. Van Schalkwijk, 

"Nanostructured materials for advanced energy conversion and storage devices," 

Nature Materials, vol. 4, pp. 366-377, 2005.  

[4]  M. Armand and J. M. Tarascon, "Building better batteries," Nature, vol. 451, pp. 652-

7, 2008.  

[5]  R. J. Wood, "Liftoff of a 60mg flapping-wing MAV," in IEEE International 

Conference on Intelligent Robots and Systems, San Diego, CA, United states, 2007, 

pp. 1889-1894.  

[6]  S. Bergbreiter and K. S. J. Pister, "Design of an autonomous jumping microrobot," in 

IEEE International Conference on Robotics and Automation, Piscataway, NJ, USA, 

2007, pp. 7 pp.  

[7]  R. R. Selmic and A. Mitra, "Position-adaptive explosive detection concepts for 

swarming micro-UAVs," in SPIE - the International Society for Optical Engineering, 

USA, 2008, pp. 696106-1.  



 
 

53 

[8]  S. Hollar, A. Flynn, C. Bellew and K. S. J. Pister, "Solar powered 10 mg silicon 

robot," in IEEE Micro Electro Mechanical Systems (MEMS), Kyoto, Japan, 2003, pp. 

706-711.  

[9]  A. Boletis, W. Driesen, J. M. Breguet and A. Brunete, "Solar cell powering with 

integrated global system for mm3 size robots," in IEEE/RSJ International Conference 

on Intelligent Robots and Systems, Piscataway, NJ, USA, 2006, pp. 5528-33.  

[10]  W. Smith, "The role of fuel cells in energy storage," Journal of Power Sources, vol. 

86, pp. 74-83, 2000.  

[11]  B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature, vol. 

414, pp. 345-352, 2001.  

[12]  A. Heinzel, C. Hebling, M. Müller, M. Zedda and C. Müller, "Fuel cells for low 

power applications," Journal of Power Sources, vol. 105, pp. 250-255, 2002.  

[13]  G. J. La O, I. Hyun Jin, E. Crumlin, G. Barbastathis and S. Yang, "Recent advances 

in microdevices for electrochemical energy conversion and storage," International 

Journal of Energy Research, vol. 31, pp. 548-75, 2007.  

[14]  J. D. Morse, "Micro-fuel cell power sources," International Journal of Energy 

Research, vol. 31, pp. 576-602, 2007.  

[15]  A. Kundu, J. H. Jang, J. H. Gil, C. R. Jung, H. R. Lee, S. H. Kim, B. Ku and Y. S. 

Oh, "Micro-fuel cells-Current development and applications," Journal of Power 

Sources, vol. 170, pp. 67-78, 2007.  



 
 

54 

[16]  M. Broussely and G. Archdale, "Li-ion batteries and portable power source prospects 

for the next 5-10 years," Journal of Power Sources, vol. 136, pp. 386-394, 2004.  

[17]  S. Tanaka, K. Chang, K. Min, D. Satoh, K. Yoshida and M. Esashi, "MEMS-based 

components of a miniature fuel cell/fuel reformer system," Chemical Engineering 

Journal, vol. 101, pp. 143-149, 2004.  

[18]  C. Xie, J. Bostaph and J. Pavio, "Development of a 2 W direct methanol fuel cell 

power source," Journal of Power Sources, vol. 136, pp. 55-65, 2004.  

[19]  S. Yao, X. Tang, C. Hsieh, Y. Alyousef, M. Vladimer, G. K. Fedder and C. H. Amon, 

"Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel 

cell development," Energy, vol. 31, pp. 636-649, 2006.  

[20]  W. Qian, D. P. Wilkinson, J. Shen, H. Wang and J. Zhang, "Architecture for portable 

direct liquid fuel cells," Journal of Power Sources, vol. 154, pp. 202-213, 2006.  

[21]  K. W. Oh and C. H. Ahn, "A review of microvalves," Journal of Micromechanics and 

Microengineering, vol. 16, pp. R13-R39, 2006.  

[22]  H. Zhao, K. Stanley, Q. M. J. Wu and E. Czyzewska, "Structure and characterization 

of a planar normally closed bulk-micromachined piezoelectric valve for fuel cell 

applications," Sensors and Actuators A, vol. 120, pp. 134-141, 2005.  

[23]  E. T. Carlen and C. H. Mastrangelo, "Surface Micromachined Paraffin-Actuated 

Microvalve," Journal of Microelectromechanical Systems, vol. 11, pp. 408-420, 

2002.  



 
 

55 

[24]  N. Vandelli, D. Wroblewski, M. Velonis and T. Bifano, "Development of a MEMS 

microvalve array for fluid flow control," Journal of Microelectromechanical Systems, 

vol. 7, pp. 395-403, 1998.  

[25]  J. P. Hensel, R. S. Gemmena, J. D. Thornton, J. S. Vipperman, W. W. Clark and B. 

A. Bucci, "Effects of cell-to-cell fuel mal-distribution on fuel cell performance and a 

means to reduce mal-distribution using MEMS micro-valves," Journal of Power 

Sources, vol. 164, pp. 115–125, 2007.  

[26]  A. Richter, D. Kuckling, S. Howitz, T. Gehring and K. Arndt, "Electronically 

Controllable Microvalves Based on Smart Hydrogels: Magnitudes and Potential 

Applications," Journal of Microelectromechanical Systems, vol. 12, pp. 748-753, 

2003.  

[27]  J. S. Bintoro and P. J. Hesketh, "An electromagnetic actuated on/off microvalve 

fabricated on top of a single wafer," Journal of Micromechanics and 

Microengineering, vol. 15, pp. 1157-73, 2005.  

[28]  P. J. Hesketh, J. S. Bintoro and R. Luharuka, "Microvalve for Fuel Cells and 

Miniature Gas Chromatographic System," Sensors Update, vol. 13, pp. 233-302, 

2004.  

[29]  D. P. Wilkinson, R. Rahbari, J. Zimmerman and M. Blanco, "Flow control apparatus 

and method for fuel cell flow fields,", 2005.  

[30]  B. Schumm, "Fluid regulating microvalve assembly for fluid consuming cells,", 2006.  



 
 

56 

[31]  S. Masaaki, H. Yosuke, J. Kazushi and T. Shigeaki, "Fuel Control Micro-Valve for 

Portable Fuel Cells," MEW Technical Report, vol. 53, pp. 76-80, 2005.  

[32]  F. F. Sherman, V. Gartstein and D. J. Quiram, "Microvalve for controlling fluid 

flow," 2001.  

[33]  K. Yoshida, Y. Hagihara, M. Saitoh, S. Tomonari, S. Tanaka and M. Esashi, 

"Microvalve to Control Fuel for Portable Fuel Cells," Transactions on Sensors and 

Micromachines, the Institute of Electrical Engineering of Japan, vol. 125, pp. 418-

423, 2005.  

[34]  R. Gemmen, J. Thornton, J. S. Vipperman and W. W. Clark, "Piezoelectric axial flow 

microvalve," 2007.  

[35]  K. Yoshida, Y. Hagihara, S. Tanaka and M. Esashi, "Normally-closed electrostatic 

micro valve with pressure balance mechanism for portable fuel cell application," in 

Proceedings of IEEE International Conference on Micro Electro Mechanical Systems 

(MEMS), 2006, pp. 722-725.  

[36]  E. (. Yang, C. Lee, J. Mueller and T. George, "Leak-Tight Piezoelectric Microvalve 

for High-Pressure Gas Micropropulsion," Journal of Microelectromechanical 

Systems, vol. 13, pp. 779-807, 2004.  

[37]  O. Soerensen, K. S. Drese, W. Ehrfeld and H. Hartmann, "Micromachined flow 

handling components - micropumps," in Proceedings of SPIE - the International 

Society for Optical Engineering, 1999, pp. 52-60.  



 
 

57 

[38]  A. K. Da Silva, M. H. Kobayashi and C. F. M. Coimbra, "Optimal design of non-

Newtonian, micro-scale viscous pumps for biomedical devices," Biotechnology and 

Bioengineering, vol. 96, pp. 37-47, 2007.  

[39]  J. Doepper, M. Clemens, W. Ehrfeld, S. Jung, K. -. Kaemper and H. Lehr, "Micro 

gear pumps for dosing of viscous fluids," Journal of Micromechanics and 

Microengineering, vol. 7, pp. 230-232, 1997.  

[40]  S. Hayamizu, K. Higashino, Y. Fujii, Y. Sando and K. Yamamoto, "Development of 

a bi-directional valve-less silicon micro pump controlled by driving waveform," 

Sensors and Actuators A, vol. 103, pp. 83-87, 2003.  

[41]  D. Liu, M. Maxey and G. E. Karniadakis, "Modeling and optimization of colloidal 

micro-pumps," Journal of Micromechanics and Microengineering, vol. 14, pp. 567-

575, 2004.  

[42]  K. Yang, I. Chen and C. Wang, "Performance of nozzle/diffuser micro-pumps subject 

to parallel and series combinations," Chemical Engineering and Technology, vol. 29, 

pp. 703-710, 2006.  

[43]  X. Yang, Z. Zhou, H. Chod and X. Luod, "Study on a PZT-actuated diaphragm pump 

for air supply for micro fuel cells," Sensors and Actuators A, vol. 130–131, pp. 531–

536, 2006.  

[44]  Y. Takeuchi, H. Tsuji, K. Kitamura and N. Takahashi, "Method for manufacturing a 

cell-driving-type micro pump member," 2004.  



 
 

58 

[45]  Y. Takeuchi, H. Tsuji, K. Kitamura and N. Takahashi, "Micro pump,", 2004.  

[46]  R. Hahn, S. Wagner, A. Schmitz and H. Reichl, "Development of a planar micro fuel 

cell with thin film and micro patterning technologies," Journal of Power Sources, vol. 

131, pp. 73-78, 2004.  

[47]  J. Yeom, G. Z. Mozsgai, B. R. Flachsbart, E. R. Choban, A. Asthana, M. A. Shannon 

and P. J. A. Kenis, "Microfabrication and characterization of a silicon-based 

millimeter scale, PEM fuel cell operating with hydrogen, methanol, or formic acid," 

Sensors and Actuators B, vol. 107, pp. 882-891, 2005.  

[48]  K. Chu, S. Gold, V. Subramanian, C. Lu, M. A. Shannon and R. I. Masel, "A 

nanoporous silicon membrane electrode assembly for on-chip micro fuel cell," 

Journal of Microelectromechanical Systems, vol. 15, pp. 671-677, 2006.  

[49]  K. Chu, M. A. Shannon and R. I. Masel, "An improved miniature direct formic acid 

fuel cell based on nanoporous silicon for portable power generation," Journal of the 

Electrochemical Society, vol. 153, pp. 1562-1567, 2006.  

[50]  T. Pichonat and B. Gauthier-Manuel, "Recent developments in MEMS-based 

miniature fuel cells," Microsystem Technologies, vol. 13, pp. 1671-1678, 2007.  

[51]  Y. Zhang, J. Lu, S. Shimano, H. Zhou and R. Maeda, "Development of MEMS-based 

direct methanol fuel cell with high power density using nanoimprint technology," 

Electrochem. Commun., vol. 9, pp. 1365-1368, 2007.  



 
 

59 

[52]  T. Sarata, N. Yanase, T. Ozaki, T. Tamachi, K. Yuzurihara and F. Iwasaki, "Method 

of hydrogen generation, hydrogen generator, and fuel cell apparatus," 

WO/2006/101214, 2006.  

[53]  A. V. Pattekar and M. V. Kothare, "A micro reactor for hydrogen production in micro 

fuel cell applications," Journal of Microelectromechanical Systems, vol. 13, pp. 7-18, 

2004.  

[54]  D. Park, T. Kim, S. Kwon, C. Kim and E. Yoon, "Micromachined methanol steam 

reforming system as a hydrogen supplier for portable proton exchange membrane fuel 

cells," Sensors and Actuators A, vol. 135, pp. 58-66, 2007.  

[55]  D. Gervasio, S. Tasic and F. Zenhausern, "Room temperature micro-hydrogen-

generator," Journal of Power Sources, vol. 149, pp. 15-21, 2005.  

[56]  A. Kundu, J. M. Park, J. E. Ahn, S. S. Park, Y. G. Shul and H. S. Han, "Micro-

channel reactor for steam reforming of methanol," Fuel, vol. 86, pp. 1331-1336, 

2007.  

[57]  D. Linden, Handbook of Batteries and Fuel Cells. New York: McGraw-Hill 

Companies, 1984.  

[58]  A. C. Dillon, K. E. H. Gilbert, J. L. Alleman, T. Gennett, K. M. Jones, P. A. Parilla 

and M. J. Heben, "Carbon nanotube materials for hydrogen storage," in Proceedings 

of DOE Hydrogen Program Review, 2001, .  



 
 

60 

[59]  A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. 

Heben, "Storage of hydrogen in single-walled carbon nanotubes," Nature, vol. 386, 

pp. 377-379, 1997.  

[60]  P. Chen, X. Wu, J. Lin and K. L. Tan, "High H2 Uptake by Alkali-Doped Carbon 

Nanotubes Under Ambient Pressure and Moderate Temperatures," Science, vol. 285, 

pp. 91-93, 1999.  

[61]  M. Hirscher, "Hydrogen storage in nanoscale carbon and metals," Applied Physics A, 

vol. 72, 2001.  

[62]  M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G. S. 

Duesberg, Y. -. Choi, P. Downes, M. Hulman, S. Roth, I. Stepanek and P. Bernier, 

"Hydrogen storage in sonicated carbon materials," Applied Physics, vol. 72, pp. 129–

132, 2001.  

[63]  M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skákalová, Y. M. Choi, Dettlaff-

Weglikowska, R. U. S., I. Stepanek, P. Bernier, A. Leonhardt and J. Fink, "Hydrogen 

storage in carbon nanostructures," Journal of Alloys Compounds, vol. 330-332, pp. 

654-658, 2002.  

[64]  A. Züttel, C. Nützenadel, P. Sudan, P. Mauron, C. Emmenegger, S. Rentsch, L. 

Schlapbach, A. Weidenkaff and T. Kiyobayashi, "Hydrogen sorption by carbon 

nanotubes and other carbon nanostructures," Journal of Alloys Compounds, vol. 330-

332, pp. 676-682, 2002.  



 
 

61 

[65]  M. G. Niijkamp, J. E. M. J. Raaymakers, A. J. Van Dillen and K. P. De Jong, 

"Hydrogen storage using physisorption-materials demands," Applied Physics A: 

Materials Science and Processing, vol. 72, pp. 619-623, 2001.  

[66]  L. Schlapbach and A. Zuttel, "Hydrogen-storage materials for mobile applications," 

Nature, vol. 414, pp. 353-358, 2001.  

[67]  A. Zuttel, P. Sudan, P. Mauron, T. Kiyobayashi, C. Emmenegger and L. Schlapbach, 

"Hydrogen storage in carbon nanostructures," International Journal of Hydrogen 

Energy, vol. 27, pp. 203-212, 2002.  

[68]  G. Sandrock and G. Thomas, "IEA/DOC/SNL on-line hydride databases," Applied 

Physics A, vol. 72, pp. 153-155, 2001.  

[69]  Z. Xiong, C. K. Yong, G. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. 

Jones, S. R. Johnson, P. P. Edwards and W. I. F. David, "High-capacity hydrogen 

storage in lithium and sodium amidoboranes," Nature Materials, vol. 7, pp. 138-141, 

2008.  

[70]  V. C. Y. Kong, D. W. Kirk, F. R. Foulkes and J. T. Hinatsu, "Development of 

hydrogen storage for fuel cellgenerators. i: Hydrogen generation using hydrolysis 

hydrides," International Journal of Hydrogen Energy, vol. 24, pp. 665-675, 1999.  

[71]  B. R. Flachsbart, K. Wong, J. M. Iannacone, E. N. Abante, R. L. Vlach, P. A. 

Rauchfuss, P. W. Bohn, J. V. Sweedler and M. A. Shannon, "Design and fabrication 

of a multilayered polymer microfluidic chip with nanofluidic interconnects via 

adhesive contact printing," Lab-on-A-Chip, vol. 6, pp. 667-674, 2006.  



 
 

62 

[72]  M. Madou, Fundamentals of Microfabrication. Boca Raton, Florida: CRC, pp. 200, 

1997.  

 



63 
 

CHAPTER 3:  

IMPROVEMENTS ON HYDRIDE-BASED MICRO FUEL CELLS 

WITH ON-BOARD HYDROGEN SOURCE 

 

3.1.  Introduction 

Recently, we introduced a new fuel cell architecture that allows fabrication of MFCs 

in the microliter size range. The enabling technology has been a self-regulating micro 

hydrogen generator that delivers hydrogen to a membrane electrode assembly (MEA). The 

hydrogen generator uses a reaction between a metal hydride (e.g. LiAlH4) and water vapor to 

generate hydrogen in a reactor. A passive microfluidic control mechanism regulates 

hydrogen generation through controlled delivery of water vapor to the metal hydride based 

on the reactor pressure. This self-regulating hydrogen generation and delivery system has 

eliminated the need for auxiliary components such as pumps, valves, sensors, distribution 

components, and power and control electronics that made fabrication of microliter-scale fuel 

cells challenging. We have recently reported fabrication of a fully integrated 9 μL MFC that 

incorporates the hydrogen generation and control mechanism. The device delivered an 

energy density of approximately 250 WhL−1 and a power density of close to 10 WL−1. In this 

chapter, we studied alternatives for micro fuel cells with higher power density and longer 

shelf life for transportation and storage. 
 

 

The content in this chapter is adapted from the published articles as follows; 
o S. Moghaddam, E. Pengwang, R.I. Masel, and M.A. Shannon, “An Enhanced Microfluidic Control System for Improving Power 

Density of a Hydride-based Micro Fuel Cell,” Journal of Power Sources, vol. 195(7), pp. 1866-1871, 2010.  
o E. Pengwang, M.A. Shannon, and S. Moghaddam, “Electrochemically Dissolvable Nanocomposite Seal Layer for Long-term Storage 

of Chemical Hydride-based Micro Hydrogen Generators,” Journal of Microelectromechanical Systems (JMEMS), (submitted October 
2011) 
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Improving the device’s power density has been one of the main goals of the recent 

research. The issue of low hydrogen generation rate have identified due to the limited water 

vapor release by the microfluidic mechanism that is a cause of low power density (~10 W/L) 

in the 1st generation device. In this chapter, different parameters that affect the water release 

rate of the microfluidic mechanism are discussed and the enhanced design that increased the 

power density of the 2nd generation device by one order of magnitude (~100 W/L) over that 

of the 1st generation device is introduced. 

Moreover, another main challenge for using these metal hydrides is a storage 

capability because they react spontaneously with any presence of moisture or water. An 

alternative way to keep water diffusion away from metal hydride is presented in this chapter 

with a designed seal layer of copper and silver that can be dissolved within a few minutes by 

a method of electrochemical process. With this development, a seal layer was demonstrated 

in millimeter integrated fuel cell devices based on metal hydride. This seal layer can be 

fabricated by micro fabrication processes and thin film deposition that occupies less volume 

than additional apparatuses in previous methods. 

 

3.2.  Modified Micro Fuel Cells 

A 3D schematic cross-section of the modified device is shown in Figure 3.1. The 

device consists of three layers including; (1) water reservoir and vapor release mechanism, 

(2) hydride reactor, and 3) MEA. Details on the operation principle of the water vapor release 

mechanism are available in Moghaddam et al. [1, 2]. Briefly, during the device operation, 

water enters the narrow space between the bottom wall of the reservoir and a membrane 

through an opening. Capillary forces within the membrane holes keep the water from flowing 
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into the hydride reactor. Water vapor then diffuses into the hydride reactor as shown in the 

schematic inset in Figure 3.1. Hydrogen is generated when water vapor reacts with the 

hydride. The generated hydrogen then leaves the hydride reactor through a porous silicon 

wall (with ∼5 nm pore size) at the bottom of the reactor and reaches the MEA. If hydrogen is 

not used by the MEA (i.e. open-circuit mode), pressure builds up inside the hydride reactor. 

The membrane is designed to deflect at a pressure less than the capillary forces within the 

membrane holes. The deflection of the membrane plugs the water port and stops the flow of 

water from the reservoir. Essentially, the microfluidic control mechanism is a passive valve 

that automatically regulates hydrogen production based on the hydrogen gas pressure within 

the hydride reactor.  

The water reservoir was fabricated from <100> silicon using a deep reactive ion 

etching (DRIE) process. The membrane separating the water reservoir and the hydride 

reactor was made of polyimide (PI) through spinning and curing PI 5878G (HD 

Microsystems, Parlin, NJ) on a glass substrate. The final thickness of the PI membrane was 5 

µm. Since PI is water permeable, the membrane was sputter-coated with a 0.2 µm thick 

Cr/Au layer to prevent water diffusion through the membrane when the valve is closed. The 

circularly distributed array of holes shown in Figure 3.1 was etched through the Cr/Au (wet 

etched) and PI (reactive ion etched) layers. The membrane was transfer-bonded [3] from 

glass substrate to the bottom of the water reservoir. 

The modified hydride reactor was fabricated from <100> p-doped silicon using DRIE 

process. A 20 μm recess was etched at the bottom of the hydride reservoir facing the MEA to 

facilitate its assembly on the MEA. The bottom wall of the hydride reactor was then anodized 

in 25% HF electrolyte to produce ~10 nm diameter pores that allow hydrogen to exit the 
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reactor. Typically, 60–70% of the hydride reactor is charged with LiAlH4 (Sigma–Aldrich, 

Inc., St. Louis, MO). LiAlH4 has the highest reaction rate with water vapor among typical 

chemical hydrides (e.g. CaH2, NaAlH4, LiBH4, and NaBH4) [4]. 

The modified MEA was fabricated by sandwiching Nafion® NRE-211 with a 

nominal thickness of 25 m (Dupont, Wilmington, DE) between two 25 m thick stainless 

steel (SS) foils. The foils have 2 mm × 2 mm square openings to expose Nafion®. The 

exposed Nafion® membrane was then brush-painted with catalyst. The catalyst was prepared 

by dispersing platinum black HiSPEC 1000 (Alfa Aesar Co., Ward Hill, MA) in Nafion® 

solution, Millipore water, and isopropanol via sonication. In addition to the membrane area, a 

small amount of catalyst ink was also painted on the edges of the SS foil around the 

membrane to provide electrical connection to the SS foils that are also used as current 

collectors. 

The assembly process of the device was conducted in a glove box. First, the hydride 

reactor was epoxied to the MEA (Scotch-Weld 2216 B/A Gray epoxy made by 3M Co., St. 

Pual, MN) to the MEA. The hydride reactor was then partially filled with LiAlH4. Finally, 

the water reservoir and membrane assembly were assembled on the hydride chamber. The 

water reservoir was charged with water outside the glove box. 
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Figure 3.1. Cross-section schematic of the device showing its three main components: 1) 

water reservoir/valve with a stainless steel (SS) cap, 2) hydride reservoir, and 3) membrane 

electrode assembly (MEA). The inset schematic shows vapor release from the membrane 

holes. Total volume of the device is approximately 10 m.   

 

3.3.  Parametric Study of Micro Valves 

Performance of the valve is determined by a set of parameters including: gap (H) 

between membrane when it is not deformed and the bottom of the water reservoir (Figure 

3.2a), membrane open area (A) (Figure 3.2b and c), and membrane mechanical properties. 

Eight test samples were fabricated to study the effects of H and A on the valve water vapor 

release rate ( m ).  



68 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Schematic cross section of the valve (a) and front view of the Cr/Au coated PI 

membrane showing one row (b) and five rows (c) of 30 m diameter holes.    

 

The experimental setup shown in Figure 3.3 was used to conduct the tests. The setup 

consists of two main chambers C-1 and C-2. Pressure inside each chamber is adjusted by 

changing the liquid (Fomblin oil) level in manometers M-1 and M-2. Two push-button valves 

V-1 and V-2 allow purging of the C-2 chamber with dry nitrogen. A humidity sensor (Model 

SHT75, size 3.7×2.2×4.9 mm3, from Sensirion, Inc.) installed on the bottom of the C-2 

chamber measures the relative humidity as shown in Figure 3.3. A typical test involves 

installing the test sample between the C-1 and C-2 chambers. Water is then supplied to the 

water reservoir (i.e. topside of the valve). The two chambers were kept at the same pressure. 

The C-2 chamber is purged with nitrogen until a humidity level of less than 1% is reached. 

Immediately after purging the chamber (i.e. closing the V-1 and V-2 valves), the chamber 

humidity starts to rise as the valve releases water vapor. 

H  

(a)  

(b)  (c)  



69 
 

 

Figure 3.3. Schematic of the test setup for measuring the valve performance. Schematic 

shows the water chamber and membrane assembly held between the top (C-1) and bottom 

(C-2) chambers of the setup. Two valves (V-1 and V-2) on the C-2 chamber are used for 

purging it with dry nitrogen. Two manometers (M-1 and M-2) are used to measure and adjust 

the pressure in C-1 and C-2 chambers. 

 

Variation of m , calculated using the measured rise in humidity, is shown in Figure 

3.4 and 3.5. Results on valves with constant A (one row of 30 m diameter holes) and 

different H (3, 13, 26, and 40 m) suggest that increasing H greatly enhances m  at small H. 

However, the rate of increase declines at higher H values. In the second set of tests (as shown 

in Figure 3.5), samples with different A (four samples with one row of D = 20, 30, 40, and 50 

m holes and a fifth sample with five rows of D = 30 m holes) and constant H (40 µm) 
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were studied. Overall, increasing A enhanced m . However, the rate of increase when D was 

constant deviated from a linear trend seen when D was increased from 20μm to 50μm. We 

believe that this is due to the fact that increasing D reduces the pressure difference 

( rp  cos2 ) between the two sides of the membrane resulting in an increase in the 

actual gap between the membrane and the bottom wall of the reservoir. Note that the actual 

gap between the membrane and the bottom of the water reservoir is not H. 

 

 

Figure 3.4. Water vapor release rate ( m ) of four valves with similar membrane open area 

(A), one row of D = 30 m holes, and different spacing between membrane and bottom wall 

of the water reservoir when the membrane in not deformed (H). 
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Figure 3.5. Water vapor release rate ( m ) of different valves as a function of membrane open 

area (A) and pore size (D) and H = 40µm. 

 

To measure the hydrogen generation rate of the hydrogen generator (i.e. water 

reservoir/valve assembly and hydride chamber shown as components 1 and 2 in Figure 3.1), 

an experimental setup was fabricated (as shown in Figure 3.6). The setup consists of a main 

SS fixture for holding the hydrogen generator. An opening on top of the fixture, as shown in 

Figure 3.6a, allows adding water to the water reservoir of the hydrogen generator. The 

hydrogen exiting the generator (through the porous wall of the hydride reactor) enters a small 

chamber at the bottom half of the SS fixture that is connected to a plastic Utube filled with 

Fomblin liquid. The hydrogen generation rate is calculated by measuring the time it takes for 

the liquid column to rise from point “A” to “B” (in the right leg of the U-tube shown in 

Figure 3.6c). 

To facilitate installation of the hydrogen generator within the main SS fixture, the two 

components constituting the hydrogen generator were used in their pre-diced form (both part 
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of 8mm×8mm dies that are later diced to 3mm×3mm when integrated into the final fuel cell, 

shown in Figure 3.1). The assembly process was conducted in a glove box. First, hydride 

reactor was partially filled with LiAlH4. Then the water/valve assembly was epoxied 

(Scotch-Weld 2216 B/A Gray epoxy made by 3M Co., St. Paul, MN) on the hydride 

chamber. Tests were conducted on hydrogen generators having valves with five rows of D = 

30 μm holes and H = 40 μm, intended for use in the fully integrated device. The measured 

hydrogen generation rate of the samples ranged between 0.44 and 0.49 μL s−1 (as shown in 

Figure 3.7). This was less than the theoretical value 0.56 μL s−1 calculated using the reaction 

chemistry between LiAlH4 and water, where H2O + 0.25 LiAlH4  0.25 LiOH + 0.25 

Al(OH)3 + H2 and 0.45 μgs−1 water vapor release rate of the valve. We believe that increased 

differential pressure across the valve membrane during the test (due to hydrostatic pressure 

of the rising liquid column in the U-tube) has contributed to lower hydrogen generation rate. 

In fact, the liquid column rise was limited to less than 25–30 mm to avoid further differential 

pressure because a 50–60 mm column of Fomblin yields an overall hydrostatic pressure of 

about 1 kPa.  

 



73 
 

 

Figure 3.6. Experimental setup for measurement of hydrogen generation rate. (a) Schematic 

of a stainless steel (SS) fixture holding the hydrogen generator, (b) picture of the hydrogen 

generator sitting on the bottom part of the SS fixture, and (c) picture of the setup. After the 

liquid level passes marked level “B”, the SS fixture is simply detached from the U-tube to 

avoid Fomblin liquid exiting the U-tube. 
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Figure 3.7. Hydrogen delivery rate of four hydrogen generators with valves having five rows 

of D = 30 μm holes and H = 40 μm. 

 

Since the rate of reaction may be a limiting factor in hydrogen generation, we used 

Kong et al. [4] data on hydrogen generation rate of LiAlH4 with water vapor for comparison. 

They measured a hydrogen generation rate of 2.8×10−5 mol g−1 s−1 in a 6.5 mm diameter 

cylindrical reactor made from nickel mesh. In addition, their data showed a constant 

hydrogen generation rate up to 60% yield after which the rate started to gradually decline, 

perhaps due to slower water vapor diffusion through the reaction by-products. The thickness 

of the hydride bed in our reactor is only ~0.3 mm, thus we do not expect a lower hydrogen 

generation rate than that measured by Kong et al. [4]. Using their results, we determine a 

hydrogen generation rate of 3.36×10−8 mol s−1 (our hydride reactor contains approximately 

1.2mg LiAlH4). This is equivalent to 0.76 µL s−1 hydrogen generation rate, which is 65% 

higher than the average 0.46 µL s−1 that we have observed in our experiment. This 

information suggests that the reaction rate is less likely to be the limiting factor. 
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3.4.  Integrated Devices Testing (Second Generation) 

The integrated devices were fabricated (Figure 3.8) using valves with five rows of 

D=30 μm holes and H=40 μm. Tests were conducted in a chamber (Figure 3.9) where 

humidity was held constant at 60%. Solartron SI 1287 potentiostat was used for operation of 

the fuel cells. In the first test, a device was operated at a constant voltage of 0.7 V and its 

output current was measured. As the test results shown in Figure 3.10 suggest, the device 

delivered a relatively steady current with a peak power density of 92 W/L and an overall 

energy density of 263 Wh/L. The achieved power density was an order of magnitude higher 

than the 10 W/L generated in the first generation of the integrated device. However, the 

output power was significantly lower than the capability of the MEA as well as the on-board 

hydrogen generation capacity. The output current of the MEA prior to its integration into the 

device was 4.5mA at 0.7 V operating voltage, which is 3.8 times higher than the 1.18 mA 

generated by the integrated device. The measured current is equivalent to approximately 0.14 

L s−1 hydrogen. 

 

 

Figure 3.8. Picture of the integrated device.  
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Figure 3.9. Experimental apparatus for testing the MEAs and the integrated devices. 

Humidity of the test chamber was kept constant at 60% in all tests. Hydrogen lines are used 

during testing the MEA. 
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Figure 3.10. Current output of an integrated device (operated at 0.7 V) that 

incorporates a valve with 5 rows of D=30 m holes and H=40 m.  

 

As reported in the previous section, the hydrogen generator can deliver a significantly 

higher rate of hydrogen than the output current of the integrated device suggests. To 

determine the cause of the integrated device low performance, I–V characteristic 

performance of the integrated device was determined. Figure 3.11 and 3.12 show the results 

and their comparison with the I–V performance of the MEAs before integration. The 

performance curves clearly suggest that the increase in activation (possibly affected by 

transport limitations) and/or ohmic polarization losses of the MEA is responsible for the 

lower current output of the integrated device at high operating voltages (above approximately 

0.5 V). However, at lower voltages, the device performance becomes limited by the 

hydrogen generation rate, as evidenced by the almost constant current output of the device. 

This limiting current density is approximately 5.2 mA, which corresponds to 0.6 L s−1 H2 
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generation, slightly higher than what was expected on the basis of a water release rate of 0.45 

μgs−1. Overall, the results quite convincingly suggest that the water release rate is limiting the 

device performance.  

 

 
Figure 3.11. Comparison of the MEA performance before and after integration into the fully 

integrated device. 



79 
 

 
Figure 3.12. Comparison of the MEA performance before and after integration with the fully 

integrated device. 

 

3.5.  Electrochemically Dissolved Seal Layer 

In a recent study, we introduced [1, 2, 5] a new fuel cell architecture that allows 

fabrication of high energy density micro fuel cells (MFCs) in the microliter size range. The 

device consists of an on-board hydrogen generator and a membrane electrode assembly 

(MEA). The enabling technology has been a self-regulating micro hydrogen generator that 

delivers hydrogen to the MFC membrane electrode assembly (MEA). Hydrogen is generated 

through hydrolysis of a chemical hydride (such as LiH, LiBH4, LiAlH4, and CaH2) via a 

rather simple process. These hydrides have been widely considered as a medium for 

hydrogen storage in different applications [6-18]. An example of hydrolysis process is 

LiAlH4 reaction with water: 

H2O + 0.25 LiAlH4 → 0.25 LiOH + 0.25 Al(OH)3 + H2. 

Before integration 
After integration 
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The logic behind selection of this hydrogen storage method is thoroughly discussed in 

Moghaddam et al. [1]. Briefly, the method is advantageous with respect to operation at low 

temperature and pressure, high hydrogen storage density, and the high rate of hydride 

reaction with water vapor. 

Our recent efforts have been focused on enhancing the device energy density (to 

reach our goal of 1000 W-hr/L), micro- and nanofabrication process development [19], and 

overcoming challenges of its application. One major challenge has been to prevent slow 

leakage of water vapor into the hydride reactor through a microfluidic mechanism separating 

the two reactants. This leakage prevents long-term storage of the device. The objective of this 

study is to develop a solid layer (or “seal layer”) to physically contain water during the 

storage period. The seal layer should be removed prior to the device operation.  

Moreover, it is challenging to maintain a quality of metal hydride that reduces over a 

period of storage and affects on the fuel cell performances. It was reported that half-life of 

chemical hydrides can be different at temperature and pH [20]. Most of previous data on 

micro fuel cells was taken on relatively short runs usually only a few hours after packaging. 

However, in many of the applications, a device is assumed to operate for days or store for a 

replacement later. Since metal hydrides often react upon exposure to moist air, hence, 

maintaining properties of metal hydrides for a longer term test is one of key factors for micro 

power sources. A preparation of metal hydride as slurry with light mineral oil and dispersion 

was studied to enhance the stable periods of storage [21]. Modifications of metal hydrides 

properties are also proposed for ball milling magnesium hydrides [22], coating metal 

hydrides with metal oxides [23], stabilizing metal hydrides with silicon [24], and using 

nanocluster of metal hydrides [25] for a better performances and cycle life. 
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Solid moisture barriers are studied in many applications for chemical and metal 

hydrides storage. In the past, an alternation of seal layer to prolong a shelf life of power 

supply included a coating of multilayer of parylene and titanium in case of thin-film lithium 

or lithium-ion battery [26]. An implementation of polypropylene as a heat-seal layer, 

aluminum foil as a moisture barrier-layer, and biaxially oriented nylon as a tough moldable 

layer was also investigated to protect moisture to the battery core [27]. Also, proton 

conducting ceramics [28] could be used to prevent hydrogenation processes of metal hydride 

at elevated temperature. Porous thin film of copper was reported for a better performance and 

cycle life for a nickel/ metal hydride battery by coating on an anode material [29]. Moreover, 

dielectric barrier layer [30] and a composite of Pd/AlOx [31] were also candidates to seal the 

metal hydrides in microsystems and micro power sources. 

However, the specific requirements of this application present a unique case. Because 

of geometrical constraints and material characteristics, mechanical removal of the seal layer 

is not an option. We have considered electrochemical dissolution of the seal layer to be the 

only feasible mechanism of its removal. The main considerations in development of an 

electrochemically dissolvable layer are: 1) microfabrication process compatibility, 2) long-

term stability during storage, 3) rapid dissolution prior to use, 4) low dissolution voltage (i.e. 

less than the fuel cell voltage), and 5) negligible dissolution energy consumption and volume 

compare to the device energy storage and volume, respectively.  

In this study, long-term stability and oxidation/dissolution rate of the candidate metal 

films deposited through magnetron sputtering process have been studied. The seal layer 

thickness and its composition have been determined through a trail and error process 

involving its mechanical stability and the time and energy required for its dissolution. A 
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microfabrication process has been developed to construct the seal layer on a hole from which 

water exits the water reservoir. Finally, a fully integrated MFC was constructed and 

successfully operated after a period of storage.     

 

3.6.  Operations 

The schematic cross-section of the hydrogen generator provided in Figure 3.13a 

shows the seal layer on the bottom of the water reservoir preventing water from entering the 

narrow space above a perforated membrane. Once the seal layer is dissolved, by increasing 

its voltage potential relative to a stainless steel (SS) lid on the water reservoir, water enters 

the narrow space. Capillary forces within the membrane holes keep the water from flowing 

into the hydride reactor. As shown in Figure 3.13b, water vapor diffuses into the hydride 

reactor. Hydrogen is generated when water vapor reacts with the hydride and leaves the 

hydride reactor through a porous wall at its bottom. If hydrogen is not used by the MEA (i.e., 

open-circuit mode), pressure builds up inside the hydride reactor. The membrane is designed 

to deflect at a pressure (about 200 Pa) less than the capillary forces within the membrane 

holes. The deflection of the membrane stops the flow of water from the water reservoir 

(Figure 3.13c). Essentially, this control mechanism is a passive valve that automatically 

closes when hydrogen is not consumed. 
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Figure 3.13. Schematic cross section of the water reservoir and fuel chamber assembly 

showing the device storage and operation modes; a) storage mode: the seal layer prevents 

water from leaving the reservoir, b) passive valve in open mode: the seal layer is dissolved 

and water is released, c) passive valve in closed mode: the valve membrane is deformed due 

to high reactor pressure and water flow is stopped. 

 

A. Dissolution Voltage  

As mentioned earlier, there are a number of considerations in development of the seal 

layer with the primary one being a dissolution voltage of less than 0.8-0.9 V. While a slightly 

higher voltage can be used as long as it does not lead to water electrolysis, the need for 

dissolving the seal layer using the MEA output limits the voltage. This is essential when a 

device uses an array of micro hydrogen generators with seal layers that are not opened 
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simultaneously using an external power source. The theoretical voltage of a hydrogen fuel 

cell (i.e. the difference between reduction and oxidation half-cells) is 1.23 V. The open 

circuit potential (OCP) achieved in our device is approximately 1 V and operation at voltages 

lower than OCP is required to achieve a reasonable output current.  

 

B. Material Selection  

The need for stability of the seal layer, when no voltage is applied, limits the choice 

of metals to Cu and more noble metals such as Ag, Pt, and Au. Table 3.1 lists the standard 

oxidation-reduction potential of these metals. In an aqueous electrolyte with near zero redox 

potential, a positive voltage of equal or greater than the listed values in Table 3.1 is required 

to significantly increase the metal oxidation rate. As the data in Table 3.1 suggest, 

considering the available voltage of 0.8-0.9 V, the only viable choices are Cu and Ag. In the 

case of Ag, the available voltage marginally suffices, if little or no voltage drop across the 

electrolyte and the electrolyte/cathode interface is encountered. To mitigate the voltage drop 

effect, the water reservoir cap is entirely made of stainless steel (SS) to constitute a two 

orders of magnitude surface area difference between the anode (i.e. the seal layer) and the 

cathode (i.e. the SS lid). The voltage drop within the electrolyte could be reduced by 

increasing the electrolyte concentration. 

Therefore, a material for seal layer is restricted to the voltage region that it remains 

immunity in the solution at no voltage supply and starts to corrode when a voltage is applied. 

Pourbaix diagrams presenting stable phases of materials in aqueous electrochemical system 

are studied for this corrosion, passivation, and immunity region at different pH [32]. Example 
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of materials with this corrosion phenomenon at 25°C for different pH and voltage difference 

are copper and silver, as shown in Figure 3.14a-b.  

 

 

Table 3.1: Standard oxidation-reduction potentials of some of the microfabrication 

compatible metals 

Materials Electrochemical 

activity 

E° (V) 

Gold Au → Au3+ + 3e- -1.50 

Platinum Pt → Pt2+ + 2e- -1.18 

Silver Ag → Ag+ + e- -0.80 

Copper Cu → Cu2+ + 2e- -0.34 

Chromium Cr → Cr2+ + 2e- +0.74 

Titanium Ti → Ti2+ + 2e- +1.63 

Aluminum Al → Al3+ + 3e- +1.66 
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(a) 

 

(b) 

Figure 3.14. Region of corrosion phenomenon at 25 °C for copper (a) and silver (b): orange 

lines for preferred ambient storage condition and green-shade area for an interested corrosion 

region.  
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3.7.  Material Characterization 

A preliminary study was conducted on mechanical stability of thin Cu and Ag 

membranes fabricated over the 300-micron diameter opening of the water reservoir bottom 

wall (Figure 3.15) using magnetron sputtering process. The study suggested that an 

approximately 0.5-m-thick membrane could withstand the subsequent fabrication and 

assembly processes and the hydrodynamic forces during the water reservoir charging 

process. After successful demonstration of the membrane mechanical stability, a set of 

electrochemical tests were conducted to determine the time required for dissolving the 

membrane. The initial tests were conducted on metal films deposited on a silicon wafer 

electrically insulated by a silicon nitride layer. A test platform was fabricated by bonding a 

Polydimethylsiloxane (PDMS) layer with through holes over the thin metal film. The PDMS 

layer was fabricated using a molding process and then activated with O2 plasma for 2 

minutes and attached to the metal layer. Figure 3.16 and Figure 3.17 shows a schematic 

cross-section and actual samples for the test cells.  

 

300 µm

 

Silicon  Aluminum           Silver           Copper  

Figure 3.15. A schematic cross section showing the seal layer on the 300-µm-diameter hole 

of the water chamber hole. 
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Figure 3.16. Test set up for measurement of the thin metal films dissolution rate. 

 

 

Figure 3.17. Actual samples of copper on test set up 

 

The cells were filled with sulfuric acid electrolytes of different pH values and tested 

separately. A typical test started with inserting a SS electrode inside the cell and applying a 

DC potential between the metal film (i.e. anode) and the SS electrode (i.e. cathode). A 

constant voltage of 0.8 V was applied between the electrodes and the current was monitored. 

The current was relatively constant during the process and rapidly declined to near zero when 

the entire thickness of the thin metal layer was dissolved away. Figure 3.18 shows the 

dissolution rate of the 1µm-thick Cu films as a function of the electrolyte pH. As the data 
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suggest, in a pH=2 solution the current density and the dissolution rates are approximately 

0.1 mA/cm2 and 1 µm/min, respectively. Tests on Ag thin films at an applied voltage of 0.8 

V in a pH=2 solution resulted in a dissolution rate of approximately 0.12 µm/min. As the 

results suggest, the dissolution rate of Ag is significantly less than that of Cu at similar test 

conditions. This was expected considering the higher redox potential of Ag versus Cu.  

 

 

Figure 3.18. Current density and time to dissolution of Cu thin film at different pH solutions. 
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Another important parameter affecting the membrane material selection was its 

stability during the device storage. To study this parameter, several water reservoirs were 

fabricated and filled with different pH solutions. The packaging and water charging 

procedure will be discussed in the device assembly section. The packages were stored at 

room conditions and were weighted frequently to determine their weight loss. The membrane 

rupture was confirmed by a sudden change in the package weight and visual inspections. 

Table 3.2 provides a summary of the results. The results clearly suggest that a device with Cu 

seal layer does not have a meaningful shelf life and an Ag membrane remains stable at high 

electrolyte concentrations.   

 

Table 3.2: Shelf life and dissolution activity of different seal layers  

Materials pH Shelf life Dissolution activity @ 0.8V 

Copper (1-m-thick) 2 

6 

1-2 days 

7-8 days 

0.1 mA/cm2 for 1 minute 

0.02 mA/cm2 for 5 minute 

Silver (0.4-m-thick) 2 >30 days 0.04 mA/cm2 for 4 minutes 

Aluminum/Silver/Copper 

(100 nm/ 100 nm/ 300 nm) 

2 >14 days 0.15 mA/cm2 for 3 minutes 
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Considering the long dissolution time of an Ag membrane, we decided to construct a 

composite Cu/Ag membrane with a relatively thin Ag film protecting a thicker Cu layer. 

Details of the fabrication process are discussed in the following section.      

 

3.8.  Microfabrication Processes for Seal Layer 

A. Seal Layer and Membrane-Water Reservoir Assembly    

A p-doped <100> silicon wafer with a nominal thickness of 500 m and a 0.5-m-

thick silicon nitride layer deposited through low-pressure chemical vapor deposition 

(LPCVD) process was used to fabricate the seal layer and membrane-water reservoir 

assembly. Figure 3.19 shows the microfabrication sequence. First, a 2.42.4-mm2 square area 

on one side of the wafer was patterned and the silicon nitride layer was removed using the 

reactive ion etching (RIE) process. The wafer was subsequently etched in a 30% KOH 

solution at 85°C until an etch depth of 40 μm (Figure 3.19a) was reached. The silicon nitride 

layer served as the protection mask. Then, a 2.72.7-mm2 opening on the opposite side of the 

wafer was patterned and the silicon nitride layer was etched using the RIE process. The 

silicon was subsequently etched to a depth of 420 μm (Figure 3.19b) using inductively 

coupled plasma deep reactive-ion etching (ICP-DRIE) process. The resulting 0.422.72.7-

mm3 volume constitutes the water reservoir. Attachment of the membrane on the 40-μm-deep 

recess, as will be discussed shortly, forms the vapor release control mechanism (i.e. the 

passive valve).  

The next step was to fabricate the seal layer and the hole connecting the water 

reservoir to the passive valve. First, an 80-nm-thick layer of aluminum (Al) was deposited on 

the 40-μm-deep recess using RF plasma sputtering process. The Al film was patterned and 
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etched to create a 350-μm-diameter circular area (Figure 3.19c-d) at the center of the recess. 

The composite seal layer was subsequently built on the Al layer through deposition of 100 

nm Ag and 300 nm Cu using the RF plasma sputtering deposition process (Figure 3.19e). 

Then, a 300-μm-diameter hole was patterned and etched on the bottom wall of the water 

reservoir (aligned with the Al layer on the opposite side of the wall) (Figure 3.19f). The Al 

layer protected Ag and prevented the ICP-DRIE reaction chamber contamination due the 

exposure of a non-aluminum metal to plasma once the etched silicon hole reaches the 

multilayer metal film (note that the DRIE process chamber and wafer holder are made of Al). 

The Al layer rapidly dissolves in the low pH solution. 
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(a) Pattern and RIE etch SixNy and KOH etch silicon 

 

(b) Pattern and RIE etch SixNy and ICP-DRIE etch silicon 

 

(c) Sputter deposit 100 nm aluminum 

 

(d) Pattern main gate and ICP-DRIE 

 

(e) Sputtering deposit 100 nm silver and 300 nm copper 

 

(f) Pattern main gate and ICP-DRIE 

Silicon              Silicon nitride               Aluminum               Seal layer (silver/copper)  

Figure 3.19. Microfabrication sequence of the seal layer and water reservoir. 
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The membrane was fabricated using a similar process discussed in Moghaddam et al. 

[2]. Briefly, the membrane was made through spin coating and baking of polyimide PI-5878 

(from HD MicroSystems, Wilmington, DE) on a glass substrate. The final thickness of the 

membrane was 5 µm. The PI layer was then sputter-coated with a 0.2-µm thick Au layer. A 

150 Å Cr adhesion layer was used beneath the Au layer. Finally, instead of the single-row 

array 30-µm-diameter holes discussed in Moghaddam et al. [5], a 5-row-array of similar size 

holes (Figure 3.20) was made to enhance the valve water release rate. The membrane was 

transfer-bonded onto the backside of the water reservoir using a process discussed in 

Moghaddam et al. [2]. Figure 3.21 shows a schematic of the assembly. 

Finally, in order to access the seal layer for electrical connection, the polyimide layer 

on one edge of the device, outside the membrane area (Figure 3.20), was etched in a reactive 

ion etcher (RIE) using a 3:1 ratio of O2 and Ar gasses at 250 W. A 100-μm-thick PDMS film 

was used to mask the rest of the membrane.  
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Figure 3.20. Front image of the passive valve showing a side of the seal layer exposed for 

electrical connection. 

 

Inlet Outlet

Water + 0.2% acid

Chemical hydride

Stainless steel lid

Water 
reservoir

Seal layer
Fuel chamber

Porous membrane
Membrane Electrode Assembly

Electrical 
circuit

100 nm Al
100 nm Ag
300 nm Cu

 

Figure 3.21. Schematic cross-section of the entire fuel cell assembly with a close view of the 

seal layer. 
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B. Fuel Reservoir  

The fuel chamber was made on a p-doped <100> silicon wafer with a nominal 

thickness of 500 m. As shown in the schematic Figure 3.21, 2.52.5-mm2 square areas were 

patterned and etched using ICP-DRIE process on the two sides of the wafer. The main fuel 

container and a recess on its backside were etched 450 m and 20 µm, respectively. The wall 

separating these two volumes was made porous using a process discussed in Moghaddam et 

al. [2]. The porous wall allows the generated H2 to reach the membrane electrode assembly 

(MEA).  

 

C. Membrane Electrode Assembly (MEA)  

The MEA was fabricated by sandwiching a Nafion® NRE-211 membrane (with a 

thickness of 25 μm) between two stainless steel (SS) foils. The SS foils were 25-μm-thick 

and had 22-mm2 square openings to expose the membrane. The two sides of the membrane 

were painted with a Pt-based catalyst mixture (Figure 3.22). The catalyst constituents and its 

preparation process are described in Moghaddam et al. [2]. 

 

3 mm

 

Figure 3.22. Image of the membrane electrode assembly (MEA). 
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3.9. Device Assembly 

The water reservoir and membrane assembly was cut at an overall size of 33.4 mm2 

from a larger die using a laser cutting machine. The 0.4-mm-wide extension (Figure 3.21) 

beyond the 33 mm2 square water reservoir and the passive valve area was designed to 

provide electrical access to the seal layer. The SS lid was attached on the water reservoir 

using Scotch-Weld 2261 B/A Gray epoxy (3M, Inc., St. Paul, MN). This epoxy is electrically 

nonconductive. The SS lid has two 250-μm-diameter holes (Figure 3.23) made to facilitate 

charging the water reservoir. The reservoir was filled (with water and 0.2% by volume 

sulfuric acid (pH=2) that has also been shown to improve the reaction kinetics [33]) from one 

of the holes using a syringe with a flexible capillary needle while the other hole allowed air 

to vent. Note that the internal surface of the water reservoir was hydroxylated prior to the 

membrane assembly to make it highly hydrophilic. The device was weighted to verify that it 

is fully charged. The lid holes were sealed using small drops of Scotch-Weld 2261 B/A Gray 

epoxy. A silver-filled conductive epoxy (CircuitWorks®, Kennesaw, GA) was used to 

connect two fine wires to the exposed area of the seal layer (i.e. the 0.4-mm-wide extended 

area) as well as the SS lid.   
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3 mm

 

Figure 3.23. Image of a stainless steel cap. 

 

The fuel reservoir was assembled on the MEA using Scotch-Weld 2261 B/A Gray 

epoxy. The rest of the device assembly process was conducted in a glovebox. First, 

approximately 60% of the hydride reactor volume was filled with LiAlH4 powder (from 

Sigma-Aldrich, Inc., St. Louis, MO). LiAlH4 was selected because of its high reaction rate 

with water vapor. The water reservoir assembly was then attached onto the hydride reservoir 

using the Scotch-Weld 2261 B/A Gray epoxy. The devices were stored in the glovebox for 

approximately 30 days. 

 

3.10. Test Results and Discussion 

A Solartron SI 1287 potentiostat was used to conduct the tests. The integrated device 

was installed in a test stand that connected anode and cathode electrodes of the MEA to the 

potentiostat. A typical test started by application of 0.8 V between the seal layer and the 

water chamber SS lid. This was achieved by connecting the seal layer and the SS lid wires to 
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positive and negative polarities, respectively, of a DC power supply. Several devices were 

tested to evaluate; 1) time to seal layer rupture and 2) life tests to determine the device 

energy density. Figure 3.24 exemplifies the seal layer dissolution event during which the 

device output current rapidly rises up within a few minutes after application of the 0.8 V 

potential. The power and energy required for the seal layer dissolution was 24 µW and 1.2 

µW·hr respectively, which is negligible (~0.04%) compare to the device output energy. This 

clearly suggests that in applications implementing an array of these cells the fuel cells can 

readily supply the required power and energy to dissolve the seal layer of the their 

neighboring cell. 

 

Seal layer 
dissolution

 

Figure 3.24. Current output at the beginning of the test illustrating the seal layer 

dissolution/breakup. 

 

The test machine was set to maintain the device output voltage at 0.7 V (the applied 

load to the device is automatically adjusted). The device output current reaches a maximum 

of about 1 mA. Figure 3.25 shows a typical test result. Over time, however, the current 
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decreased. We suspect this is due to reduction in hydrogen generation rate over time. One 

explanation could be a decrease in the water vapor rate reaching the unreacted fuel at the 

bottom of the hydride reactor, as thickness of the reaction products gradually increased.  

The results shown in Figure 3.25 correspond to an energy density of 265 W·h/L, 

calculated by dividing the overall generated energy (integral of the generated power reported 

in Fig. 11) by the device volume. Also, the device delivered a maximum power density of 45 

W/L. Considering that the hydride reactor was filled with 1.6 mg of LiAlH4 (60% of the 3 L 

reactor volume) that could generate hydrogen for 6.2 mW·h energy (or 522.2 W·h/L) at an 

operating voltage of 0.7 V, suggested that only about 51% of the fuel was utilized in the 

device. The rest of the fuel could have either stayed unreacted in the reactor or the generated 

hydrogen leaked from the device through the adhesives that may not be hydrogen 

impermeable. Further studies are required to quantify and minimize these losses.  
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Figure 3.25. Current output of the integrated device operated at a constant voltage of 0.7 V. 
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Also, our calculation suggests that using the following reaction, a theoretical energy 

density of 756 W·h/L at the operating voltage of 0.7 V (or 863 W·h/L at 0.8 V) could be 

achieved: 

H2O + 0.55 NH4F + 0.8 LiBH4 → 0.55 LiF + 0.55 BN + 0.25 LiOH + 0.25 H3BO3 + 3.2 H2  

One challenge with this reaction is formation of compounds that are often impermeable to 

water vapor. If this issue is resolved, an energy density on the order of 700 W·h/L can be 

achieved through implementation of this chemistry. 

Moreover, the volume of the extension on silicon dominated the volume of this seal 

layer, while the total volume of only seal layer was less than 0.05% of the integrated device. 

This extension area of 400 μm on the side providing some space for misalignment in this 

integrated device could be improved for smaller area. Hence, the designed seal layer is not 

only practical for metal hydride, but also the storage of water or solution for microfluidic 

systems and applications. In this project, approximately 1 μL (1mg) of solution is kept inside 

the chamber without any loss or diffusion. With this purposed seal layer, microsystems can 

be enhanced by the storage of solution inside the device. 

 

3.11. Conclusion 

 An electrochemically dissolvable seal layer was developed for a microliter-scale 

fuel cell with an on-board hydrogen source and control system. The seal layer is a composite 

layer of 100 nm Ag, and 300 nm Cu. This development has enabled the device storage more 

than 30 days without any measurable degradation in volumetric energy density. The seal 

layer was successfully dissolved within a few minutes using an applied voltage of 0.8 V. The 

power and energy required for dissolution of the seal layer was negligible (i.e. 0.11 W·h/L of 
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the entire device volume or 0.04% of the generated energy density of the entire device). 

Addition of the seal layer increased the device volume by only 0.7 mm3 (approximately 7% 

of the total device volume), which was mainly due to the area required for the electrical 

connection. Devices incorporating the seal layer were successfully operated and delivered an 

energy density comparable to that of the previous generation. The added volume due to the 

seal layer was compensated for through reduction in the dead volume of the other device 

elements via improvements in manufacturing processes.  
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CHAPTER 4:  

DEVELOPMENT OF NANOPOROUS SILICON PROTON EXCHANGE 

MEMBRANE FOR MICRO FUEL CELLS  

 

4.1.  Introduction 

The ever-increasing demand for high energy density power sources for portable 

applications has generated a worldwide effort towards the development of high-energy-

density power sources. Although advances in lithium-ion battery technology in recent years 

have provided higher power device, this progress has not kept pace with the portable 

technologies, leaving a so-called power gap that is widely expected to grow in coming years. 

Micro fuel cell (MFC) technology, which has been under development for some time, has the 

potential to bridge this power gap. The energy density of the fuels used in MFCs exceeds that 

of the batteries by an order of magnitude. However, efforts to harvest this high energy 

density have been hampered by issues concerning the fabrication, performance, reliability, 

size and cost of MFCs. At the heart of these issues are the polymer membranes, which show 

low conductivity at low humidity and a large volumetric size change with humidity that is a 

major source of failure and integration difficulties. The development of improved membrane 

materials and configurations has been the focus of research for decades, and success in this 

regard would represent a key step forward in low-temperature fuel cell technology.  

 
The content in this chapter is adapted from the published articles as follows; 
o S. Moghaddam, E. Pengwang, Y-B. Jiang, A. R. Garcia, D. J. Burnett, C. J. Brinker, R. I. Masel, and M. A. Shannon, “An inorganic-

organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure,” Nature Nanotechnology, vol. 5, pp. 230-
236, 2010. 
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In addition, developing a membrane compatible with the manufacturing infrastructure 

within the semiconductor and micro-electromechanical systems (MEMS) silicon-processing 

industries would be a major technological breakthrough. To meet both of these objectives, 

we here introduce the concept of a surface nanoengineered, fixed-geometry, proton exchange 

membrane (PEM) that allows nearly constant proton conductivity over a wide range of 

humidity, with no changes in volume. In addition, our membrane is silicon-based, facilitating 

fabrication of membrane electrode assemblies (MEAs) and their further integration with 

microfabricated elements of MFCs. 

Numerous studies have been conducted and significant progress has been made on 

microfabrication of different elements of MFCs. However, development of a silicon-based 

proton exchange membrane (PEM) has remained a major challenge. The potential advantages 

of a silicon-based PEM over the widely used Nafion membrane have encouraged 

development efforts in recent years [1, 2]. These efforts have been focused on creating a 

membrane resembling the Nafion structure (namely a poly-tetrafluoroethylene, PTFE, matrix 

with sulfonate acidic groups on the surface of its pores) within a porous silicon matrix. A 

porous silicon matrix provides better thermal and mechanical stabilities (especially at 

increased sulfonation level) for PEM than a polymer matrix, an aspect strongly desired for 

PEMs and widely sought through either incorporation of inorganic nanoparticles (e.g. SiO2, 

TiO2, and Al2O3) into polymer ionomers or development of inorganic PEMs (see a recent 

review by Devanathan [3]). Moreover, porous silicon proton exchange membranes (PS-PEM) 

do not swell and shrink upon water gain and loss thereby minimizing formation of cracks at 

the membrane and catalyst/electrode interface. It is less prone to pin hole formations due to 

local hot spots resulted from local dehydration and consequent ohmic losses seen in Nafion 
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membranes. In addition, as will be shown later, PS-PEM facilitates development of 

membrane electrode assembly (MEA) and its integration with other microfabricated elements 

of MFCs. Arrays of membranes fed from a single fuel supply manifold can be connected in 

series and parallel, using thin film metallic traces, to achieve high voltages thereby 

eliminating the need for multi-stack packages with layers of fuel and oxidant distribution 

channels or the power electronics to boost the output voltage of a single MEA.    

Early efforts to fabricate PS-PEMs have focused on adding perfluorosulfonate 

ionomers such as Nafion in a silicon membrane with microscale holes. Nafion tends to 

dehydrate at low relative humidity leading to low proton conductivity and poor performance. 

Aside from poor performance, the lack of adhesion between the perfluoro polymer and the 

silicon base structure, along with volumetric change of the material upon water gain and loss, 

results in failure of the MEA. In addition, the filling process of the holes can hardly be scaled 

up. The fundamental approach to solve this problem is to fabricate pores similar to that of 

Nafion and covalently bond molecules with functional groups on the pores’ walls. However, 

these PS-PEM development have been unsuccessful due to difficulties in achieving two aims: 

1) robust wafer-scale processing of nanoporous silicon membranes with uniform open pores; 

and 2) self-assembly of molecules in torturous nanopores with extremely high aspect ratios. 

The common approach used to fabricate porous silicon membranes through anodization 

process does not result in uniform open pores over the entire membrane and has high 

sensitivity to thickness variations across the standard silicon wafers. For functionalizing the 

pores, the common approach has been to soak the membrane in the solution containing the 

self-assembly molecules. Diffusion is relied upon to supply molecules to torturous nanopores 
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with aspect ratios in the 1000s, which inherently provides uneven coverage. Moreover, no 

evidence of functionalization deep within the pores has been presented.  

In this study, we present development of a new generation PS-PEM. This has been 

achieved through development of a set of key processes for fabricating nanopores uniformly 

within a silicon membrane and self-assembly of a dense, contiguous layer of functional 

molecules on the nanopores’ wall. However, test results on a membrane developed using the 

new processes revealed a fundamental issue with a fixed-geometry uniform pore (i.e. 

homogeneous) membrane. So, we developed the concept of non-homogeneous fixed-

geometry membrane with nearly humidity-independent proton conductivity. In a 

conventional membrane, the water meniscus becomes unstable within the pores in a 

homogeneous fixed-geometry membrane at low humidity because Nafion pores shrink with 

decreasing humidity, leading to partial drying out. This drying out results in a significant can 

also increase in reactant crossover. To better understand the strategy behind our approach for 

overcoming the deficiencies of Nafion and significantly exceeding its proton exchange 

capacity, a brief overview of the existing hypothesis about the morphology of Nafion and its 

associated proton transport mechanisms is provided in summarized in the following section. 

 

4.2.  Proton Transport Mechanisms 

The morphology of Nafion and mechanism of proton conduction within its pores have 

been the subject of numerous studies. The Nafion structure consists of a PTFE backbone with 

perfluoro vinyl ether pendant terminated by sulfonic acid groups, a combination that results 

in formation of hydrated nanoscale domains within which ionic transport occurs. The 
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morphology of Nafion structure has been extensively debated and various experimental and 

modeling tools have been implemented to reveal the nanoscale architecture of hydrophilic 

domains within the PTFE hydrophobic matrix. It is widely known that Nafion morphology 

changes with hydration level. Evidence of the effect of thermal history [4] as well as 

processing conditions [5] on its morphology has been presented. Several models [6, 7] have 

been proposed over the past few decades to describe the nature of the interpenetrating 

hydrophobic and hydrophilic domains. These models have been constructed through fitting 

the small angle X-ray and neutron scattering (SAXS and SANS) data. One of the early 

models of hydrated Nafion, the cluster-network model [8], suggested periodic 3-5 nm 

diameter spherical ionic clusters interconnected by narrow water channels of 1 nm width. 

More recent models [9-13] have suggested a network of elongated water channels 

(cylindrical, rectangular parallelepiped, or ribbon-like) with different characteristic length 

scales (as shown in Figure 4.1a and b). Recently, Schmidt-Rohr and Chen [7] proposed a new 

model that matches the prior experimental SAXS data better than the previous models. Their 

model suggests elongated cylindrical water channels with diameter of 1.8-3.5 nm with 

persistence length of more than 20 nm within the hydrophobic PTFE matrix.         
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(a) 

 

 (b) 

Figure 4.1. Schematic of the hydrated Nafion structure showing water molecules (cyan) and 

hydrated protons (blue) within water channels with sulfonate wall groups (light brown) 

terminating the perfluoro vinyl ether pendants on a hydrophobic PTFE backbone for (a) ideal 

membranes; (b) dehydrated membranes. 
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In terms of proton transfer, two transport mechanisms associated with different 

regions of the water channels have been proposed. At the center of the channels, well 

separated from the sulfonate groups, water is suggested to be bulk-like [14, 15]. The region 

containing excess proton in bulk-like water has been described as hydrated hydronium (i.e., 

H9O4
+, the Eigen ion) or a smaller dimer sharing the excess proton (i.e. H5O2

+, the Zundel 

ion). A continuous dynamical exchange between these configurations exists [16, 17] 

exhibiting a von Grotthuss-type sequential hopping mechanism or “structural” diffusion. The 

H3O+ ion also undergoes ordinary mass diffusion, the so-called vehicular mechanism. The 

relative contribution of the vehicular and structural diffusion mechanisms has been widely 

debated [3, 14, 15, 18-22]. Nonequilibrium statistical mechanics analysis of Paddison and 

Paul shows that water and hydrated proton diffusion are retarded at the vicinity of the pore 

wall due to the presence of sulfonate groups. The proton mobility at low (λ<~6) and 

intermediate (λ<~10) hydration levels has been suggested to be vehicular in nature [15, 19]. 

In a well hydrated 3.2 nm channel, Paddison and Paul [19] showed that transport within 12 A 

of the pore wall is predominantly vehicular and both mechanisms are active within 4 A of the 

channel center axis. Using their data for distribution of proton diffusion coefficient within the 

channel, we determined that approximately 90% of proton transport takes place at the central 

region of the channel. In addition to the view of overlapping mechanisms and suggestion of 

them having similar magnitude, views on dominance of one mechanism versus another also 

exist. While interpretation of Perrin et al. [22] of their quasielastic neutron scattering (QENS) 

data on the confinement effects on water mobility in molecular level rules out the Grotthuss 

mechanism and supports vehicular mechanism at all hydration levels, Choi et al. [21] 
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transport model suggests dominance of Grotthuss diffusion mechanism in all hydration 

levels. 

4.3.  Approach 

Our strategy for the silicon-based membrane is to fabricate ~5–7-nm-diameter silicon 

pores and then assemble 3-mercaptopropyltrimethoxysilane (MPTMS), SH–(CH2)3–Si–

(OCH3)3, molecules on the modified surface of the pores. The –SH end group of MPTMS is 

later oxidized to –SO3H. The thickness of the MPTMS self-assembled monolayer (SAM) on 

silicon oxide is 0.8±0.1 nm. An increase in the size of the head group after oxidation 

increases the thickness of the SAM to ~1 nm. The overall size of the pores after self-

assembly therefore reduces to 3–5 nm. To enable high conductivity to be maintained at low 

humidities, an ultrathin conformal layer of silicon dioxide is deposited at the mouth of each 

of the larger silicon nanopores (as shown in Figure 4.2), creating small apertures. Using the 

Kelvin equation, rRTVRH m2ln  , we calculated that a 1-nm-diameter water meniscus 

can be stable at 10% humidity, which is lower than the humidity level found in most practical 

applications of fuel cells. Although the specific conductivity of the silica layer can be 

relatively low, its overall contribution to total membrane resistance is negligible. In contrast 

to the uniform incorporation of nanoparticles (for example, SiO2) into Nafion to enhance its 

hydration properties (see a recent review by Devanathan [3]), or homogeneous inorganic– 

organic membranes such as the one recently developed by Athens and colleagues [23], this 

asymmetric membrane construction maintains hydration without a detrimental effect on 

proton conductivity. 
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(a) 

 

(b) 

Figure 4.2. (a) Schematic of the membrane with functionalized pore wall and thin layers of 

porous silica on both side of the membrane. The lateral scaling is stretched for clarity. Porous 

silicon membrane (light grey); silica layer (dark grey); self-assembled molecular monolayer 

(orange); water (cyan). (b) Zoomed-in images for original nanoporous silicon membrane, 

compared with the modified membrane at different levels of humidity. 
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4.4.  Microfabrication Processes 

Fabrication of the silicon membranes begins with KOH etching of a p-doped <100> 

silicon wafer. A 0.8-µm-thick low-pressure chemical vapour deposition (LPCVD) nitride 

layer was used as a protection mask in KOH solution. The nitride layer on the back side of 

the membrane was patterned with a photoresist layer and then etched using a Freon plasma. 

The exposed silicon areas were then etched in KOH until a membrane thickness of 24±2 µm 

was reached. The nitride layer on the front side of the membrane was subsequently patterned 

and etched to expose the silicon. In membranes with an additional metal layer on the front 

side, the patterning step was followed by wet etching of the metal layer and then Freon 

plasma etching of the nitride layer.  

Anodization is then used to create the pores within the silicon membrane. A typical 

two-cell anodization process [24], in which the wafer is installed between two electrolyte 

baths (manufactured by AMMT GmbH), leaves a layer of non-porous silicon on the back 

side of the membrane. More reviews of the challenges involved in the fabrication of open 

through-holes can be found in the work of Foll and colleagues [25]. The cross-section view 

of the nanoporous silicon after anodization process is shown in Figure 4.3a. In this process, 

after some pores open on the backside of the membrane, current flows through the pores 

instead of anodizing the rest of the membrane as shown in Figure 4.3b. To open up the pores, 

the remaining silicon layer should be etched using Freon plasma. As a result of variations in 

the thickness of the remaining silicon layer on a single membrane and over different 

membranes on a wafer, as well as the pore penetration depth (Figure 4.3a-b), the silicon layer 

is etched in some areas, thus exposing the porous silicon. The exposed porous silicon is then 
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etched at a much faster rate (3–5 times) than the silicon, resulting in localized thinning of the 

membrane. This issue makes the fabrication of thin membranes impractical.  

 

  

(a)                                                         (b) 

Figure 4.3. Fabricated membranes of porous silicon proton exchange membranes. (a) cross 

section view of the membrane fabricated in a two-cell anodization bath at frontside; and (b) 

at approximately 1-2 microns from backside of the membrane. 

 

To overcome these issues, we developed a self-terminating method that leads to the 

production of membranes with uniform, open-ended pores, in a single step. The process 

involves the deposition of a layer of chromium and gold on the back side of the membrane 

using a magnetron sputtering system (pressure, 5 x 10-2 torr; power, 300 W d.c.) in argon gas. 

The back-side chromium/gold layer is wired directly to the anode electrode to provide an 

electrical path by which the electrons can exit the silicon membrane once the pores penetrate 

to the back side of the membrane. When the pores open up, at any location, the chromium 



 
 

119

layer is etched and the gold layer delaminates, resulting in local electrical discontinuity and 

therefore termination of anodization. Because the gold layer is not etched, it maintains the 

electrical connectivity of the rest of the membrane to the circuit. The gold delamination 

process occurs gradually over the entire wafer until the pores on all membranes are opened. 

This event appears as a sudden rise in process voltage, as shown in Figure 4.4. The finite 

increase in voltage arises from the continuation of the anodization process beyond the edges 

of the membrane into the bulk silicon. However, the gold film does not always break of 

entirely from all four edges of the membrane. A gentle water spray after the wafer is 

removed from the anodization batch removes the Au layer as shown in Figure 4.5. 

Interestingly, the gold layer left outside the membrane can be used as the anode electrode. 

The cathode electrode is also a chromium/gold layer deposited on the front side of the wafer 

before etching the nitride layer (both chromium/gold and nitride layers are etched in one 

patterning step after which the silicon membrane is exposed). Also, the front side nitride 

layer electrically isolates the cathode and anode electrodes. The cross-section view of the 

membrane at the front side and backside after the self-terminating process is shown in Figure 

4.6 and 4.7 respectively. 
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Figure 4.4. Variation of the anodization voltage at constant current showing a sudden rise in 

voltage when the electrolyte reaches the chromium layer.  

 

Figure 4.5. Schematic of the gold layer peel-off process when the chromium layer is etched. 

Insets: actual images of two silicon dies, one with a single membrane and another with a 55 

matrix of ~2(2 mm2 membranes after completion of the process. The remaining gold layer 

outside the membrane area is later used as a current collector in a complete MEA. 
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Figure 4.6. Cross-section of the membrane fabricated using the self-terminating process 

developed in this study at the front side of the membrane. 

 

 

Figure 4.7. Cross-section of the membrane fabricated using the self-terminating process 

developed in this study at the back sides of the membrane. 
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4.5.  Fourier Transform Infrared (FTIR) Spectroscopy  

In order to avoid the previous issues, the membrane after anodization process is left in 

de-ionized (DI) water for a few hours to clean the anodization electrolyte from the pores and 

hydroxylate the pore surface. As the Fourier transfer infrared (FTIR) spectra of the 

membrane of Figure 4.8a suggests, the pore wall is covered with SiHx (x=1-3) hydrophobic 

surface species (the absorption bands were assigned by Glass et al. [26]). Based on the drop 

in intensity of the 876 cm-1 absorption peak during the DI soak process, we assign this 

unsettled peak to the bending mode of –O3SiH, because the decrease in intensity of this mode 

is accompanied with that of the known peak 2260 cm-1 and increase in 3743 cm-1 intensity. 

Assignment of this peak to other modes such as Si-O stretching and the OH bending of the 

SiOH group coupling of Si-H and Si-O-Si motions seems inaccurate, since intensity of the 

Si-O, Si-O-Si, and SiOH bonds do not decline during the two-day DI soak process. We have 

determined that the 1142 cm-1 peak developed during the two-day DI soak process is due to 

surface oxide. 

To successfully conduct silane-based self-assembly within the membrane, the surface 

of the pores needs to be converted to hydrated silica [27-31]. This was achieved in two steps. 

First, the membrane was partially oxidized at low temperature (300°C) in an O2 furnace. 

Although temperatures close to 600°C are required to desorb surface hydride species [32, 

33], processing at such a temperature level is not practical due to the resultant significant 

changes in membrane morphology and membrane fracturing. The morphology of porous 

silicon is known to change at temperatures above 350-450C [33, 34] due to changes in the 

crystalline dimensions (that is. coarsening of the porous silicon texture [35, 36]). The 
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changes result in significant decrease in the specific surface area [33]. However, no distinct 

texture coarsening has been observed at 300C [35, 36]. 

The oxidized membrane spectra (Figure 4.8b) shows that all Si-Hx vibrational stretch 

modes have shifted to 2260 cm-1, with a low intensity tail extending towards lower 

frequencies suggesting that the backbond of the silicon atoms are targeted by oxygen and 

maximum degree of oxidation to –O3SiH (corresponding to absorption at 2260 cm-1 

frequency [37-39]) has occurred. The lower frequency tail also indicates the presence of a 

relatively small population of -OySiHx surface species. After the oxidation step, leaving the 

membrane in DI water results to insertion of oxygen into Si-H bonds and the creation of 

SiOH surface species. As a result, the absorption bands at 2260 and 876 cm-1 associated with 

–O3SiH stretching and bending modes, respectively, disappear, and absorption at 3743 cm-1, 

assigned to isolated SiOH species [40], intensifies together with the Si-O asymmetric 

stretching vibrations at 1200 to 1000 cm-1 assigned to the siloxane network (Figure 4.8c). 

The broad absorption band centered at ~3500 cm-1 corresponds to the overlapping of the O-H 

stretching bands of hydrogen-bonded water (H-O-H…H) and SiO-H stretching of surface 

silanols hydrogen-bonded to molecular water (SiO-H…H2O) [41]. These results suggest the 

creation of the well-hydrated silica pore surface needed for the subsequent self-assembly 

step.  
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Figure 4.8. FTIR spectra of the membrane at different stages of pore surface modification. 

(a) anodized membrane left in DI water for a few hours. (b) oxidized membrane at 300 ºC in 

atmospheric O2. (c) oxidized membrane after room temperature DI water soak for 2 days (no 

further changes in spectra after 4 days was observed).  
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4.6.  Self-assembly of Functional Group 

The membrane die was installed within a fixture between the top and bottom 

compartments of the functionalization set-up. This arrangement allowed continuous 

extraction of the depleted solvent from the bottom of the membrane pores while the solute-

rich solvent was supplied over the membrane. A typical process run involved evacuating the 

chamber and purging with helium multiple times to remove condensed water from the pores. 

Excess water results in self-polymerization of the MPTMS molecules and clogging of the 

pores (note that surface adsorbed water remains on the surface). MPTMS in benzene solution 

was then supplied to the solution reservoir on top of the membrane. Although the top 

chamber was charged with helium and the vacuum and helium lines connected to it were 

closed, the lines connected to the bottom compartment were opened slightly to maintain a 

slow flow of dry helium. The process was continued until the top reservoir was emptied of 

solution. 

Owing to the large surface area and high aspect ratio of the pores, a reactor was 

constructed (Figure 4.9) to continuously supply an ~1 mM solution of MPTMS to one end of 

the pores and extract the solvent from their opposite end. A self-assembly solution to the 

pores is functionalized to the membrane. This approach essential for uniform coverage of the 

super high aspect ratio pores of the membrane. This procedure enabled uniform 

functionalization of the hydroxyl groups within the membrane (estimated to be ~5 sites nm-

2). A simple estimation suggests that one pore volume of a 1 mM solution contains four 

orders of magnitude fewer molecules than necessary for complete coverage of all active sites 

on the wall of a 25 m long pore. Therefore, high aspect ratio pores should be filled with 

solution thousands of times to supply enough solute molecules to the pores. Increasing the 
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solution concentration to reduce the number of filling times is not an option, since it leads to 

self-polymerization of the solute molecules and verified in our preliminary tests. The setup 

allows holding the membrane die between top and bottom compartments of a chamber and 

extracting the depleted solvent from the bottom of the membrane pores continuously while 

the solute-rich solvent is supplied over the membrane. A typical process run involves 

installing the membrane die within the setup and vacuuming the chamber and purging with 

helium multiple times to remove condensed water from the pores. Excess water results in 

self-polymerization of the MPTMS molecules and pore’s clogging (note that surface 

adsorbed water that facilitate hydrolysis during silane-based self-assembly process remains 

on the surface). Then, MPTMS in benzene solution is supplied to the solution reservoir on 

top of the membrane. While the top chamber was charged with helium and the vacuum and 

helium lines connected to it were closed, the lines connected to the bottom compartment 

were slightly open to maintain a slow flow of dry helium. The process was continued until 

the top reservoir was emptied from solution.  
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Figure 4.9. Membrane functionalization setup for self-assembly of functional groups on the 

membrane wall of the pores. A main chamber consists of top and bottom compartments 

between which the membranes wafer is installed.  

 

Full penetration of the functional group inside the membrane was verified using Time 

of Flight-Secondary Ion Mass Spectroscopy (ToF-SIMS) with depth profiling, as can be seen 

in Figure 4.10 and 4.11. The phased depth profile using a 22 kV Au+ analysis beam and a 2 

kV Cs+ sputtering beam is implemented in this experiment. The –SH end group of the 

MPTMS molecule was then oxidized to –SO3H in dilute nitric acid and, finally, the 

membrane was maintained in a large volume of DI water for 24 h to diffuse out the nitric 

acid and hydrate the pores. 
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In addition to the thickness issue, our analysis of the membrane composition using 

Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) shows significant rise in 

fluorine presence particularly towards the backside of the membrane. Cleaning the pores 

surface is essential for the self-assembly process. Although cleaning can be done using 

standard SC-1 cleaning process (1:2:10 NH4OH:H2O2:H2O solution at 75C), in which 

continuous oxidation of the silicon backbone attacked by -OH and its subsequent dissolution 

in aqueous ammonia (NH3) under-etches the fluorine surface compounds, the process quickly 

enlarges the pores non-uniformly across the membrane thickness. The membrane can 

completely dissolve in solution for several minutes depending on its thickness and porosity. 

In addition to the thickness issue, our analysis of the composition of the membrane using 

time-of-flight secondary ion mass spectroscopy (ToF–SIMS) showed a significant rise in the 

presence of fluorine, particularly towards the back side of the membrane as shown in Figure 

4.10. However, the self-terminating process does not have this issue as shown in Figure 4.11. 
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Figure 4.10. ToF-SIMS results showing composition of the 20-m thick membrane from 

previous processes. A spot on the membrane was carved in gradually until reached to the 

bottom of the membrane. Note that the sudden spike in fluorine content at the bottom of the 

membrane is due the back-etching process used to open up the pores. 
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Figure 4.11. Time of Flight-Secondary Ion Mass Spectroscopy (ToF-SIMS) results showing 

composition of a functionalized 24 microns thick membrane with a self-terminating process. 

 

4.7.  Modifications with a Plasma-Defined Atomic Layer Deposition 

To create a thin hydrophilic silica aperture at the mouth of the pores, we used plasma-

directed atomic layer deposition (PD–ALD) [42]. Unlike conventional ALD, in PD–ALD, a 

remote plasma (instead of water vapor exposure) is used to activate the surface. Because both 

the plasma Debye length and the radical mean free path greatly exceed the pore diameter, 

surface activation and silica deposition are confined to the immediate external surface of the 

membrane pores, with no deposition on the internal pores. Successive oxygen plasma and 

tetramethyl orthosilicate (TMOS) exposure steps using an argon carrier gas resulted in an ~2-
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nm-thick silica layer. The interior of the pores within the silica layer were then functionalized 

with MPTMS. Scanning electron microscopy (SEM) images for the membrane surface before 

and after PD-ALD are shown in Figure 4.12. The maximum diameter of the pores at the two 

surfaces of the membrane is ~2 nm, as estimated from the SEM and analysis of water 

desorption isotherms (Figure 4.13). The graph of water desorption isotherms shows the 

corresponding Kelvin diameter as well as the corrected Kelvin diameter based on the t-curve 

for a silica surface of Hagymassy and colleagues. Note that using silica t-curve results in a 

small error in the case of the functionalized pores. 

We used our previously developed a plasma-defined atomic layer deposition (PD-

ALD) technique [42] to construct an approximately 2 nm thick silica layer to reduce the 

minimum pore size at the finished surfaces of the membrane to 2 nm. Unlike in regular ALD, 

in which deposits penetrate into the internal porosity, PD-ALD process is confined to the 

immediate surface. This is achieved through selection of precursors that are nonreactive 

unless triggered by plasma, so that ALD can be spatially defined by the supply of plasma 

irradiation. Because both the plasma Debye length and the radical mean free path exceed 

greatly the pore diameter, deposition does not occur within the interior pores. We used 

tetraethyl orthosilicate (TEOS) precursor. The interior of the pores within the 2 nm thick 

silica layer was then functionalized with MPTMS. The maximum diameter of the pores at the 

two surfaces of the membrane is expected to be approximately 2 nm (factoring in the SAMs 

thickness).  
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Figure 4.12. Top view of two membranes without (a) and with (b) the PD–ALD silica layer.  



 
 

133

 
 
 
 

Figure 4.13. Water desorption isotherms of the membrane (determined using DVS-

Advantage 1 machine (Surface Measurement Systems) on samples with 25 membranes at 

25°C) before functionalization (black), after functionalization (green) and after application of 

the PD–ALD silica layer and subsequent functionalization (red).  
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The last fabrication stage of the MEA is spray painting of the anode and cathode 

catalysts on the membrane (Figure 4.14). A catalyst ink with an 18 wt% ratio of Nafion 

ionomer 1100 EW (from Solution Technology) to platinum back (from Alfa Aesar) was 

prepared in de-ionized (DI) water and isopropyl alcohol (IPA). Direct spray painting of the 

catalyst ink onto the membrane is straightforward, because the membrane does not swell and 

wrinkle as the catalyst solution comes into contact with the membrane surface. The 

membrane was set on a hot plate at 85C during spraying. Because a relatively high thermal 

conductivity of the membrane, the solution droplets evaporate fast when it contacts the 

membrane surface. As mentioned previously, and shown in Figure 4.5, chromium/gold layers 

already deposited on both sides of the die are used as current collectors. The catalyst layer 

overlaps with the chromium/gold electrode around the edges of the membrane and provides 

electrical connectivity. The platinum loading in both anode and cathode catalysts layers was 

approximately 7 mg/cm2.  

 

 

Figure 4.14. Cross-sectional schematic of a single membrane within its silicon die before 

and after application of the catalyst layers. 
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4.8.  Results and Discussions 

All tests were conducted on the membrane electrode assemblies (MEAs) in a 

configuration most relevant to micro fuel cells (MFCs), in which no auxiliary equipment for 

conditioning the membrane as well as the supply gases is desired. The condition of the 

testing is at room temperature (~25°C). Hydrogen is supplied to the anode through a hole 

within the bottom Teflon block, and an opening in the top Teflon block exposes the cathode 

to air. The internal electrical resistance of the package was measured to be 7 mΩ. This was 

measured by replacing the device die with a gold foil and using the four-probe measurement 

technique. The test package (Figure 4.15) was left in an environmental chamber to simulate 

different ambient humidity levels (the uncertainty in the humidity measurement was ±2%). 

Then, the data is collected for the performances. 
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Figure 4.15. Three-dimensional schematic of the MEA test package showing two Teflon 

blocks sandwiching the MEA, with two 50-μm-thick gold foils positioned in between, 

coming into contact with the anode and cathode electrodes to provide an electrical 

connection to the outside of the package.  

 

The membrane proton conductivity was measured using the four-probe technique 

(using a Solartron SI 1287). The results (MEA-1) are compared (Figure 4.16) with another 

silicon-based MEA but without the PD–ALD-deposited silica layers (MEA-2), as well as 

with another MEA based on DuPont Nafion PFSA NRE-211 membrane (MEA-3) with a 

nominal thickness of 25 microns. This MEA was fabricated by sandwiching Nafion between 

two stainless steel foils with 2 x 2 mm2 square openings aligned during adhesive bonding of 

the layers. The exposed 2 x 2 mm2 Nafion membrane was subsequently brush-painted with 

catalyst. Before discussing the various differences between the developed membrane and 

Nafion, we should mention that adding the silica layer resulted in ~25% decline in the 
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maximum conductivity of the PS–PEM, from ~0.11 to 0.08 S cm-1. This significant decline is 

most likely due to the closure of some of the smaller membrane pores after the PD–ALD and 

subsequent self-assembly processes, rather than impeded proton mobility at the smaller 

entrance and exit of the pores, considering the small thickness of the silica layers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. Proton conductivity as a function of humidity: PS-PEM with the PD-ALD-

deposited silica layers, MEA-1 (red), PS-PEM without the silica layers, MEA-2 (green), 

Nafion NRE-211 hot-pressed at 100ºC, MEA-3 (blue), N-117 heat-treated at 105ºC (black 

triangles) and 30ºC testing temperature [4], N-117 at 30ºC [18] (orange squares), N-117 at 

30ºC [43] (brown circles). 
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Other than this observation, the results show that the conductivity of the MEA-1 

membrane is almost constant down to ~20% humidity, at which point it starts to decline 

significantly. A similar trend is seen for the MEA-2 membrane, but with the decline 

beginning at a higher humidity level (50–60%). This difference is expected, because a 

smaller pore diameter allows the water meniscus to remain stable at a lower humidity 

ambient. The decline in humidity levels beyond this thermodynamic equilibrium condition 

leads to partial drying out of the pores and an increase in crossover, as is made evident by the 

drop in open circuit potential (OCP) (Figure 4.17). Overall, the data suggest a nearly 

humidity-independent conductivity, as long as the vapor pressure at the membrane/ambient 

interface remains below the ambient saturated vapor pressure, so that the ambient vapor 

condenses within the pores, keeping them filled with water. This fundamentally different 

property of the silicon-based membrane compared to that of Nafion, in which the pores 

shrink at low ambient humidity, is a major contributing factor to the difference in 

conductivity between these two membranes. When Nafion shrinks with decreasing humidity, 

the amount of bulk-like water at the centre of the pores sharply declines. Shrinkage, along 

with a reduction in the interconnectivity of the water clusters, is responsible for the 

exponential decay in Nafion conductivity. The inhomogeneous construct of the porous 

silicon/ALD silica membrane creates an aligned barrier of silica pores over the larger silicon 

nanopores. Although the homogeneous incorporation of silica nanoparticles into Nafion has 

been shown to enhance water retention at low humidity, it results in decrease in proton 

conductivity compared to a fully hydrated Nafion, perhaps due to narrow water channels with 

low proton mobility.  
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Figure 4.17. OCP as a function of humidity: : PS-PEM with the PD-ALD-deposited silica 

layers, MEA-1 (red), PS-PEM without the silica layers, MEA-2 (green), Nafion NRE-211 

hot-pressed at 100ºC, MEA-3 (blue). 

 

The conductivities of the MEA-1 and MEA-2 membranes are factors of 3.5 and 4.8, 

respectively, greater than that of the MEA-3 membrane at 95% humidity. However, we 

should mention that the MEA-3 membrane has passed through a hot-pressing step at 100°C 

(as part of its fabrication process), which is widely known to adversely affect Nafion 

conductivity. Our data on the MEA-3 membrane at high humidity closely matches data on a 

N-117 membrane heat-treated at 105°C in a study by Sone and colleagues [4]. At low 

humidity, however, the conductivity of the MEA-3 membrane is an order of magnitude 

higher than that of the heat-treated N-117. Data on non-heat-treated N-117 membranes from 
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Zawodzinski and colleagues [44] and Sumner and colleagues [43] are provided in Figure 

4.16 for further comparison. The data suggest a conductivity of ~0.06 S cm-1 at 95% 

humidity for non-heat-treated Nafion, which is moderately less than the 0.08 and 0.11 S cm-1 

conductivities associated with MEA-1 and MEA-2 membranes, respectively. Understanding 

the reasons behind the higher conductivity of the PS–PEM compared to Nafion requires 

detailed characterization of the PS–PEM, as well as a more concrete understanding of the 

Nafion structure and mechanisms of proton conductivity within its pores. Other than the 

morphological differences (size, shape, and tortuosity of the pores, as well as the pore wall 

properties) between the two membranes, the difference in number density of the sulphonate 

groups on the pore wall and the length and chemistry of their pendant groups are among the 

parameters that can affect proton mobility. 

The current–voltage (I–V) performance of MEA-1 at different humidity levels is 

provided in Figure 4.18 and 4.19. The MEA delivered a maximum power density of 332 mW 

cm-2 at 70% humidity. However, operation at lower humidity led to a decline in performance, 

primarily due to an increase in activation overpotential losses resulting from an increase in 

charge transfer resistance within the catalyst layer due to Nafion dryout. Although the greater 

loss and its effect on the maximum power density was minimal at 55% humidity, further 

reducing the humidity to 25% resulted in a significant activation loss that led to ~30% 

decline in maximum output power. Operation at high humidity levels also led to performance 

degradation (Figure 4.19) as a result of partial water flooding of the cathode catalyst due to a 

low water evaporation rate. In addition to the I–V performance tests, an MEA was subjected 

to continuous operation at 150 mA cm-2 for 40 h. Other than a drop of 0.018 V during the 

first 5 h of operation (Figure 4.20a), believed to be mainly due to the system reaching a 
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steady state, the device showed an additional drop of 0.007 V over the remainder of the test 

period (0.18 mV h-1). To determine if changes in the membrane proton conductivity were 

responsible for the observed drop in potential, a second test was carried out in which the 

membrane conductivity was measured frequently after periods of operation (Figure 4.20b). 

The results did not show any statistically significant change in membrane conductivity. The 

membrane conductivity does not therefore seem to be responsible for the decline observed in 

MEA performance. 

 

 

 

 

 

 

 

 

Figure 4.18. Voltage-current and power characteristics of MEA-1 at moderate and low 

humidity ambient: 70% (brown), 55% (orange), and 25% (cyan) and comparison with 

Pichonat and Gauthier-Manuel’s PS-PEM (black). Performances of the PS-PEM membrane 

and MEA are tested at room temperature (~25ºC) with a dry hydrogen feed and air-breathing 

cathode. 
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Figure 4.19. Effect of high humidity on MEA-1 performance: 95% (green), 92% (blue), 85% 

(red), and 70% (brown). The performances of the PS-PEM membrane and MEA are tested at 

room temperature (~25ºC) with a dry hydrogen feed and air-breathing cathode. 
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        (a) 

  
        (b) 

Figure 4.20. (a) Life test results at an operating current of 150 mA cm-2 and 75% humidity. 

(b) Membrane proton conductivity measured at different time periods after starting the test at 

150 mA cm-2 operating current and 75% humidity. 
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4.9.  Conclusion 

We have reported the development of a next-generation PEM/MEA. The fixed 

geometry of the pores and asymmetric construction of the membrane allow high proton 

conductivity at low humidity levels. Owing to the many advantages of this PEM/MEA, we 

envision that this technology can simplify the fabrication and operation of small fuel cells. 

The fabrication processes developed to create the PS–PEM provide a versatile route to 

nanostructuring membranes with tailored properties for optimum performance. The ability to 

modify the surface of this dimensionally stable membrane opens up vast opportunities to 

fine-tune the characteristics of the membranes (for example, water and fuel transport through 

the membrane), enabling the development of better fuel cells. The technologies presented in 

this work can potentially be used for low-crossover membranes for liquid fuels, membranes 

for use in above ambient operating temperatures (120–140°C), anion exchange membranes, 

and so on. In addition, the known geometry of the pores and the ability to systematically 

control the pore surface chemistry with SAMs provide a unique opportunity to enhance our 

understanding of the physics of proton transport and its relation to pore size and surface 

properties. 
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CHAPTER 5:  

ALTERNATING CURRENT TRAVELING WAVE MEMBRANES FOR  

NANOSCALE COLLOIDAL SEPARATIONS 

 

5.1.  Introduction 

Source waters are known to contain large suspended solids, apart from dissolved 

salts. A significant fraction of these suspended solids exists as colloidal suspension and these 

would typically pass through the standard 0.45 µm pore in an SDI test filter. Moreover, the 

colloidal suspension has a tendency of irreversibly fouling RO membranes and this directly 

leads to energy losses, increased pressure in the system, and reduced filtering capacity [1, 2]. 

Natural waters are known to contain colloids in both inorganic (silica) and organic 

(carbohydrates and lipids) forms [3, 4]. Their concentration in water has been estimated at up 

to 109 particles per milliliter, occurring in sizes of up to 120 nm [4, 5]. Particles in colloidal 

length scales are stable in suspension and cannot be removed by gravimetric means. 

However, these colloids are known to possess net negative surface charge due to 

deprotonation of surface silanol (Si-OH) in the mildly alkaline pH of 7-8 [6]. This surface 

charge could be employed to transport and filter out suspended colloids from solution by 

means of an electric field.  

In this study, microfluidic devices with a traveling electrode membrane are developed 

for the purpose of colloidal separations with a particle size in nanoscale. An alternating  

 
The content in this chapter is adapted from the published articles as follows; 
o E. Pengwang, B.R. Flachsbart, X. Jin, N.R. Aluru, and M.A. Shannon, “Design and Fabrication of AC Traveling Wave Membranes 

for Nanoscale Colloidal Separation,” Langmuir, (submitted October 2011). 



154 
 

current (AC) electrokinetic technique is implemented to create non-uniform electric field 

with spatial phase variation to manipulate colloidal transportation. Engineering design rules 

and simulation tools are also implemented to forecast separation of colloids using a traveling 

waveform on charged particles. With differences in AC spatial voltage supply, 

electrokinetics of charged particles are studied for transport across the nanochannels in a 

special membrane. With standard techniques of microfabrication and polymer processing, the 

development of this AC traveling wave membrane is investigated. In this study, the 

membrane consists of embedded electrodes in a thin layer of SU8 material, acting as an 

electrical insulator. The process of sputtering the electrode material, followed by dry plasma 

etching with high voltage creates nanochannels through the membrane. In this chapter, 

detailed information on an AC traveling wave membrane is presented for the removal of 

particles and colloids below 0.1 microns in size. The initial objective here is to prove the 

concept using larger sized colloids and transport them through a selective nanoporous 

membrane, before moving to smaller particle sizes. The final objective is to develop the 

experimental apparatus to evaluate permselective membranes and optimize electrode biasing 

such that various sized colloids can be collected and pumped across the membrane. To 

enable a design optimization of the AC electrokinetic-based particle separator, we will also 

develop simulation tools and test their accuracy in predicting the transport and separation of 

colloids through this alternating permselective membranes in the presence of AC fields. 
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5.2.  Materials and Methods 

5.2.1.  Traveling Waveform Membrane 

The supplied voltage for an alternating current (AC) electrokinetic-based separation 

scheme can be formulated as a function of wavelength (λ) and frequency (f) for a specific 

location (x) and time (t) as shown in Equation 5.1, where 0 is the amplitude, f is the 

frequency of the AC signal, k is a wavelength constant, and ω is a radian frequency. 

0 0

2
sin( 2 ) sin( )x ft x tk

    


        (5.1)  

In this case, multiple electrodes can be used for multi-stages of separation. The phase and 

amplitude of the AC voltage can be modified to manipulate the motion of nanoscale colloids 

as formulated in this equation as well. The schematic diagram and layout of the biasing for 

traveling waveform membrane across the nanochannel are shown in Figure 5.1. The blended 

structure of SU8 polymer and titanium electrodes is supplied with spatial AC signals. Also, a 

coating layer is used, represented in red, to prevent stiction of the colloids to the membrane 

structure. In the top view, the device consists of a feed stream, a permeate stream, a clean 

stream, and a rejectate stream as shown in Figure 5.1(b). 
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(a)                                                                       (b) 

Figure 5.1. Front view of a device with a traveling wave membrane for separating colloids 

(a); top view of the device with inlet/outlet for feed and clean stream (b). 

 

One of the assumptions to manipulate colloids is to use a generated group velocity of 

the waveform based on the telegraph equation. With four different phases of AC voltage to 

consecutive electrodes, a waveform of colloids is formed. The generating phase velocity (vp) 

and group velocity (vg) of a wave can be expressed as a rate at which the phase of the wave 

propagates in the medium. They are given in terms of the wavelength (λ), frequency (f), 

wavelength constant (k) and radian frequency (ω) as shown in Equation 5.2.  

kfp /      and       
kd

d
g

        (5.2)             
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5.2.2.  Electrokinetics of Nanoscale Particles 

Electrokinetics of nanoscale particles have been studied under the influence of 

various AC voltages [7-13]. Depending on the conductivity of the solution, size of particle, 

and operating frequency, many patterns of electric field can be used to manipulate colloids in 

both micro and nanoscale. In summary, two main characteristics can be used to manipulate 

colloids; fields that effect the particle, and fields that effect the fluidic motion. 

Based on the research of particle transportation, behavior of polarizable colloids can 

be manipulated by a traveling wave dielectrophoresis. By applying a sequences phase shift of 

90° to consecutive electrodes, traveling wave techniques have been implemented in several 

studies to manipulate polarizable colloids in aqueous solutions. Traveling wave 

dielectrophoresis force can induce a motion of particles along traveling electric field for 

colloids such as blood cells [14-16], pollen, cellulose particles [17], yeast cells [18], 

polystyrene latex beads [19-21], and cancer cells [22]. An example of conventional 

dielectrophoresis trapping of nanoscale particles is demonstrated at the field gradient 

maximum located at the edge of the electrode. The investigation was tested with an AC 

voltage supply of 1 V and 20 MHz for charged latex spheres [20]. The device was designed 

with an electrode gap of 4 μm in a water medium of 18 mS m-1 conductivity. Moreover, 

different behavior of colloidal transport can be observed, such as electrolysis (at high 

voltage), reverse pumping and forward pumping with recirculation speed up to 100 µm/sec 

with high voltage and frequencies in 1-10 kHz. Principles and mechanisms of 

dielectrophoretic separation have been extensively studied [23-30]. The theoretical 

dielectrophoretic force for arrays of electrodes can be represented as a function of 
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permittivity for the particles and suspending medium (εp, εm), conductivity of the particles 

and medium (σp, σm), AC frequency ( f ), radius of the particle (r), periodic distance between 

electrodes of the same phase (), and electric field ( E ). Dielectrophoretic force generated 

from interactions of non-uniform electric fields and a change in dipole moment of the particle 

can be formulated. The time-averaged force on the particles is shown in Equation 5.3.  The 

first term (  *E E   ) results to in-plane motion, governed by conventional dielectrophoretic 

force that can be simplified to Equation 5.4. The second term ( *( )E E    ) results to motion 

along the travelling electric field, also known as a traveling wave dielectrophoretic force that 

can be simplified as Equation 5.5, where the factor fCM is the Clausius-Mossotti factor as 

shown in Equation 5.6 for a spherical particle. 

3 * *1 14 Re[ ( )] Re[ ( )
4 2mF r E E E E         

 
       (5.3) 

3 22 Re[ ]DEP m CMF r f E         (5.4) 

2 3 24 Im[ ]m CM
twDEP

r f EF  
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 
  


    (5.5) 
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p m
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 
 





 where       *

2
j

f
 


 
   

 
    (5.6) 

 

The real and imaginary parts of fCM give the in-plane and out-of-phase components of 

the dipole that determine the conventional dielectrophoretic behavior and the traveling wave 

dielectrophoretic behavior. At low frequencies, the Clausius-Mossotti factor is dominated by 

the conductivity of the medium and particle. At high frequencies, the Clausius-Mossotti 

factor is dominated by the permittivity of the medium and particle. When an imaginary part 

of the Clausius-Mossotti function is maximized, the real part of the Clausius-Mossotti 
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function is reduced to close to zero. Thus, a dielectrophoretic force is minimized when a 

traveling wave dielectrophoresis membrane is operated at its cutoff frequency. 

 Another AC electrokinetic effect for colloid transportation is fluid motion; this is also 

referred to as electroosmosis in many publications. Electroosmosis causes the fluid 

movement beyond the shear plane by the movement of the charge with respect to the liquid, 

while dielectrophoresis phenomenon dominates the movement of colloids when the charge 

movement is within the Stern and the diffusion part of the double layer [31]. In many cases 

of electrophoretic phenomenon, the motion of the nanoparticle and the movement of liquid 

will be governed by the electric field and the Coulomb effect on its charge [32, 33]. 

Principles and mechanisms of AC electrokinetic separation have been studied with various 

techniques; circular arrays [34, 35], asymmetric electrode array [36-41], and linear traveling 

wave methods [31, 35, 42, 43]. Since electrophoresis effects are stronger when the particle is 

small and the ratio of charge to mass is high, motion of nanoscale charged particles by 

electrophoresis effects is as important as dielectrophoresis phenomenon [44]. Since the 

colloids, proteins, and humic substances are primarily negatively charged, they will pass 

through membranes and concentrate at the end of the patterned electrodes. Since small ions 

can freely pass through the nanopore in both directions, the electrode solution will remain 

essentially neutrally charged, and Faradic redox reactions at the electrodes will not be 

required to drive the transport.  

In this chapter, AC electrophoresis is studied because a well-known technique of DC 

electrophoresis is with well-understood limitations. Charged particles can be drawn across a 

permselective membrane with sufficiently high DC voltages applied at the driving electrodes 

with the drawback on energy consumption. Although electrokinetics of colloids with 
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alternating current (AC) has not been extensively studied, the promising aspect of 

implementing AC over DC field is to overcome typical electrochemical issues such as 

concentration polarization and electrolysis. In our proposed technique, an alternating voltage 

below the electrolysis limit is applied to the electrodes, with adjacent electrodes at a different 

sequential phase, but the same magnitude. However, in AC electrokinetics, the AC electric 

field is required to be sufficient for transporting colloids across the membrane. Therefore, 

fabricating a nanostructured membrane with a small gap between each electrode can be one 

technique that is energetically favorable for nanoscale colloidal separation. Hence, AC 

currents, with relatively low losses, can be used to separate smaller particles.  

The mathematical model for particle transport involves a set of equations governing 

electric force, fluid flow, and particle motion. The motion of a solid particle is influenced by 

the fluid flow equation, governed by the Navier-Stokes (Equation 5.7), continuity equation 

(Equation 5.8), and Newton’s equation (Equation 5.9), where p is the hydrostatic pressure,  

is the fluid viscosity, and f is the body force including the electric body force due to the space 

charges and the forces from the particles, mp is the mass of the particle, up is the velocity of 

the particle, FE is an electrostatic force acting on the particle, and FD is the drag force from 

the fluid.  

fuuuu
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 For DC electrophoresis, the mobility of particles is controlled by Stoke’s law when 

the interactions between the charged particles are ignored. The Henry formula can be used to 

express the movement of the particle, but it is valid only for low zeta potential. Moreover, the 

Dukhlin-Semenikhin formula is used for the transport of particles with thin double layer 

(a >> 1) in a symmetric electrolyte solution. An approximation of the mobility can thus be 

made as: 



3
2 0 r

pu   and 

 r

pu 0 for low and high a value when the particles 

encounter the DC electrophoretic field. Moreover, from the Helmholtz-Smoluchowski 

equation, Morgan et al. [43] suggested an approximation for fluid velocity by using an AC 

potential drop across the diffusion double layer and the tangential electric field outside the 

double layer for an AC electric field. However, the Helmholtz-Smoluchowski theory only 

explains the relationship between zeta potential and electrophoretic mobility [45] when the 

particle radius is much greater than the Debye length (a >> 1) and the influence of surface 

conductance is ignored. 

In our experiment, particle radius is smaller than the values of Debye length (-1) 

calculated from electrolyte concentration. For example, the Debye length can be 

approximated in the range of 200-300 nanometers in deionized water as shown in Table 1. 

This phenomenon can be distinguished from previous work that mostly investigated the 

effect of electric field for the particles larger than 1 μm in diameter. In the case of a small 

Debye length (a >> 1), dielectrophoresis is claimed to govern the movement of colloids. 

Reducing the thickness of the double layer will result in increasing the retardation force from 

the particle surface. When the double layer is thicker than the particle size, the retardation 

force is less. In our case of a smaller particle size (a < 1), many parameters can be studied 
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for the behaviors of AC electrokinetics and electrophoresis transport: such as the surface 

charge of particles, electric field, medium viscosity, surface conductivity, size of particle, 

Dukhin number, and zeta potential. 

 

Table 5.1: Ranges of electrolyte conditions and Debye length (-1) 

Electrolyte Conditions DI water 

10-3 M 

NaCl 

Solution 

0.1 M 

NaCl 

Solution 

Sea water 

Debye length (nm) ~200-300 10 1 ~0.2-1 

 

 

Surface conductivity and surface charge density of particles have been widely studied 

for particle transport [45-50]. In general, the surface conductivity for a latex sphere is 

approximated for a particle larger than 1 µm by the equation aK sbp /2  where σb = 0 

for bulk conductivity and Ks is surface conductance. In general, surface conductivity of 

dispersed particles is associated with ionic motion above the slipping plane in the double 

layer. In this case, the value of the surface conductivity depends on the ζ-potential, which is 

valid for a symmetrical electrolyte with equal ionic diffusion coefficient. Zeta potential can 

also affect the surface charge density and stability of colloidal dispersions. Colloids with a 

high zeta potential are electrically stabilized while colloids with a low zeta potential tend to 

coagulate or flocculate. Furthermore, the concentration of ions and conductivity of the 

electrolyte solution are also important for determining the surface charge density of a 

particle. In general, the Dukhin number can be used to represent a dimensionless number that 
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can compare the effect of surface conductivity to the bulk electrical conductivity. Hence, the 

Dukhin number is an important parameter in the study of nanoscale colloid transportation 

within an AC electrophoretic field. 

 

5.3.  Numerical Simulations 

We have developed simulation tools to predict the separation of colloids using a 

travelling waveform on nanoscale particles. Using OpenForm® software to simulate the 

motion of colloids with 100-150 nm in diameter, the movement of charged nano-particles has 

been studied in a system with two microchannels interconnected by a nanopore. 

Interdigitated electrode arrays are placed on the surface of the pore, as shown in Figure 

5.2(a). The pore is 4 µm wide and 5 µm long. Charged particles are subjected to electrostatic 

forces, particle-particle interaction forces, and drag forces from the fluid. In the simulation, 

the amplitude of AC signal is 1 V. Figure 5.2(b) shows the velocity of a single particle at 

various frequencies. At the same frequency, a smaller particle moves slower than a larger 

particle. There is an optimal frequency for the particle to pass through the pore. At 

frequencies higher than the optimal frequency, the particle is pulled forward and backward 

by the wave because the particle moves slower than the wave’s velocity. The optimal 

frequency for a 100 nm particle is around 30 kHz. Results from simulations showed that the 

colloids can be moved across an embedded electrode membrane with traveling waveform. 

Figure 5.3 shows the snapshots of a pack of particles at different times when the operating 

frequency is 30 kHz.  
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A   B   C   D

4 µm

A   B   C   D
5 µm

   

(a)       (b) 

Figure 5.2. Numerical simulation of particle movement under a traveling waveform: 

(a) simulation setup, and (b) velocity variation with frequency. 
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(a)                                     (b)                                                (c) 

     

(d)                                            (e)                                             (f) 

Figure 5.3. Snapshots of a pack of particles moving under a traveling wave when the 

frequency is 30 kHz. (a) t=0 s, (b) t=50 s, (c) t=100 s, (d) t=150 s, (e) t=200 s, (f) t=250 

s. 
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5.4.  Microfabrication 

  In order to improve the transportation of colloids, we will improve the fabrication of 

our MEMS-based travelling electrode membranes. With a fluidic channel through a series of 

electrodes, spatial phase variation can be studied to improve the transport of colloids from 

the feed stream to the clean stream. The first generation of traveling electrode membrane 

consists of five layers of 1 μm thick SU8 epoxy-based negative photoresist alternating with 

four layers of 50 nm thick titanium electrode (all made using standard MEMS processes); 

five layers of SU8 and four layers of titanium. The through channels are made in the SU8 / 

titanium stack by plasma etching with SF6 and oxygen gas [51].  

The top and bottom layer of the microchannel was created by using two layers of SU8 

materials before a traveling wave membrane. The first layer was created on a cleaned glass 

substrate with P6 release layer by actively dispensing at a spinning speed of 2000 rpm for 30 

seconds and hardbaking at 140°C for 2 minutes. Then, SU8 was casted on the top of P6 layer 

for a thickness of 150 µm at temperature of 80°C for 4 hours. The mask pattern with 

inlet/outlet only (without the microchannel) was exposed on the casted SU8 for 40 seconds. 

The assembly was then baked at 75°C for 4 minutes and 110°C for 4 minutes before 

developing a pattern on SU8 developer in ultrasonic bath for 1 minute. The patterned SU8 

was released in water after 24 hours and cleaned. The fabrication flow for microchannel 

layers is shown in Figure 5.4. The other layer with the microchannel was then prepared 

following the same procedures, except releasing the membrane from the glass substrate in the 

last step. Then, the first layer of inlet/outlet was bonded to the layer of the microchannel by 

using a transferred epoxy technique. An adhesive layer of 1 µm thick SU8 was spincoated on 

a PDMS puck at 2000 rpm. This SU8 was pressed to the microchannel layer for 1 minute and 
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then peeled out.  As a result, the adhesive layer adhered to the microchannel layer at a 

contact region. Then, the microchannel was baked at 110°C for 2 minutes to remove any 

solvent before aligning it with the released layer with inlet/outlet. The assembly was then 

bonded with an EV501 bonder using a 200 N force at a temperature of 85°C for 5 minutes. 

After bonding, the assembly was exposed to UV light at 20 mW cm-2 for 40 seconds and 

baked at 110°C for 4 minutes to complete the bonding processes. Last, the assembled part 

was then released in water after 24 hours.   

 

Figure 5.4. A microfabrication process of microchannel layer with inlet, outlet, and 

microfluidic pathway 

 

The traveling wave membrane was created on a cleaned glass piece with a P6 release 

layer similar to the microchannel. Then, a layer of SU8 was spincoated on the glass at 2000 

rpm for 30 seconds. The thickness of the SU8 layer was 1µm for this procedure. The glass 

piece was then pre-baked at 110°C for 4 minutes, exposed at 20 mW cm-2 for 20 seconds, 

and post-backed at 110°C for 4 minutes. The glass piece was then sputtered with titanium at 
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the rate of 54°A/min for 10 minutes to create the first electrode layer. This metal was then 

selectively coated with aluminum to create an etch stop for final electrical connection. Then, 

the assembly was cleaned with oxygen plasma RIE for 10 seconds to remove any debris 

before applying more layers of SU8. This process was repeated until the number of 

electrodes and insulator layers was four and five respectively. The fabrication flow for this 

multi-layer traveling wave membrane is shown in Figure 5.5. The overall thickness of the 

membrane is about 5.2 µm (5 µm SU8 and 0.2 µm for metal electrodes). Then, the assembly 

was coated with aluminum entirely and patterned with photoresist for opening windows of 4 

um in diameter. After hardbaking, the assembly was then etched by a plasma etching with 

SF6 5 sccm and O2 50 sccm at 30 mTorr, 800W power supply. Images of fabricated 

membrane with holes of 4 µm in diameter after etching through are shown in Figure 5.6. 

The traveling wave membrane was then transferred from the glass substrate to the top 

microchannel by the same transferred epoxy techniques and thermal bonding as discussed in 

a microchannel layer. The releasing processes were developed [52] to ensure that the 

membrane is strong enough and not broken for the water releasing processes. After releasing 

from the glass substrate, the bottom microchannel was used to sandwich the traveling wave 

dielectrophoresis membrane by the same transferred epoxy and thermal bonding processes. 

The device was then connected to flexible tubes for inlet/outlet by using two-part-epoxy (3M, 

USA). 
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Figure 5.5. A microfabrication process for a multi-layer of travelling wave membrane is 

made of SU8 material and titanium electrodes. 
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(a)     (b) 

     

(c)       (d) 

Figure 5.6. An image of etched hole of titanium layer and SU8 layer after plasma etching for 

a membrane with ~2-4 μm opening at low magnification (a), at 50x magnification with a 

backlight (b), backside view of a traveling membrane after etching and releasing processes 

(c), at 50x magnification with a backlight (d). 

 

5.5. Experimental Results 

Investigation of colloidal transport was observed through motion detection of 

fluorescent particles in the test assembly. An Agilent 33220A function generator was 

connected to a Tektronix TDS 6848 oscilloscope and to an electrical circuit box that creates 

the phase separated traveling waveform. The signals with 90 degree phase difference from 

the circuit box was then supplied to each layer of membrane and the channel was observed 
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under a Leica DMIRE inverted fluorescent microscope with a FITC-L5 (excitation of 480 

nm, emission of 527 nm) filter and the Image-Pro Plus® software as a image recording. 

A solution of DI water with 200 ppm concentration of 93 nm fluorescent latex 

colloids (Product number FC02F/8972 manufactured from Bangs Laboratories, Fishers, IN) 

was prepared for the feed stream. The particle conductivity is unknown. The particle surface 

charge is -209 μeq/gram or -3.3 µC/cm2 (given from the manufacturer’s documentation). The 

chemical group of this fluorescent microsphere is a carboxyl P(S/V-COOH) functional group 

with a dragon green color and the same range of fluorescent lens (excitation of 480 nm, 

emission of 520 nm). In the experiment, the medium conductivity (in deionized water) is 

0.05 mS/m, measured by a conductivity meter. The voltage supply is 1 V, the relative 

permittivity of the medium is about 80, the relative permittivity of the particles is about 2.5, 

and the flow velocity of the feed and clean streams is 0.03 μL/min equally. 

Before supplying the traveling wave voltages, no change in the clean stream was 

observed for any motion of colloids. After supplying the voltages, the testing result showed 

dissipation from the end of the microchannels as shown in Figure 5.7. Although the velocity 

of 100 nm colloids was expected to be optimal at 30 kHz for 100 nm particle, we found that 

it was difficult to distinguish a difference in colloid motion in the range between 100 Hz and 

1MHz. Probably, this occurred because of interactions between the particles. 
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Figure 5.7. Snapshots from experimental results of a four-electrode membrane, compared to 

the previous simulation results. The membrane transported 93 nm diameter colloids through 

the membrane with traveling wave electrodes, and most of the colloids tended to stick to the 

end of the microchannel of the fabricated device. 

 

5.6.  AC Electric Field Induced Micro-mixing  

The traveling wave membrane can pump particles across the membrane, but both 

simulations and experimentation show that particles will collect at the exit of the pore, 

sticking to the end of the microchannel. Hence, several bias schemes are investigated in this 

study to remove colloids at the end of the microchannels. In order to facilitate the 

propagation of electric fields into the bulk electrolyte and depolarize these electrodes, a new 

scheme is proposed. We learn that an AC electric field applied on the microelectrodes can 

also induce fluid flow to form a micro mixing phenomena at the electrode-electrolyte 

interface [8, 53-57]. Hence, we study the effect of surface electrodes by replacing a single 
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electrode at the end of microchannel with a surface interdigitated electrode. The electrodes 

on the surface would set up a local AC electroosmotic flow that should carry away 

approaching charged particles, and improve particle collection in the clean stream. The 

schematic of this concept is shown in Figure 5.8.  

 

 

Figure 5.8. Testing configurations for traveling waveform with additional traveling 

electrodes at the surface of the microchannel on a clean stream. 

 

Using a simulation from OpenForm® software, we studied an AC electric field with a 

traveling waveform on the sidewall at the entrance/ exit surface electrodes. The simulation 

shows the motion of colloids with different sizes (~100-150 nm) across the 5 μm thick 

traveling electrode membrane with surface electrode as shown in Figure 8. Computational 

results of applying the AC traveling wave signals at these microelectrodes are depicted in 

Figure 5.9. In summary, about 85% of particles appear to be collected in the right chamber 

after 5 milliseconds of simulation when the electrodes are at the surface and the colloids are 

at the entrance. The simulation also shows that charged particles are carried away from the 
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pore by the surface electrode at the end of the pore. However, if nanoscale colloids are 

dispensed far away from the entrance, it will take longer time for them to transport across the 

traveling wave membrane. With the same simulation, about 25% of particles appear to be 

collected in the right chamber after 40 milliseconds of simulation as shown in Figure 5.10. 

 

 

(a)                               (b)                               (c)                                (d) 

 

(e)                               (f)                               (g)                                (h) 

Figure 5.9. Snapshots from simulations of colloids that are close to the entrance across a 

traveling wave membrane with surface electrodes at (a) 0 ms, (b) 0.5 ms, (c) 1 ms, (d) 2 ms,  

(e) 3 ms, (f) 4 ms, (g) 5 ms, and (h) 20 ms. 
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(a)                                        (b)                                           (c) 

   

(d)                                        (e)                                           (f) 

Figure 5.10. Snapshots from simulations of colloids that are far away from the entrance 

across a traveling wave membrane with surface electrodes at (a) t=0 s, (b) t=0.1ms,  

(c) t=0.5ms, (d) t=5ms, (e) t=10ms, (f) t=40 ms. 

 

5.7. Modified Microfabrication Process 

For the modified scheme of the traveling wave membranes with surface electrodes, 

the modified fabrication flow is shown in Figure 5.11. The assembly with two embedded 

electrodes and three insulator layers from the previous process was coated with chrome and 

gold. Then interdigitated electrodes were patterned on top of the chrome/gold electrode. The 

electrical resistance was measured to ensure that any electrode is not shorted to another. 

Then, aluminum was deposited on the patterned electrode, and patterned to form arrays of 3 

µm diameter openings that aligned to the center of the interdigitated electrodes. The purpose 
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for the aluminum was to act as a mask in an ICP etching process after the photoresist was 

removed. After hardbaking, the assembly was then etched by a plasma etching with SF6 5 

sccm and O2 50 sccm at 30 mTorr, 800W power supply. Images of fabricated membrane 

after etching through were shown in Figure 5.12.  

 

Figure 5.11. A microfabrication process for a traveling wave membrane with surface 

electrodes. 
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Figure 5.12. A fabricated membrane with surface electrodes. 

 

An anti-stiction coating is also one of the main challenges to improve the membrane 

performance. Due to a high electric field at the edge of electrode, charged particles are 

probably concentrated at the maxima of the electric field.  Previous work on anti-stiction 

coatings in microfluidic device were studied with many materials such as, poly(3,4, 

dihydroxyl-l-phenylalanine) or Poly(DOPA), polyethyleneglycol (PEG), polydopamine, poly 

vinylidene fluoride or PVDF, thiol, and Teflon coatings. For our testing, we examined a 

Teflon coating produced by an Inductively Coupled Plasma Reactive Ion Etcher (ICP-DRIE). 

The process is compatible with, and follows, the etching process in the previous section. 

After finishing the etching, the membrane was protected by photoresist in areas where no 

coated is desired. Then, the membrane was deposited with Teflon for 10 seconds and the 

photoresist was removed by photoresist stripper. 

The traveling wave membrane was then transferred from the glass substrate to the top 

microchannel through an epoxy bonding and water release process. The device was then 

connected to flexible tubes for inlet/outlet by using a two-part-epoxy and ready for testing. 
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5.8.  Results and Discussion 

The experiment was set up with the same equipments as discussed previously. For the 

device with surface electrodes, similarly, nanoscale particles were shown to be concentrated 

at the pore exit when the traveling waveform voltages were supplied to the electrode as 

shown in Figure 5.13, although not all the microchannels demonstrated colloid transport in 

the previous sample. Another observation was along the membrane surface on the clean side, 

where we observed a line of colloids between the adjacent electrodes as shown in Figure 

5.14. However, the colloids at these lines and microchannel holes were in a different plane 

and depth of focus in the microscope and we could not capture the behavior of colloidal 

transportation at both places at the same time. Also, after removing the traveling waveform 

voltage, particles would still stick to the membrane without orientations. Majority of them 

are at the end of the microchannel as shown in Figure 5.15. Hence, a better coating is 

required for this type of membrane. Moreover, after 3 minutes of supplied voltage at 2 V, the 

electrolysis of electrodes was observed as shown in Figure 5.16. This reaction greatly 

shortened the operating life of the device. Investigating the surface electrodes after the 

experiment also showed that the electrodes were partially etched away at this voltage. 
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Figure 5.13. A tested membrane with an inverted fluorescent microscope 

 

 

Figure 5.14. Nanoscale colloids are concentrated between two sets of surface electrodes
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Figure 5.15. After the traveling waveform voltage is removed from the sidewall electrodes. 

Some of colloids tend to stick to the membrane. 

 

Figure 5.16. At a higher voltage (~2V), bubbles erupt in the system between sidewall 

electrode, due to an electrolysis reaction.  
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The value of colloidal transport efficiency is calculated by the ratio of the amount of 

colloids that are passed through the traveling wave membrane to the amount of colloids in 

the feed stream. By using the Image-Pro Plus® 5.1 software as a data recording and the 

ImageJ® software as an image processing, the normalized fluorescent intensity change of our 

membrane with surface electrodes for 93 nm colloids in water is about 20% with the surface 

electrodes as shown in Figure 5.17. Compared to the membrane without the surface 

electrodes (normalized fluorescent intensity is 2.5%), the removal efficiency is about an 

order of magnitude higher.  

From simulations as shown in Figure 5.10, we also observed the particles at the 

entrance can be transported through the pore in a few milliseconds. However, the duration 

that particles travels inside the pore is slightly different from the simulation. It can take 

longer for some particles to get transferred across the pore. This could occur because of the 

confinement of the pore. Additionally, the movement of multiple particles in the system can 

be slightly different from a single particle due to a complexity of interactions between the 

particles. Furthermore, a diffusion model can be used to estimate the change of the colloid 

concentration in the chamber. The flux of the colloid in the chamber is mainly due to 

diffusion, which is given by Equation 5.10, where c is the concentration of the colloid, D is 

the diffusion coefficient of the colloid. The change of the colloid concentration is governed 

by Equation 5.11. 

D c                                                              (5.10) 

2c D c
t


 


                                                     (5.11) 
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In the simulation, the flux at the microchamber wall is assumed to be zero. The flux at 

the exit of the chamber (the entrance of the pore) is calculated from Equation 5.12, where α is 

the percentage of the opening. In our experiment, the percentage of the opening is about 2%. 

From this calculation, we can calculate the change in concentration of particle across this 

traveling wave membrane. In comparison, the simulation with diffusion showed similar trend 

as shown in Figure 15, where a solid and dashed line for the performance of the traveling 

wave membrane with and without the voltage supplies. 

o pu c                                               (5.12) 

 

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

Test 1

Test 2

Test 3

No Voltage

Simulation 
no voltage

Simulation 
voltage

N
or

m
al

iz
ed

 in
te

ns
ity

 o
f 

tr
an

sp
or

te
d 

flu
or

es
ce

nc
e

Time [minutes]  
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5.9. Future Work 

The statement of work for this membrane includes the following development; 

 Developing technology for smaller particle separation and ion separation 

We will also expand the range of colloids to include a full range of colloidal 

substances found in water, from clays (silicoaluminates) to lipids and proteins. For different 

range of size and charge on the silica colloids, this membrane can be implemented and tested 

with the modified dimension. Also, frequency response of the colloids as a function of size 

and charge can be adjusted.  

Another challenges for nanoscale transportation is for ion separation. Ionic liquid or 

electrolyte is small in size and has a wide range of concentration and components. Different 

ionic constitutes can be found in source water and sea water. Seawater has a high 

conductivity of 4.8 S/m and a relative permittivity of 35. Ultimately, at the end of the project, 

source waters with salinity and high SDI to determine will also conduct with this type of AC 

electrokinetics. In the process of desalination process, these ions are removed from the 

system.  In the setup, the phosphate buffer saline can be used to examine for the behavior of 

ions with AC electrokinetics. Last, the ultimate goal is to test the traveling wave membrane 

with original sea water from different sources to investigate the performance of this 

membrane. 

 

 Developing fabrication techniques using nanochannel with charged sidewall for 

smaller colloids and ion separation  

With advantages of smaller dimension, higher electrical field can enhance the 

performance of colloidal separation. In literature, carbon nanotubes and grapheme are widely 
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studied for water transportation. Also, selective transportation of ion is different for each 

species across the small diameter of nanochennel created in the material. 

With our specialists on fabrication of porous silicon membrane with a diameter of 3-5 

nm, the scheme of AC signal can be used to investigate the ion and colloidal transportation 

across the membrane. Based on our previous work [58], we have implemented a technique of 

anodization to create nanochannels on silicon that can be implemented for the proton 

exchange membrane (PEM) for the micro fuel cell project as shown in Figure 5.18. 

Similarly, the same membrane can be fabricated with the coating of metal to the sidewall. 

First investigation is to coat this wall with conductively layer throughout the pore and 

sidewall. Then, the sidewall is supplied with AC traveling waveform voltage. This can result 

to the selectivity transportation of nanoscale colloids and ions. Next, the multi-layer of 

traveling waveform with electrical insulator can be designed to evaluate ion separation and 

colloids smaller than 100 nm in size for an ultimate result. 

 



185 
 

 

Figure 5.18. Cross-section of the porous silicon membrane fabricated by a HF anodization 

process that can be studied for colloidal separation with nanometer scale. 

 

 Developing suitable technique of colloidal and ion detection 

The current technique of fluorescent microscopy is only valid for the range of 100 nm 

colloids.  There are some difficulty to focus on the depth of focus for the testing and 

inconsistent for the intensity of fluorescent illumination.  The following techniques are 

outstanding and promising for detecting nanoscale colloids and ionic transportation. 

i. Titration Techniques (Halide Determination) 

One of the techniques for determining the concentration of halide is titration.  In 

this method, the concentration of chlorine, bromine, and iodine are titrated to 

determine the concentration by detecting a total change in color. This analysis can 

be calculated for the amount of solution that used in the process. However, colored 

compounds can be difficult to work with as they obscure the end point and make the 

determination less precise. 
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ii. Ion-selective Electrodes 

A certain type of ion-selective electrodes can be purchased with the analysis 

system.  The electrode is specified and calibrated to detect a concentration of ion in 

a unit of part per million (ppm). The challenge of this method is the amount of 

solution that is required for testing and the total price of the entire system.   

 

iii. Silt Density Index (SDI) Test 

 Although the values do not directly correlate to the fouling potential of a specific 

water, the Silt Density Index (SDI) test is considered to be an industry standard for 

measuring the colloidal fouling potential of spiral wound membranes.  For SDI test 

results to be accurate, the feed line to the kit must be connected to the raw water 

line representative of the feedwater to the RO system.  The major membrane 

manufacturers typically recommend maintaining an SDI value of 3.0 to 5.0 for 

feedwater to a reverse osmosis system.  A typical SDI for surface waters is always 

greater than 6 and for a seawater desalination plants utilising reverse osmosis 

systems also need very efficient filtering due to the typically high but variable SDI 

of seawater.  

 

 Optimizing power consumption and external apparatus for the operating system of 

portable water purification device 

The final delivery of this project will be a set of design rules for AC electrokinetics 

permselective pumping of colloids. The target specification for the AC electrokinetics is for 
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purification of colloids for different ranges of diameter. In Phase I, optimize design and 

operation is to achieve 70% recovery of product water without colloidal substances greater 

than 100 nm in size. In the final device, the ultimate energy budget is expected to be <3 

W/gph. The water recovery is up to 70% with an output flow rate of 10 gph. The water 

quality is consider at SDI <5 and salinity <1000 ppm TDS. Integrate permselective 

membranes in microchannel chamber can be also tested to separate colloids in a continuous 

streamwise operation and characterize performance. The range of operation time is upto 72 

hours continuously. The ultimate goal is to build an integrated prototype system with a 

weight < 10 lbs and volume < 5 cubic feet for a portable water purification device. 

 

 Considering other applications of the membranes and transferring technologies into 

a commercial product 

Particularly in the chemical separation, this type of traveling wave membrane can 

induce transport of particle in liquid electrolyte. Examples of targeted applications include 

drug delivery system, gel chromatography, etc. 

With adjustments on flow rate, AC voltage supply, AC frequency, medium 

conductivity, particle surface charge density, particle size, permittivity of medium, a 

separation process is optimized by a rejection rate of colloids. For example, particle 

conductivity will affect the values of Clausius-Mossotti function. Further investigation is to 

observe a motion of fluorescent particles in the testing assembly by using an inverted 

fluorescent microscope in future work. With this technique, a separation of 93 nm fluorescent 

latex colloids is expected for a better performance and removal efficiency. With these 

developments, the travelling wave membranes can be scaled and adjusted to benefit several 
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applications for separations of different colloids such as bio-particles, blood cells, viruses, 

proteins, and yeasts in further study. There are several challenges to build this device. Key 

challenges that need to be overcome to develop this type of membrane include 

 To finalize the parameters (medium conductivity, particle conductivity, 

particle size, voltage supply, frequency, and number of electrodes) that are 

optimized for a transportation of colloids in microchannel. 

 Understanding the adjustable parameter for colloidal transport, for example, 

zeta potential, Debye length, concentration, double layer, diffusion layer, 

Dunkhin number, surface conductance, etc. The structure can also be used to 

investigate nanoscale colloidal transportations and properties of particles 

 Learning how to apply the traveling wave AC supply to the membrane in 

order to form a colloidal concentration and separation across the membrane 

 Maximizing the amount of colloids collecting at the other end of 

microchannels 

 Increasing the efficiency of separation associated with the fluidic motion 

 Improving the design and electrical isolation 

 Decreasing the volume of external devices required to operate this membrane 

 Developing technology to compatible with commercial membrane. 

 

5.10. Conclusion 

In this study, we developed the techniques for the AC traveling wave membrane for 

subnanometer colloidal separation. With this technique, a separation of 93 nm fluorescent 

latex colloids was shown. A microfabrication process enables the development of this 
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membrane by using a thin film deposition, evaporation, and plasma etching to create a 

microfluidic path of 3 µm in diameter through the multi-layer of insulators and alternating 

electrodes. These fabricated membranes are connected to the traveling waveform generator 

with different phase that can induce a motion of colloids across the membrane. This type of 

traveling wave membrane can be scaled and adjusted for transport of particles in liquid 

electrolyte, particularly in the chemical separation. Examples of targeted applications include 

drug delivery system and gel chromatography.  

Key properties of our MEMS-based traveling wave membrane include: 

 Membrane structure with embedded electrodes, 

 Biasing scheme to enhance the nanoscale colloidal separation, 

 Three-dimensional structure of traveling wave membrane, 

 Stationary coating layer for anti-stiction of charged particles, 

 And, improving the efficiency of nanoscale separation. 
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CHAPTER 6:  

CONCLUSION 

 

6.1.  Summary of Work 

In chapter 2, development of micro fuel cells is reported. The enabling technology for 

this work is to combine hydrogen generator by hydrolysis reaction, control valve for fuel 

delivery system, and membrane electrode assembly.  Development of a millimeter-scale fuel 

cell with on-board fuel and a passive control mechanism is presented in this study. 

Fabrication of this unique power source is enabled through development of a new self-

regulating micro-hydrogen generator. This design of power source has a total volume of 9 

μL, which makes it the smallest fully integrated fuel cell reported in the literature. This 

power sources can operate only when the hydrogen is required and stop when it is not 

working, manipulated by deflecting of membrane. By this mean, metal hydride can react with 

water vapor to generate hydrogen. When hydrogen contact to the membrane electrode 

assembly, the current can be draw from the circuit. As a result, the device can deliver an 

energy density of ~244-280 Wh/L. The ability to store/deliver power with high energy 

densities in this millimeter-scale power source can enable a new class of MEMS devices. 

In chapter 3, improvements on hydride-based micro fuel cell with on-board hydrogen 

source continue from the first generation. Microfluidic paths are modified for different 

diameters and gaps between the polyimide membranes and the bottom of the water reservoir. 

Hydrogen generation rate of 0.44 µL s-1 with five rows of opening windows with 30 µm 

diameter and the height of 40 µm. With this design, we reported an increase of a power 
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density of 10 WL-1 to a power density of 97 WL-1. The devices’ energy density with LiAlH4 

is 263 WhL-1. Another development is to implement a metal seal layer for storage of metal 

hydride and water in the device. The assembly was kept for more than 14 days for a designed 

layer of copper/silver/copper with a thickness of 80 nm/80 nm/200 nm. After dissolving the 

seal layer at 0.8 V for 3 minutes, the device operates without any loss in energy density. It 

deliver the overall energy density of 280 WhL-1. 

Ideally, availability of a robust inexpensive MEA that does not require conditioning 

can significantly expand the use of fuel cells. We present a silicon-based PEM with several 

advantages over Nafion (the best performing PEM in hydrogen fuel cells), in terms of higher 

and nearly humidity-independent proton conductivity, lack of volumetric size change with 

changes in temperature and humidity, higher temperature stability, and facility of MEA 

construction and silicon process integration to enable use for powering many microsystems 

and portable electronics. The key to achieving these Si-PEM advantages over Nafion is 

fabricating ~5 nm diameter relatively straight pores uniformly within a 25 microns thick 

silicon membrane and to self-assemble functional molecules on the pores’ wall. We then 

constructed an approximately 2 nm thick silica layer on both sides of the membrane using 

plasma-defined atomic layer deposition (PD-ALD) to transition to smaller pore size at the 

finished surfaces of the membrane in order to maintain pore hydration at low humidity. The 

membrane maintains its proton conductivity at humidity levels down to 10-20%. A MEA 

constructed using the developed PEM delivered 332 W/cm2 peak-power density (an order of 

magnitude higher than the previous reports) with dry hydrogen feed and air breathing 

cathode at room temperature. These fabricated membranes, their characterizations, and 

performances are presented in Chapter 4. 
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In chapter 5, the development in alternating current electrodialysis (ACED) is 

proposed for the colloidal separation in water purification process. This membrane occupies 

multiple traveling electrodes that are connected to different phase of AC voltage. The 

preliminary testing results also show a concentration of 93 nm colloids across the traveling 

wave membrane. With further investigation and simulations on different schemes, this type 

of membrane can be further scaled and investigated to manipulate nanoscale particles and 

ions. 

 

6.2. Future Work 

 Microsystems, microfluidic devices, and MEMS can be enhanced by development in 

membrane technology. Applications of membranes are widely broad for the development of 

micro and nanotechnology. In general, different membranes are suitable for different 

applications. However, fundamentals of microfabrication processes are expandable for 

microsystems at different scales. 
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