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Development of Shooting Method for Impact Systems*

Yutaka YOSHITAKE**, Atsuo SUEOKA***, Tatsuhiko MIYUKI****, Takashi HAMANO',
Souichirou KITAYAMA™" and Sou TAMURAT*

A shooting method is a very powerful numerical method to obtain periodic solutions of
nonlinear systems. However, as a variational equation of motion is needed in the shooting
method and it is very difficult to obtain it in the impact systems, the shooting method for
impact systems has not been developed. In this report, a shooting method for impact systems
is presented by solving this problem of variational equation. Namely, the variational equation
with the delta function and its differentiation is derived. It is shown that the calculation speed
of this method is very fast and complicated periodic solutions are easily obtainable in high
accuracy. The stabilities of periodic solutions obtained in the shooting method are in good
accordance with those obtained by the analytical method. The discontinuities in the stability
of the periodic solutions are shown using characteristic multiplier. Lyapunov exponents are

also calculated by applying the integral technique of variational equation.

Key Words:

Nonlinear Vibration, Forced Vibration, Computer Aided Analysis, Shooting

Method, Periodic Solution, Chaos, Lyapunov Exponents

1. Introduction

Various impact vibrations have been observed in
many machines and structures: for example, the vibrations
can be observed in impact damper("’~® where collision is
essential, in machines utilizing impact vibrations®( and
in gear rattling of the driven systems®-©®_ Moreover, the
collision vibrations of rotors!?’, a piping system'" and
fuel rods used in nuclear power generators!!? at the time
of an earthquake have been researched. The theoretical
treatings of the collision in these researches are divided
into two categories. One is the theory that treats a colli-
sion phenomenon as an instantaneous phenomenon using
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a coefficient of restitution, and the other is the one that
describes the collision phenomena using linear or non-
linear restoring force. Although an actual collision hap-
pens within a limited time like the latter theory, since the
time is very short, many numerical computation results
or analytical results by the former theory are qualitatively
in agreement with the experimental results. For example,
these are the following researches: researches(!®> (%) that
treat the nonlinear dynamics phenomenon caused by im-
pact , many researches® ® about impact dampers, re-
searches® () about machines utilizing impact vibration,
and so on. Furthermore, the numerical or analytical results
correspond quantitatively with the experimental results in
some®»(©-U3) of these researches. Therefore, it can be
said that the method of dealing with impact as an instan-
taneous phenomenon is the method that can fully explain
an impact vibration.

In the history of research of impact vibration, many
researches about bifurcation leading to chaos have been
made in recent years. Especially, grazing bifurcation
where a periodic solution suddenly bifurcates to chaos has
been reported. However, like the bifurcation in an oscil-
lating system accompanied by friction, the argument, not
from the viewpoint of bifurcation from a periodic solu-
tion to chaos but from the viewpoint of the discontinuity
in the stability of the solution containing the bifurcation
from one periodic solution to the other periodic solution
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is required. Moreover, for example, regarding the peri-
odic vibration generated in a two-degree-of-freedom sys-
tem with an impact damper, only the simple periodic solu-
. tion with several times of collisions is calculated by con-
necting the analytical solutions. The universal method by
which a solution with any number of times of a collision
can be obtained should be applied to such system.

From the above-mentioned situation, development of
the method by which all kind of periodic solutions can be
precisely obtained in a short time where stability of the so-
lution can also be judged, is desired, in the analysis of the
impact system whose impact is described by the instanta-
neous phenomena.

The best method is the shooting method. The shoot-
ing method™ -7 is used as one of useful numerical
methods to obtain complicated periodic solutions of non-
linear systems, or to investigate bifurcations of periodic
solutions in recent years: This is the combined method
using ordinary numerical integral method and the New-
ton method. Therefore, the highly precise solutions, even
the unstable solutions, are obtainable within a short cal-
culation time by using this method. The authors have de-
veloped a shooting method'® to be applicable on a sys-
tem with discontinuous force such as a frictional force,
for example. Moreover they submitted the new shooting
method!' for piecewise linear systems which uses analyt-
ical solutions on each of the linear regions instead of nu-
merically integrated solutions. However, the application
of the shooting method to the impacting system is difficult
and the shooting method for the impacting system has not
yet been developed, because it is unknown how instanta-
neous change of momentum is introduced to an equation
of motion and its variational equation.

In this paper, the authors have proposed a shooting
method for impact vibration systems that contain not only
discontinuous force but also the discontinuous changes in
momentum. This method is developed highly from shoot-
ing methods(!®-(19) that the author previously developed
for systems with discontinuous forces. The equation of
motion in the impact vibration system is expressed by an
equation with a step function and a delta function, and
its variational equation is expressed by an equation with
a delta function and its differentiation; therefore, by solv-
ing the problem of calculating the process of variation at
an instance of impact, application of the shooting method
to the impact vibration system becomes possible. More-
over, by adapting this technique of calculating variational
equations, a method to calculate the Lyapunov exponent
becomes possible.

2. Numerical Analysis Method

2.1 Algorithm of shooting method for impact sys-
tem
An outline of calculation procedures in the shooting
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method is shown below. In this method, we treat the im-
pact phenomenon where the sign of the velocity changes
instantaneously and it is expressed by using a coefficient
of restitution. It is assumed that there is no nonlinearity
without impact for convenience of treatment. In appli-
cation, such as the above-mentioned shooting method®,
the method consisting of the Newton-Raphson method and
analytical solutions of individual linear equations of mo-
tion is formulized. It is possible to obtain a periodic solu-
tion in a much shorter calculation time by using this new
shooting method (hereafter called the Exact + Shooting
method) than the ordinary shooting method.
The equation of motion is expressed as follows:

y=f@.7) (1)
Here, 7 is time, - denotes d/dt, and y, f are the following
n-dimensional vectors.

y:t(y17y27“'7yn)s
fzt (fl’fQ"“’j;l)

where, upper-subscript ¢ expresses a transposition sign.
Equation (1) consists of equations of motion which are
linear between collisions, and f contains step functions
and delta functions. As the impact phenomenon which is
expressed by using a coefficient of restitution is consid-
ered, the terms of Eq. (1) are expressed with the following
equation:

=10+ rlugl-ch+ Lsioel-c) @
j=1 j=1

where, u(-) is step function, &(-) is Dirac’s delta function
and j=1,2,...,m;. In the Eq. (2), f; is expressed as the sum
of continuous function fi“ and m; pieces of step functions
and delta functions, and f; has the discontinuous quan-
tity of r-i" (y,7) and s{ (y,7) at the moment of g{ y,7) = c’j
which shows any condition where impact happens. The
step function and the delta function, which are introduced
by a collision, correspond to the viscous force and impact
force respectively. Therefore, these discontinuous changes
shall be produced here at the same time. However, in nu-
merical computation, we can treat the case where those
forces act individually.

On the other hand, the variational equation corre-
sponding to the equation of motion (1) becomes the fol-
lowing:

i1=An (3)
where,
of
:t s P s A=_: Ai
n=".1m2,"**,1n) P [Ai]
Ay =0f1/0yx ,
are miford . . . . . dg
==L 4N Lug' -cH+rolg' —cH=— (@)
o FZl{ayk g~ +ridlgi—cpp
sl .. 8s(g'-c)) og’
+—i(5(gf—c{)+s{(g.’—c.')—g—’
Y 6(9{—0{) Oy
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Initial value y° = ‘(y,(0),42(0),---,4,(0)) at T =
0 is assumed, connecting the analytical solution of
each linear region repeatedly, then the solution y' =
"W (T),y2(T), - ,ys(T)) at T = T after one period is cal-
culated. The conditions of a periodic solution will serve
as the following equation:

y'-y°=0 )
Considering that y' is calculated by connecting the so-
lution of each linear region from assumed y°, it can be
said that y' is the function of y°. Therefore, obtaining a
periodic solution is equivalent to finding y° which satis-
fies Eq. (5). If the Newton-Raphson method is applied to

Eq. (5), the equation for repetition calculation becomes the
following:

(B-1,)§=y"-y' (6)
Where, 7 is the amount of correction for the next rep-
etition (the corrected value is y° +§), and B is con-
structed by the solutions of variational equations 7,(T) =
N1 (T),na(T), - ,nx(T)) (i=1,---,n), which are calculated
from the initial values #,(0) =" (0,0,---,0,1,0,---,0,0) (i-th
element is unit, i=1,---,n), i.e., unit vectors which form a
unit matrix. This is called the basic solution matrix:

B = (1 (T),q2(T), . 1,(T))

- For example, the convergence of a solution is judged
as follows by using relative error £, between initial values
and the calculated values after one period (i=1,2,...,n):

{ {yi(T) - y:(0)}/y(O) <& y:i(0)#0
lyi(T) - y:(0)| <& 4i(0)=0
The flow chart of this Exact + Shooting method is shown
in Fig. 1.

When the periodic solution is obtained, the stability
of a periodic solution is judged as follows: If all the ab-
solute values of the eigenvalues (these are called charac-
teristic multipliers) of matrix B are smaller than unit, the
solution is judged stable. If at least one of the absolute
values is larger than unit, the solution is judged unstable.

. 2.2 Processing of variations at colliding time

If the time 7 when a discontinuous function f; in
Eq. (1) reaches the colliding point is set to 7o, the follow-
ing equation is realized:

(7

g{y(to), 1o} =¢] ¥
Defining &p as minute positive value, next minute section
is considered.

To =To—E0<T<Tp 9

Taking into consideration only a delta function and its dif-
ferentiation in Eq. (4), the variational equation of this sec-
tion can be approximated by the following equation:

t .
dT],‘
d =l0,.... =L ... 1
n/dr (0, Sl ,0) (10)

where
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Fig. 1 Flow chart of shooting method using analytical solutions
(Exact+Shooting method)
dn. (. . . 88(g'=c)) n by’
/L r{d(g‘l.’—c;.’)+sl.——g,’-—,#- i’]k
dr gl -c)) |in Oy
N '
+5(9,{—Cf)25—'*77k (11)
k=10Yk

A collision is taken into consideration in the variational
equation by integrating Eq. (11) through the minute sec-
tion of Eq. (9). The integration of the variational equation
in this minute section can be calculated by applying the
following formulas, namely, the integral of delta function
and its differentiation, to the Eq. (11):

f mé(‘r)d‘rz 1 (12)

co

f&'(‘r)f(‘r)d‘r:—f (O f (Ddr=-f(0) (13)

Moreover, a judgment of discontinuous point attainment
is performed by deciding the permissible error as follows:

lg}y(r5) 15}~ cll< & (14)

2.3 Calculation of a Lyapunov exponent

The Lyapunov exponent is used as an index that
Jjudges whether a phenomenon is chaos or not. For a cal-
culation technique of the Lyapunov exponent, there is the
method of Shimada-Nagashima®?), which performs nor-
malization of Gram-Schmidt for every suitable time of
numerical integration of the variational equation. The
authors improved this method to be applicable to a sys-
tem with discontinuous characteristics!'®. On the other
hand, since the processing of variation is difficult in the
impact system, there is no example that calculates all
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Lyapunov exponents of impact system. However, if the
above-mentioned technique of integrating the variational
equation in the shooting method is used as it is, all Lya-
punov exponents are calculable similar to the method of
Shimada-Nagashima®®?.

3. Application to Single-Degree-of-Freedom Impact
System

3.1 Processing of variational equation

In order to actually apply the shooting method to an
impact system, it is important that we take into consider-
ation the instantaneous change in the velocity that arises
with collision. As an example, the case of the single-
degree-of-freedom system is concretely explained below.

Since it is easy, the single-degree-of-freedom system
expressed with the following non-dimensional equation of
motion is considered:

y' +2yy +y=F(7) (15)

where, y is a non-dimensional displacement, y is a damp-
ing ratio, 4 is the non-dimensional clearance between the
particle and the wall (as example, in the Fig. 3 shown later,
4 means the ratio d/zy of the clearance d and the ampli-
tude of the base excitation zg), T is non-dimensional time,
F(7) is the external force, and ' =d/dr.

Now, when y becomes A from the state of y <4 at the
time 1= 7¢ and the particle collides with a wall, the condi-
tion of a collision and the relation of the velocities before
and after collision are shown as the following equations:

g{(y,f)—6{=y(fo)—d=0 (16)

Y (t)=—ey'(15) a7
where, e is a coefficient of restitution and upper subscripts
— and + show just before and just after a collision, respec-
tively. Introducing a step function to Eq. (17), the velocity

between 7; <7< 7§ is expressed by the following equa-
tion:

y (D) =y (15)— (1 +e)y (15)uly —4) (18)

Here, in fact, although y is not larger than 4, the step
function is used for convenience.

Next, in the moments just before and after a collision,
since the displacement and external force do not change,

the acceleration just after a collision becomes as follows
from Eq. (15):

y' 5 =y"(15) =27y (v5) -y (1)} (19)

The following equation is obtained from Eqgs.(18) and
(19).

y' () =y (tg)+2y(1+e)y (t5)uy - 4) (20)

On the other hand, if the impact force by the collision is
placed with F., since the change of momentum by the col-
lision is equal to impulse by impact force, the following
equation is obtained from Eq. (18):
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5
f Fedr=y (15) -y (15) =—(1 + &)y (t5)u(y —4)
T

Therefore, impact force F. becomes as follows:

Fo(ny=d{-(1+e)y (r5)uly—A}/dr
=—(1+e)y (15)*6(y—4)

By adding impact force F. to Eq.(20), the acceleration
between 7, <7< ‘rg is shown as follows:

2y

y' (1) =y" (t5) +2y(1 + &)y (tg)u(y —4)
—(1+e)y (15)*6(y—4) (22)

As mentioned above, the velocity and the acceleration in
T, <7 <7, can be expressed by the following equations:

¥ (@ =y (1y)—-(1+e)y (t5)u(y—4) (23)
y' () =y (t5)+2y(1+e)y (to)u(y—4)
—(1+e)y (15)*6(y—4) (24)

Next, when it sets with y; =y, y» =y’, the equation of
motion which contains the collision arising in 7; <7 <7]
can be expressed as follows from the above equations:

dy

e =f (25)
where,

y=t(yl»l/2)’ f:r(fl’.fZ)

fi=—(1+eya(r)uty (1) -4}
fa=2y(1+e)ya(rg)uty: (t) - 4}
~(1+e)y(y)*6ly1 (1) - 4} (26)
The variational equation is obtained from Egs. (25) and
(26). Moreover, the relationship between the variation be-
fore collision and that after collision is expressed with the

following equation by carrying out the integrations of ¢
function and that of differentiation of delta function.

m(ty) =mi(ry) +4m @7
M) =m(1g) + 4 (28)
Am =1 +eym(rp) (29
Ay ==+ )y (1) — F(x)im(tg) /y2(1g)
—(1+e)a(ty) (30)

The coefficient of restitution is treated as constant value
independent of colliding velocity here. On the other hand,
we confirmed that the shooting method could be applied
to the case that the coefficient of restitution was expressed
as a function of the colliding velocity.
3.2 Impact vibration of a ball on vibrating table

The impact vibration of a ball on a vibrating table is
considered as shown in Fig.2. Some periodic solutions
are shown using analytical solution method by Luo and
Han®Y. The above mentioned shooting method is applied
to this system, and the validity of this technique is proved
by comparing the results obtained with those by an analyt-
ical solution method®?. The comparison of the stability
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Fig.2 Model of a bouncing ball

of steady-state solutions, to which processing of a varia-
tional equation affects directly, is especially important.

The absolute displacements of a ball and a vibrating
table are defined as X and z=zpsinwt respectively. If rela-
tive displacement is set to x = X —z, the equation of motion
of the system becomes as follows:

Jézszzsinwt—g 3D

When the above equation is formed non-dimensionally, it
is shown as follows:

Yy’ =Ksint-1 (32)
where,
t=wt, '=dldt, y=x/(g/w?), K=z2/(g/w®)

(33)

The amount of steps of variations equivalent to Egs. (29)
and (30) becomes as follows:

A =~(1+e)m () (34)
Ay =—(1+e)(1 = Ksinty)ni (15)/y2(75)
—(1+e)m(ry) (33)

where, y1 =y, y2=y'.

Luo and Han®! calculated analytically the simple so-
lution which performs one collision in n cycles and judged
its stability. The stable condition of the periodic solution
is expressed with the following equation:

l-e 1-e\?  (1+e2)?

— | <K < 4 [n?n? +4 36
””(1+e) \}”” (1+e) Trof O
Setting the coefficient of restitution ¢ = 0.9 and con-

sidering the stable solution which performs one collision

in 1 cycle, the range of amplitude K of non-dimensional
acceleration of table is expressed as follows from Eq. (36):

0.16534698176 <K <1.01631071230 (37)

The result calculated by this technique is shown in
Table 1, where, the discontinuous point attainment per-
missible error &; is 1x 10713, Hereafter, in this paper, the
value of this &; is used in all examples. The convergence
accuracy of a solution shown in Eq. (7) is &; = 1x10719, A,
and A, in the table are characteristic multipliers and serves
as the real number here. It turns out that the values of K,
when the absolute value of a characteristic multiplier ex-
ceeds 1 and the stability of a solution changes, agree up
to 10 figures with the boundary values of stability by Luo
and Han®". This means that processing of the variational

Series C, Vol. 47, No. 3, 2004

Table 1 Boundary of stability (e=0.9)
(a) Upper boundary

K A 1 A 2
1.016 -0.8150084435 -0.9938547342
1.0163 -0.8101672703 -0.9997935361
1.016310 -0.8100111112 -0.9999862827
1.01631071 -0.8100000359 -0.9999999556
1.0163107123 -0.8100000000 -0.9999999999

| 1.0163107124 -0.8099999985 -1.0000000018

1.01631072 -0.8099998800 -1.0000001482
1.016311 -0.8099955127 -1.0000055399
1.0164 -0.8086197094 -1.0017069713
1.017 -0.7999175716 -1.0126043342

«Boundary of stability (By Luo and

1.01631071230 Han® )

(b) Lower boundary

K A A
0.1653469818 0.9999380597 0.8100501747
0.16534699 0.9990044310 0.8108072145
0.165347 0.9985152716 0.8112044182
0.1654 0.8974414625 0.8974414625
0.166 0.8784489703 0.8784489703
0.16534698176 <—Bg?)ndary of stability (By Luo and

Han"")
X
d d ¢
€< <>
k/2 k2
A0 I TAS A
c
7 c/2 1}
—
z=zoCosw !

Fig. 3 Model of forced system with two sided impacts

equation at the time of a collision of this technique is cor-
rect. Moreover, if the amplitude K of non-dimensional
acceleration of table is made less than the value in Ta-
ble 1 (b), the periodic solution cannot be realized, because
the amplitude K is less than the value required to carry out
vibration which performs one collision in 1 cycle.

3.3 Impact vibration of base excitation system

Imamura et al.*» researched the impact vibration of
the single-degree-of-freedom base excitation system, and
1/n-th sub-harmonic vibration and bifurcation to chaos are
treated. Moreover, the existence of grazing bifurcation®®
where contacts arise at a relative velocity of zero is also
reported in the impact system.

In this study, the same system as Imamura et al.?? is
taken as an example, and discontinuities of characteristic
multipliers in grazing bifurcation are shown using shoot-
ing method. The model of the impact system, which has
the rigid collision walls of coefficient of restitution e on
both sides, is shown in Fig.3. Specifically, the mass of
particle is m, the absolute displacement is X, and the width
of clearance is d. There exist the springs with spring con-
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stant k/2 on both sides of the particle, the dampings with
viscous coefficient ¢/2 on both sides, and the base excita-
tion of z=_zpcoswt acts.

The equation of motion of the particle is expressed as
follows:

mx+ cx + kx = mw’z9cos wt (38)

where x = X —z is the relative displacement of the parti-
cle. The non-dimensional equation of motion becomes as

follows.
y' +2yy +y= VZcosvr 39)
where,
w,= Vk/m, v=w/w, T=wyt, ’'=d/dr
(40)
y=c/2VNmk, y=x/z9, d=d[z

The amount of steps of variations which are equivalent to
Eqgs. (29) and (30), serves as the following equation:

Am =—(1+e)n(15) @D
Ay =~(1+e){y1 (1) —v* cos(vy mi (15) [y2(15)
—(1+e)ma(ty) (42)

where, y1 =y, y2=y'.

The bifurcation diagram, the collision velocity char-
acteristics, and the characteristic multiplier are shown in
Fig. 4, where non-dimensional clearance 4 = 1, coefficient
of restitution e =0.7 and damping ratio y =0.01 are used.
The ordinate of Fig.4 (a) is the displacement when the
phase of base excitation is zero, and that of Fig. 4 (b) is the
absolute value of the velocity just before collision. When
multiple collisions occur, the greatest velocity is adopted.
The sign showing the kind of solution in each figure is de-
fined as follows: 1/n expresses the order of sub-harmonic
vibration, O means that the Fourier series of the solution
contains only the odd order, E means that the series con-
tains both the odd order and the even order, and the right-
most number expresses the number of collisions per period
of the solution. For example, 1/1-O2 means that solution
is the harmonic vibration composed of only the odd or-
der of the Fourier series and contains two collisions per
period. Moreover, it is related to the characteristic mul-
tiplier shown in Fig. 4 (c), the larger one concerning the
absolute value which decides the stability of periodic so-
lution is shown. A, in Fig.4 (c) means that the character-
istic multiplier is complex and its real part is shown in the
figure. The bifurcation diagram of Fig. 4 (a) plots the pe-
riodic solution and chaos which were converged only by
repeating the connection of analytical solutions, without
using the shooting method. On the other hand, the im-
pact velocity of Fig. 4 (b) is calculated using the shooting
method. Although one ordinate is displacement and the
other is velocity, all regions of solution agree completely
in both figures.

Adopting the first figure of once converged solution
1/1-02 of v =1.2 in Fig. 4 (b) as the initial value, the pe-
riodic solution of 1/1-0O2 is calculated from v = 1.2 to
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> [1/1-00
i
0.8
0.6
04}
I A=1.0
02 i 1 ) t 1 " 1
0.6 0.8 1 12 v 14
(a) Bifurcation diagram
1.5 — :Stable
S T :Unstable 1/1-E2
-2 -
1+
1/1-E1
0.5+ .
1/1-00 A=1.0
0 | L | L 1 ) |
0.6 0.8 1 12 v 14
(b) Contact velocity
2 1 i
| Unstable % | 2 =16.5479 V1-02 .
T I/1-E2
Stabl
| Stable 1/1-02\]%\lr
o |1/1-00 1/1-E1 | Discontinuous 1/1-E2
Af (v=0.911)
1\/ A,— A=-0.5885+0.2837i

A =-0.7850+0.46991
VDiscont?nuous (v =0.707) Unstable
A=-51.16 /1=1.0
-2 1 A | ) | ) ;
0.6 0.8 1 12 v 14

(¢) Characteristic multiplier

Fig. 4 Characteristic of forced system (e=0.7, 4=1, y=0.01)

Table 2 Comparison of calculation time (e=0.7,4=1,y=
0.01,v=12-1.0)

v Method of calculation Inmal_ n_urpber Ca.l culation
of division time (s)
RKG - Not shooting 8.13
12 - 1024
i RKG+Shooting 0.66
1.0 Exact - Not shooting 64 323
Exact+Shooting 0.16

v = 1.0 by decreasing the value of v in the unit width of
0.01. A comparison of calculation times is shown in Ta-
ble 2, where the convergence accuracy of a solution was
set to £=1x 10710, For this calculation, a Sun Enterprise
450 workstation, which is a UNIX machine was used, be-
cause to measure the exact calculation time is difficult in
Windows machine. The minimal measuring unit of the
calculation time was 0.01 second in the compiler used,
the FUJITSU Fortran90 compiler 2.0. This is not small;
therefore, the low calculation speed of this machine man-
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ufactured in 1998 was used intentionally to measure the
calculation time precisely. '

In Table 2, the calculation times taken to obtain the
periodic solutions are compared. In the table, not the cal-
culation time itself but the comparison of the calculation
times is meaningful. The first method in the table, here-
after called the RKG-Not Shooting method, is the one
that continues integration from the initial value using the
Runge-Kutta-Gill method, without using the principle of
the Newton-Raphson method. The second method, the
Exact-Not Shooting method, repeats the connection of an-
alytical solutions. The third method, the RKG+Shooting
method, is the shooting method which calculates a solu-
tion in every linear term by numerical integration using the
Runge-Kutta-Gill method. The last is the Exact+Shooting
method mentioned in chapter 2. The initial number of di-
visions in the table expresses the number of divisions of
period in the first stage. That is, the value which divides
the period of external force 27/v by this initial number of
divisions is the step size in the first stages of the Runge-
Kutta-Gill method. In the analytical solution, it is equiv-
alent to time step size to advance time 7. Although the
first step size is changed in order to detect the boundary
of each linear section with predetermined accuracy during
the execution of each solution method, if the boundary is
detected at once, the step size will be reset to the first one
in the next linear section. Moreover, in the methods of
Exact-Not Shooting and Exact+Shooting, the procedure
which calculates a general solution (the 3rd and 4th steps
in Fig. 1) is also included in the calculation time.

The usual Runge-Kutta-Gill method (RKG-Not
Shooting method) takes the most time in Table 2. This
method is followed by the analytical solution method
(Exact-Not Shooting method) which does not correct the
initial value after one period, the RKG+Shooting method
and the Exact+Shooting method, in that order. The
Exact+Shooting method can calculate a solution in the
shortest time. The RKG+Shooting method can calcu-
late in only one-twelfth of the time in the RKG-Not
Shooting method, which does not correct initial value.
Therefore, the shooting method itself is an outstanding
method. The Exact+Shooting method can calculate the
periodic solution in one-fourth of calculation time in the
RKG+Shooting method, and it can be said that this is a
very high-speed method. :

There is a bifurcation from the stable solution of 1/1-
El1 to the unstable solution of 1/1-E2 near v=0.9 in Fig. 4.
This bifurcation is caused by the increase of collisions
per cycle. At the bifurcation point, the resonance curve
of impact velocity in Fig. 4 (b) is turned over in the form
where it sharpened, and the characteristic multiplier in
Fig.4 (c) changes discontinuously a great deal on both
sides of value 1. Although such a phenomenon caused
by generation of a collision was called grazing bifurca-
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tion™®, it was shown for the first time that a character-
istic multiplier changes discontinuously. Grazing bifur-
cation means discontinuity in stability of solution. The
reason a characteristic multiplier changes discontinuously
is that the amount of step values of variations shown by
Egs. (41) and (42) are added by generation of a collision.
Such a characteristic phenomenon is the same as that of
the forced self-excited vibration system accompanied by
dry friction®®, and that of the preloaded compliance sys-
tem®, which the authors have worked with before. On
the other hand, in a system with continuous nonlinear-
ity like Duffing’s equation, the inclinations of stable and
unstable branches in resonance curve become infinite and
are in agreement each other, and a characteristic multiplier
changes continuously through A =1. Also in this system,
the characteristic multiplier of 1/1-O2 shown in Fig. 4 (c)
is | and changes continuously at the stable and unstable
boundaries. This is because the number of times of a col-
lision does not change.

Next, the calculation of a Lyapunov exponent
was carried out utilizing the method of Shimada-
Nagashima®?, which performs normalization of Gram-
Schmidt after every suitable time integration of the equa-
tion of motion, and the variational equation was used. In
this study, numerical integration was not performed but
analytical solutions of each section are connected. More-
over, whenever a collision is generated, the step-changes
of variation shown by Egs. (41) and (42) are taken into
consideration.

In this study, a direct bifurcation from 1/1-O0 to
chaos by grazing bifurcation®® is also obtained as shown
in Fig. 4 (a). Here, chaos is judged using the Lyapunov
exponents. The Poincare section and Lyapunov exponents
of 1/1-00 are shown in Fig. 5. Those in the case of chaos
are shown in Fig.6. In calculation of the Poincare sec-
tion, chaos is calculated by connecting the analytical solu-
tions, and the periodic solution is calculated by the shoot-
ing method and checked also by connecting an analytical
solutions. On the other hand, the calculation of the Lya-
punov exponents is carried out using the information of
variational equation. As the results of (a) and (b) corre-
spond well in each figure, it can be said that the processing

-0.702 0.1
> N
0.704 L =

X
-0.706 | Dt
0.708 |

-0.71 . ' - -0.1
-0.0025 -0.0024 ¥ -0.0023 40000

(a) Poincare section

42000
(b) Lyapunov exponents

cycle

Fig. 5 Periodic solution 1/1-00 (4 =1, v=0.7071)
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(a) Poincare section

Fig. 6 Chaos (4=1,v=0.7072)

(b) Lyapunov exponents

variational equations at a colliding point is correct, and the
Lyapunov exponent is calculated correctly.

4. Apprication to Two-Degree-of-Freedom System

As a two-degree-of-freedom system with collision,
the model of the classical impact damper system shown
in Fig. 7 is considered. Specifically, the single-degree-of-
freedom forced system composed of mass M, spring con-
stant k, and viscous damping coefficient ¢ is controlled
by the impact damper constituted from a ball of mass m
and rigid walls of coeflicient of restitution e. Masri and
Caughey'? calculated analytically a simple solution with
two collisions in one period and judged its stability. The
shooting method is applied to this system. The validity of
this method is proved by comparing the result of this tech-
nique with the result of the analytical solution method of
Masri and Caughey'?, especially the stability of the steady
state solution in which processing of the variational equa-
tion is directly involved is compared.

The absolute displacements of main system and a ball
are x; and x; respectively, the relative displacement is
X, = xp — x1, and the clearance between walls is 2d. When
the external force Fcoswt acts on the main system, the

equation of motion becomes as follows:
MX| +cx; +kx; = Fcoswt

ST 43)

mxp = 0

The non-dimensional equation of motion of this system is
as follows:
Y/ +2yY +Y =cosvr
Yy =0
where,
wn= VkIM, v=w/w,, '=d/dr, T=wnt,
Y=c/2VNMk, Y =x1/6s, Y2=x2/0s, yr=Y2— Y}
6u=F/k,4=d[6y (45)
Supposing y, = +4 at time T =Ty and a ball collides with
the wall of a main system, the conditions of the impact
velocity between a main system and a ball is expressed by
the following equations: :
Y{(r5)=a Y| (1)) + a2 Y} (1))
Y (t§) =Y (t5) +asYi(15)’

where,

(44)

(46)
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Fig.7 Model of impact system

p=m/M, gy =1+p, a1 =(1-pe)/m
ay=p(l+e)/ur, az=(+e) 1, as=u—e)/u
(47

The equations of motion corresponding to Egs. (25) and
(26) become as follows:

d

d_f_ =f:y = (yl ,y2,y3,!/4),f=t (fl 9f‘2uf3xf4)

fi = oy (e uCy, - 4)

o= =2yaay, (g uly, M) £ a2y (1) 6(xy, ~ 4)

f3=—azy,(ty)u(xy, — 4)

fo=Fasy (15)’6(xy,~4) 48)
where, complex sign is in the same order and y; =Y, yo =
Y|,y3=Y2,ys=Y;. Moreover, the amount of steps of vari-
ations becomes as follows:

) =m(re)+4m, m(tg) =m(7y) + 4

S =m(ty)+4n3,  na(ty) =na(ry) +4n,

Ay =—ax{m(ry) —m3(1)} 49

Ay = —anfy (7g) + 2yya(1g) —cos vty }

x {1 () —mT)H y2(73)
—ya(15) — a{ma(75) — na(T)} (50)

Ans = a3{m (tg) —1m3(7)} (5D

Ans = as{y1 (1g) + 2yya(7g) —cos vty |

x{mi(15) —m3(t)} y2 (1)
—ya(ty) +a3{n(1y) —n4(7p)} (52)

In this paper, damping ratio y = 0.05, coefficient of
restitution e = 0.8, and mass ratio u =0.1 are used. More-
over, the relationship between non-dimension clearance 4
in this paper and the non-dimension clearance 4’ in Masri
and CaugheyV is 4’ =24.

Results obtained by this method and that of Masri and
Caughey" are compared as follows: First, the boundaries
of stability of the solution with two collisions per period
are shown in Table 3. The convergence accuracy of a so-
lution is £=1x107". Ay, and A34 in the table show the
characteristic multipliers obtained by this method, and the
absolute values are shown in Table 3. It turns out from
the table that the value of v to which the absolute value of

a characteristic multiplier exceeds 1 and the stability of a
solution changes is very well in agreement to 10 figures of
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Table 3 Boundary of stability (4=4.0, y=0.05,¢=0.8, u=

Engi neers

0.1)

v |21>2 M}ml
1.0852502 0.7595633989 | 0.9999978701
1.08525018 0.7595633939 | 0.9999994107
1.085250173 0.7595633922 | 0.9999999494

1.085250172

0.7595633919

1.000000025

1.08525017 0.7595633914 | 1.000000181
1.0852501 0.7595633739 1.000005573
Boundary of
1.085250173 Stable Stablllty
(By Masri and
1.085250172 Unstable Caughey’s
Method™")

Table 4 Boundary of stability by Masri and Caughey’s Method .

Method of Masri and Caughey™
(4'=8.0, v=1.0852~2.0)
1.0852 Unstable 1.6735 Unstable
1.0853 Stable 1.6736 Stable
! l
1.3699 Stable 2.0000 Stable
1.3700 Unstable

the stable and unstable boundary value of the Masri and
Caughey’s method'". This means that processing of vari-
ational equation at the time of a collision is also exact in a
two-degree-of-freedom impact system.

The result of angular velocity of external force v =
1.0852-2.0 by the Masri and Caughey’s method" is
shown in Table 4. It is determined also that these bound-
aries of stability are in agreement with those obtained by
our shooting method. On the other hand, Fig. 8 is a figure
shown in the paper of Masri and Caughey!". The hatched
stable regions calculated by Masri and Caughey" them-
selves and those calculated by the shooting method which
are shown by the arrows are not in agreement at three
places in Fig. 8. Popplewell et al.?) also mentioned that
the stability of solutions calculated by Masri and Caughey
themselves was wrong. As mentioned above, it is found
that although the solution and the method to judge the
stability of solutions which Masri and Caughey!" pro-
posed are correct, but their numerical computation result
is wrong.

Calculation times to obtain steady state solutions
were also compared in the two-degree-of freedom system.
Adopting only the first figure of convergence solution 1/1-
O2 at v=1.1 and 4 =4.0 in Fig. 8 as the initial value, the
solution of v = 1.1 was calculated, then the periodic solu-
tions of 1/1-O2 were calculated continuously to v=1.3 in
increasing divisions of 0.01. The times taken in the calcu-
lation are compared in Table 5. Here, the convergence
accuracy of a solution was set to & = 1 x 1079, RKG-
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5 7 2.0

Fig.8 Stable regions (@) calculated by Masri and
Caughey'" and those («—) cluculated by the shooting
method (v=0-2.0)

Table 5 Comparison of calculation time (4 =4.0)

14 Method of calculation In(i)tfiz:ili\r,lil.;rir;t:ler C?ilgzl?si)o n
RKG - Not shooting 433
1 il RKG+Shooting 312 0.62
13 Exact - Not shooting 64 1.68
Exact+Shooting 0.13

-1 0 1 h

(a) 1/9-E18 (v=0.5199) (b) 1/43-E86 (v=0.5464)

Fig. 9 Phase planes of periodic solutions (4 =4.0)

Not Shooting method takes the most time. The Exact-Not
Shooting method and the RKG+Shooting method follows
in that order, and the Exact+Shooting method can calcu-
late solutions in the shortest time. The RKG+Shooting
method can calculate in only one-seventh of the time taken
in the RKG-Not Shooting method, which does not correct
the initial value. The Exact+Shooting method can calcu-
late periodic solutions in a calculation time of one-fifth of
that in the RKG+Shooting method. It is verified also in the
two-degree-of-freedom system that the Exact+Shooting
method is a very high-speed method.

The phase planes of periodic solutions are shown in
Fig.9. Small circles in the figures show the instances when
the phase of external force are zero. These complicated
periodic solutions are easily obtained using the shooting
method.

Moreover, chaos is judged using the Lyapunov ex-
ponent. The typical Poincare section of a beat vibration
is shown in Fig. 10(a), and four Lyapunov exponents p
are written below the figure. Poincare section in the case
of chaos is shown in Fig. 10(b). In the creation of the
Poincare section, each solution is calculated only by con-
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(a) Beat (v=1.370) (b) Chaos (v=1.389)

Fig. 10 Poincare section and Lyapunov exponents (4 =4.0)

necting analytical solutions. It is said that one of Lya-
punov exponents p is zero in the beat and one of those is
positive in Chaos. On the other hand, the calculated Lya-
punov exponents in Fig. 10 (a) have two extremely small
positive values in the beat. However, as the significant fig-
ure of Lyapunov exponents are thought to be 2 -3 figures
below a decimal point®?, this positive value is the numer-
ical calculation error. Therefore, it can be said that the
results of the Poincare section and those of Lyapunov ex-
ponents correspond well in the figures. It is said that the
processing of variational equations in a colliding point is
correct, and Lyapunov exponents are also correctly calcu-
lated in the two-degree-of-freedom impact system.

5. Conclusion

The results of this study are summarized as follows:

(1) A shooting method for impact systems was de-
veloped. ,

(2) By comparing the existing solutions of single-
and two-degree-of-freedom systems, it was proved that
the periodic solutions and those stabilities obtained by the
shooting method were correct.

(3) It was shown that a characteristic multiplier
changed discontinuously in a grazing bifurcation pro-
duced by generation of a collision, and the grazing bifur-
cation was explained from a viewpoint of discontinuity in
stability of solution.

(4) It was shown that this shooting method is eco-
nomical in calculation speed and can obtain complicated
periodic solutions.

(5) The calculation method of the Lyapunov expo-
nent for the impact systems was shown and numerical re-
sults showed that accurate values were acquired.
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