
VISUAL TRACKING OF HIGHLY ARTICULATED

OBJECTS USING MASSIVELY PARALLEL PROCESSORS

BY

DENNIS JINN LIN

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor Thomas S. Huang, Chair
Professor Narendra Ahuja
Professor David A. Forsyth
Professor Wen-Mei W. Hwu

Abstract

Hand gesture recognition has the potential of simplifying human computer interactions.

However, the human hand is a highly articulated object, capable of taking on many different

appearances. In this work, we consider an analysis by synthesis approach to this difficult

tracking problem. We attempt to overcome the vast amount of computation required by

implementing the algorithm on commodity graphics processing units (GPUs). We also collect

a lengthy sequence of hand motions from five cameras in order to train and test our algorithm.

We show that to achieve good tracking performance, it is important to understand the way

that the hand moves. It is of secondary importance to have a good estimate of the hand

shape and to be able to process the frames as quickly as possible. Under heavily controlled

circumstances, we are able to achieve full tracking accuracy.

ii

Table of Contents

1 Introduction . 1

1.1 Hand Anatomy . 1

1.2 Related Works . 4

2 Hand Tracker . 10

2.1 Hand Model . 11

2.2 Distance Function . 13

2.3 OpenGL Renderer . 15

2.4 Software Renderer . 20

2.5 Solver . 22

3 Data . 27

3.1 Data Collection . 27

3.2 Keypoints . 29

3.3 Camera Calibration . 29

3.4 Hand Shape Calibration . 31

3.5 Ground Truth Pose Data . 34

3.6 Test Data . 37

4 Classifier Experiments . 38

4.1 Evaluation Metric . 38

4.2 Visualizing Results . 40

4.3 System Models . 41

4.4 Reduced Framerate . 47

4.5 Camera Subsets . 49

4.6 Suboptimal Hand Shape . 51

4.7 Conclusion . 53

5 Tracking Experiments . 55

5.1 Evaluation Metric . 55

iii

5.2 Results . 59

5.3 Conclusion . 60

References . 62

iv

Chapter 1

Introduction

Humans gesture naturally as they interact with each other, and the ability to analyze these

motions should help us understand each other and work with machines. Gesture-based

interfaces may be useful in situations where carrying an input device can be dangerous or

simply cumbersome. A solid hand tracking system can also serve as a first step towards

automatic sign language recognition.

However, tracking the human hand poses many unique challenges. Although the overall

hand region is easily identifiable via skin-color segmentation, it lacks internal feature points.

As a result, locally based techniques like optical flow usually fail. Also, although the hand

is constrained by its joints, it can take on a wide variety of shapes. The articulated nature

of the motion, along with the relatively deep kinematic chain, makes it very difficult to

characterize all possible hand images. Finally, the curse of dimensionality comes into play.

The human hand has over 20 internal degrees of freedom, making brute-force techniques

impossible.

1.1 Hand Anatomy

The human hand is composed of 27 bones, as shown in Figure 1.1. Eight of those are the

carpal bones in the wrist, and they are relatively immobile. The “palm” region is composed

of the metacarpal bones. Each finger is composed of three phalanges: proximal, intermediate,

and distal. The joint between the metacarpal and the proximal phalange is the metacar-

pophalangeal (MCP) joint. The joint between the proximal and intermediate phalanges is

the proximal interphalangeal (PIP) joint. Finally, the joint between the intermediate and

distal phalange is the distal interphalangeal (DIP) joint. The thumb is slightly different in

that it only has two phalanges, proximal and distal. The joint between the metacarpal and

the proximal phalange is still the MCP, but the joint between the two phalanges is simply

1

Intermediate phalanges

Proximal phalanges

Distal phalanges

Metacarpals

Carpals

Figure 1.1: Human hand bones

referred to as the interphalangeal (IP) joint. It also differs from the fingers in that it has

significant articulation at the wrist or carpometacarpal (CMC) joint.

Riordan [1] gives a view of the hand from a surgical perspective, briefly summarized here.

The hand is powered both by muscles within the hand and by tendons connecting to the

forearm. Abduction and adduction (the motion of spreading the fingers apart and pushing

them back together) is primarily accomplished by muscles at the base of the fingers. The

exception is the pinkie, which is abducted by a muscle connected to the ulna.

The flexion of the fingers (the act of closing the hand into a fist) is primarily performed

by tendons that run along the palm into the forearm. There are also some muscles at the

MCP joint to help us flex. Extension (the opposite of flexion) is much more complicated.

The extensor tendons start with muscles in the forearm and run along the back of the hand.

However, each tendon splits into three on the dorsal side of the proximal phalanx. One

section attaches to the dorsal side of the middle phalanx. The other two wrap around the

palmar side of the PIP joint, join again over the dorsal side of the middle phalanx, and then

attach to the distal phalanx.

1.1.1 Modeling Tendon Actions

One of the earliest works on finger articulation was performed by Landsmeer [2] in 1961.

In this paper, he proposed three models for tendon movement. Landsmeer’s Model I deals

with a tendon moving over a pulley. In this case the shortening is equal to rϕ, where r is

the radius of the pulley and ϕ is the amount that the joint is rotated. Landsmeer’s Model

II deals with a tendon running through a loop. In this case the shortening is 2r sin 1
2
ϕ.

Landsmeer’s Model III corresponds to a tendon running through a tendon-sheath. In this

case, there is no simple formula which describes the tendon extrusion.

Taking a different approach, An et al. [3] dissected ten hands to measure tendon loca-

2

tions and their force and moment potential on different joints. Perhaps this information

would be the most useful in determining an energy function for the fingers. However, these

measurements are taken for a hand in a resting position. It is unclear how the force and

moment potentials would be affected by changing joint-angles.

Chao et al. [4] had performed an analysis three years earlier for several pinching actions.

In order to complete the analysis, they had to make quite a few simplifying assumptions.

Brook [5] conducted a detailed analysis of the index finger that made fewer assumptions.

Both systems yield large systems of equations that are indeterminate. This is because there

are many more tendons than degree(s) of freedom (DoF) in the joints. According to [5],

every finger in the hand is controlled by no less than six muscles, nine maximum in the fifth,

and seven in the index finger. This means that modeling the tendons actually increases the

dimensionality of the problem.

Furthermore, the results of [4] show that during a pinch action, a single tendon can

exert three times the force of the pinch. This number increases to five in the grasping

function. Under these circumstances, the inertia associated with the fingertips would seem

to be negligible. As a result, constant velocity or constant acceleration motion models will

have dubious value. The best we can hope for is that there is smooth behavior in the muscles

that control the tendons.

1.1.2 Hand Dimensions

By dissecting six cadavers (all over the age of 65), Buchholz et al. [6] determined that the

length and position of the kinematic segments can be modeled as a function of hand width

and length.

His data, shown in Table 1.1, gives the distance between joint centers for each of the

digits. Digit I is the thumb, where segment 1 is the carpal segment, 2 is the metacarpal,

3 is the proximal phalangeal, and 4 is the distal phalangeal. The remaining digits are the

fingers, starting from the index finger and going to the little finger. In these cases, segment

1 is the carpometacarpal, 2 is the proximal, 3 is the middle phalangeal, and 4 is the distal

phalangeal segment. In all cases, the numbers are intended to be multiplied by the overall

hand length.

In addition, Buchholz measured the location of the first joint relative to the wrist. The

results are shown in Table 1.2. The first joint is the CMC for the thumb and the MCP for

the fingers. The x ratios should be multiplied by the hand length and the z ratios should be

multiplied by the hand width.

3

Table 1.1: Relative ratio of phalanx lengths.

Segment I II III IV V

1 0.118 0.463 0.446 0.421 0.414
2 0.251 0.245 0.266 0.244 0.204
3 0.196 0.143 0.170 0.165 0.117
4 0.158 0.097 0.108 0.107 0.093

Table 1.2: Relative position of CMC and MCP joints. Note that the z value of finger III is
defined to be 0.

Dimension I II III IV V

x 0.073 0.447 0.446 0.409 0.368
z -0.196 -0.251 0.000 0.206 0.402

Finger Tracking

Appearance-Based

Real
Images

Synthetic
Images

Model-Based

Linear
Models

Articulated
Models

Figure 1.2: Techniques for finger tracking.

1.2 Related Works

A 2007 survey of full DoF hand pose estimation techniques may be found in [7]. This

summary covers a subset of the systems described therein and introduces a few which have

appeared after the survey. We divide the these finger trackers into a rough taxonomy shown

in Figure 1.2.

1.2.1 Appearance-Based Techniques

The general general idea of appearance-based techniques is to build up a collection of images

of the hand in different configurations. Then, recognizing the positions of the fingers becomes

a database search problem. Using different metrics, the camera image is compared against

the training images, and the pose information is read off the label associated with the best

match.

4

Real Hand Images

Capturing the hand in many poses and from many directions is difficult logistically, and

labeling the images is a labor-intensive process. As a result, there are very few corpora

of hand training images. One exception is the system described in [8]. The authors of this

work took video of 24 hand shapes drawn from American Sign Language (ASL). The subject

held the signs while rotating his wrist. This provided 14 views spanning approximately 80

degrees along one rotation axis. The system then used a Fourier-based feature and a tree-

based classifier to recognize the shapes. The system was able to track a 148 frame sequence

containing the shapes and could correctly identify the word signed. It also tracked a longer

333 frame sequence and was able to find reasonable approximations of shapes that were not

in the database.

Another instance of using actual hand images for training is [9], although this work only

had a database of eight signs and five views. This system used local orientation histograms

as features. It treated the recognition task as a database retrieval, using locality sensitive

hashing (LSH) as an acceleration technique. It achieved 70% rank-1 retrieval accuracy even

when presented with query images that were of a different subject taken with a different

model of camera.

Both of these systems have fewer than a thousand examples in their training databases,

severely restricting both the number of signs and global rotations at which they could be

recognized. The authors of [8] stated that they collected a 7,000 image database signing 24

of the letters of ASL. Also, there is some work toward building an extensive ASL database

[10]. However, neither of these data sets appear to have been used as training for tracking

or recognition systems.

Synthesized Hand Images

Faced with the logistical challenge of collecting live hand images, researchers resort to gen-

erating them using computer graphics. For example, [11] built a regression model over

a database of 8,000 hand images. More recent systems, however, treat the problem as a

database lookup problem, searching for the nearest match in the training set and then read-

ing the shape parameters associated with that image. The system in [12] matched a database

of 107,328 images (4,128 views of 26 different hand poses) using chamfer distance of edges. In

order to reduce the expensive chamfer distance computation, it used a Lipschitz embedding

as an initial approximation. The system winnows the database using the approximation and

performs the full distance computation only on the top 1,000 candidates. Still, the system

requires 15 seconds per image on a 1.2 GHz Athlon system. A more recent version of that

5

system [13] uses a slightly smaller database consisting of 80,640 images (4032 views of 20

hand poses). The database was rendered in “under 24 hours” using the commercial software

Poser. This system used a boosting algorithm to choose the exemplars for the Lipschitz

embedding and a distance-based hashing algorithm to enable faster search of the database.

With these enhancements, it could perform a query in 0.14 s using a 2.0 GHz Athlon.

Another work which used pregenerated templates is [14]. This system used both color

and edge likelihoods. It uses a half-chamfer distance to match the edges, but it also takes

into account the direction of the edge in the measurement. This system uses an integral

image to accelerate the color likelihood computation. To facilitate search and tracking, this

system uses a tree-based filter and a motion model trained with articulations captured from

a data glove. It could track global motion (six DoF) using 16,055 templates at a rate of two

seconds per frame on a 1 GHz Pentium IV. For another sequence, it could track six DoF

global (with a restricted range) and two local DoF using 35,000 templates at a rate of three

seconds per frame using a 2.4 GHz Pentium IV.

Our system generates synthetic images “on-the-fly” as opposed to precomputing them.

On a practical front, this means that our generated images are going to be simpler. However,

it is not clear that synthetic hands with higher apparent quality will yield better tracker

accuracy. Also, the speed advantage which precomputation grants is being reduced by trends

in computer architecture. While memory size continues to increase, memory bandwidth to

the chip is not scaling. As a result, modern processors face a “memory wall,” whereby the

arithmetic units are consuming images from the database faster than the memory system

can supply them. Our system, by producing the images inside the processing unit, avoids

this bottleneck.

On the theoretical side, generating images on the fly gives us increased flexibility. We

can generate more intermediate poses and views than the largest feasible database. We can

also adapt more easily to users with different finger lengths. On the other hand, our system

does not have access to the information on the global structure of hand shapes contained in

the search trees and hashes. It is possible to envision a hybrid system where precomputed

information is used to quickly narrow down candidates for initialization while fine-grained

tracking is performed with dynamically generated images.

1.2.2 Model-Based Techniques

The model-based approach is an alternative to the appearance-based approach. These tech-

niques try to understand and encode the underlying structure of the hand. The approaches

in this section are more varied. Some try to perform analysis on portions of the hand image

6

to infer the finger location. Many propose hypothetical hand configurations and compare

them with the camera image. Theoretically, because model-based systems are not restricted

to a set of training images, they should be more flexible and user-independent. However,

because they do not offload work to a precomputing state, they can be significantly more

computationally expensive.

Linear Models

Linear models are the simplest ones possible, and there is some early work in applying them

to finger tracking. For example, in their work describing the application particle filtering to

computer vision, [15] includes an example of tracking a hand over a cluttered background.

For this system, the palm remains parallel to the image plane and is allowed to translate and

rotate. The fingers and thumb adduct and abduct independently, but there is no flexion or

extension. The system worked in a 12 dimensional space. Two of the dimensions deal with in-

plane translation. The remaining ten were trained using principal component analysis (PCA)

and handle the hand shape and in-plane rotations. The system used edges as its feature and

has a motion model derived from a training sequence. The system could track the hand for

500 frames in a cluttered scene. The restriction on the palm essentially reduces the problem

from 3D to 2D. However, the particle filtering technique proves to be particularly robust,

and we adopt it for our system (Section 2.5).

The work of [16] also uses PCA to model the hand shapes. However, their system works in

3D and factors in texture instead of simply looking for contours. The advantage of using PCA

based models is that it becomes very easy to compute the shape given the model parameters.

However, because PCA is a linear model, it is an awkward technique for representing the

inherently nonlinear nature of articulated motion. In general, more recent hand tracking

systems have adopted other approaches.

1.2.3 Skeletal Models

Given the structure of the hand, it is natural to actually carry a full kinematic model into

the tracking system. One of the oldest systems covered in this survey is the DigitEyes system

[17, 18]. It uses two cameras and can track a full 27 DoF. This system models the hand with

a full kinematic model similar to the one found in Section 2.1.1 of this work. Their work, like

ours, relies on the occluding contour of the hand. Instead of a general rendering, however,

they use a wireframe-like model of “link” and “tip” components. The link models represent

the line at the center of a phalanx (which is modeled as a cylinder). To measure the model

against the image, the system takes 1D profiles at regularly spaced intervals perpendicular

7

to the link. The edges of the finger are found by looking at the derivatives along the profile.

If only one silhouette edge can be determined, the center can be estimated with knowledge

of the width of the finger. The “tip” model is a hemisphere model for the fingertip which is

estimated in a similar fashion. Using the local trackers and sampling reduces the computation

cost. The DigitEyes tracker uses a single hypothesis and the Levenburg-Marquardt (LM)

nonlinear least-squares solver. They used the system to track a 200 frame sequence with

no occlusion [17]. The system can run at 6.6 Hz with 27 DoF, on a 68040 processor. To

handle occlusion, they developed a sophisticated technique of deciding which phalanx is in

front of the other. This system was too slow to run in real time, but could track two fingers

(9 DoF) where one occluded the other for 80 frames. Our work takes a similar approach,

building a kinematic model of the hand and comparing it to images from multiple cameras.

However, increased computation power allows us to fully render the hand and compare the

entire camera image rather than carefully selected slices. We also have the power to use

multiple hypotheses in our tracker to improve robustness.

Whereas [18] worked solely in 2D, [19] works entirely in 3D. Using four cameras, the

system constructs a voxel-based model scene. Then, they fit a 31 DoF hand model to the 3D

information. The tracker is a single-hypothesis system which uses “virtual torque” to align

the model with the observed information. The system can run at two frames per second

on a dual 1 GHz Pentium III. The paper does not mention tracking a sequence. Instead, it

gives two examples of tracking results. Our system essentially uses the same information,

occluding contours from multiple cameras. However, we avoid projecting to 3D, which should

enable us to reduce memory usage while achieving the same accuracy.

The system described in [20] contains one of the most sophisticated tracking algorithms

described in this review. It uses a graphical model with nonparametric belief propagation

as a tracking system. The model is especially interesting in that it does not use the “joint-

angle” representation adopted by most of the other systems. Instead, it opts for a highly

redundant representation, specifying the location and position of each phalanx using six

values. Energy functions in the graphical model then ensure that the parts actually connect

properly to form a hand. The system uses chamfer distances on the edges and color likelihood

over the silhouette as features. The system was tested on both global motion and on slight

flexing of the fingers. For all the test sequences, the palm was mostly facing the camera.

The process requires approximately four minutes per frame on a Pentium IV system. Two

hundred particles were used in the nonparametric messages. Our system uses a significantly

less sophisticated propagation model. This, however, makes updates much faster. Combined

with multiple cameras, we can achieve processing that is much closer to real-time speeds.

Our use of the full chamfer distance on silhouettes usually alleviates the need for repulsion

8

forces to keep the phalanxes from intersecting. By using a simpler parametrization of the

hand, we reduce the number of dimensions and avoid kinematic singularities.

In contrast, the work of [21] uses a much simpler, single hypothesis of the hand pose.

However, it uses one of the most sophisticated on-line models of the visual appearance of the

hand. This model consists of 1000 facets, 22 articulation (hand pose) parameters, and 51

morphological (hand shape) parameters. It can handle lighting and texture, but not shadows.

It tracks by using a quasi-Newton descent, taking special care of boundary conditions to avoid

discontinuities in the objective function. It could track the same sequences as those used by

[14], achieving good results with full 22 local DoF. Note that [14] only could handle two local

DoF. This suggests an advantage in using model-based systems in tracking complex hand

motion. No information was given in [21] on the execution time, but it is presumably much

slower than our system. However, it may be advantageous to incorporate aspects of this

more sophisticated model into our system. Perhaps this will permit our system to function

well even with a single view of the hand.

9

Chapter 2

Hand Tracker

We use an analysis-synthesis approach for our hand tracker. The block diagram of Figure 2.1

highlights the major components. For each frame, we generate a number of candidate hand

poses. Using that information and our 3D model of the hand, we render the candidate

images. Then, we compare that image to the camera image using the error metric. Next,

we feed the new error information into the solver, which proposes new candidate hand poses

in an attempt to minimize the disparity. The cycle then repeats until the tracker’s hand

pose converges on the true pose. This system is relatively simple and elegant. It trivially

adapts to multiple cameras; we simply render additional images for each camera viewpoint

and hand pose. Since we are rendering from scratch, we can dynamically adapt to the

user’s hand shape. We also do not need to restrict the range of motion in order to build

a database. Conversely, it is also easy to enforce static and dynamic constraints on the

candidate hand poses. The main drawback of this approach is the amount of computation

involved. We partially overcome this by using high throughput massively parallel processors

such as NVIDIA GPUs.

The original version of the hand tracker was written in a combination of MATLAB and

C++, with the components communicating with each other using TCP/IP. Since then, the

tracker has evolved to use Python and C++, with the boost::python [22] library supplying

the glue layer. Python, along with the NumPy [23] library for matrix processing and mat-

plotlib [24] library for plotting, provides most of the functionality of MATLAB. It retains the

ease of rapid prototyping development while providing a nicer interface for binding to the

C++ routines. This allowed us to eliminate the TCP/IP layer and improve performance.

In this chapter, we describe each of the components in turn. We begin with the param-

eters used to model the hand and the distance measure that we use. We then discuss the

implementation details of two “renderers.” This component performs the image generation

and the error computation steps in a single pass. The first version, based on OpenGL, is

10

Camera
Image

3D Hand
Model

Renderer
Error
Metric

Candidate
Image

Solver Hand Pose

+ −

Figure 2.1: Block diagram of our hand tracker.

suitable for ATI and older NVIDIA GPU platforms. The second, based on a new software

rendering engine, is designed to attain optimal performance with NVIDIA’s CUDA platform.

Finally, we detail our implementation for the solver routine.

2.1 Hand Model

To represent the hand for rendering, we need to know something about its parameters. We

divide these into two parts. The first part is the “hand pose” model, which captures the

dynamic properties of hand motion. These change from frame to frame. The remaining

parameters, the “hand shape” model, are intrinsic values that remain constant throughout

the sequence.

2.1.1 Hand Pose Model

As described in Section 1.1, the hand is a very complex anatomical structure. It is capable

of many different types of movement, including subtle articulations of the metacarpals and

slight twisting of the fingers. These are not very noticeable, however, and in the interest of

keeping the model simple, we focus on the more major articulations. Even then, we take

some liberties with the thumb. Also, we introduce a “palm fold” joint that has no real

correspondence with physiology.

Our simplified hand model had 21 local DoF. For each finger, we use two degrees (flexion

and adduction) at the MCP joint, and one degree (flexion) at the PIP and DIP joints. For

11

Figure 2.2: Illustration of hand folding. Note that for some gestures the knuckles no longer
lie in a plane, and the axes for flexion are no longer aligned.

the sake of symmetry, we treat the thumb like a finger, pretending that its metacarpal bone

is the the proximal phalange. That is, we “attach” the thumb to the hand at its CMC joint,

giving it two degrees of freedom there. We treat the thumb’s MCP joint as though it is the

PIP joint, with only one degree of flexion. Finally, we treat the thumb’s IP joint as though

it was the DIP joint, with a degree of flexion. This model is arguably incorrect with the

degrees of freedom in the wrong places. However, we have found it sufficient to describe the

range of motion that we observe in the data set.

The remaining local DoF is designed to capture “palm folding.” Most of the time, all the

MCP joints of the fingers lie in the same plane. However, as illustrated in Figure 2.2, during

certain motions the metacarpals shift, invalidating the approximation. As a kludge, we add

an extra “joint,” centered about the thumb base, which affects the bases of the middle, ring,

and pinkie fingers.

Additionally, our pose model also contains 6 global DoF relating the position and orien-

tation of the palm in space. We represent the orientation with Euler angles, choosing the

ordering so that gimbal lock is unlikely. We represent the position as (x,y,z) coordinates.

Note that these are the only part of the hand pose measured in length instead of as an angle.

2.1.2 Hand Shape Model

The hand shape model consists of three basic parts: phalanx lengths, keypoint locations,

and joint axes. The phalanx lengths are fairly self-explanatory. There are three of these

parameters for every finger, including the thumb. The keypoints represent the x and y

location1 of the bases of fingers. We also have two keypoints near the wrists. These points

help define how we render the palm.

The joint axes are somewhat more complex. In theory, each axis can lie anywhere on the

1For the hand’s local coordinate system, we use a convention where x is along the width, y is along the
length, and z is along the depth.

12

unit sphere. However, since we model the finger as a segment in the “transformed” y direc-

tion, it does not make sense for the finger’s joint axes to have a y component. We constrain

the MCP flexion/extension axes to roughly lie in the plane of the palm, and we constrain the

MCP abduction/adduction axes to be roughly perpendicular to the flexion/extension axes.

The “hand fold” pseudo-joint, however, is allowed to be at any angle, and can be anywhere

on the unit sphere.

2.2 Distance Function

The error metric is responsible for evaluating the closeness of the fit between the camera

image and the rendered image. Since we intend to evaluate many candidates, it is important

for this operation to be fast. However, it is equally important for the distance to be relatively

smooth and free of local minima. This section will explore three possibilities and their

implications.

The simplest possible error metric is the sum squared difference (SSD) error. Since we

are dealing with binary silhouettes, the distance reduces to an XOR operation between the

camera image and rendered image pixels. Essentially, it counts the number of pixels that are

different between the two images. This can be computed very quickly and easily, and is the

approach used by [25]. However, this metric is non-differentiable with respect to almost all

parametrizations [26]. As a result, it is prone to local minima. If the camera image and the

rendered images do not overlap at all, this distance gives no information on how to adjust

the rendered image. Even if the two images are roughly aligned, this metric can send the

wrong signal to the solver. An example of this is shown in Figure 2.3. Note that the SSD

distance increases as the thumb abducts towards the correct pose. Also, the SSD is often

minimized by reducing the number of pixels in the rendered image. As a result, experience

has shown that this metric often causes the fingers to “shrivel” into the palm, making it a

poor choice for effective tracking.

An improved error metric may be found by using the chamfer distance. The definition

that that we use, based on the original proposal by [27], is as follows: Given two sets A and

B, and an underlying distance metric d, the chamfer distance dcfr (A,B) is given by:

dcfr (A,B) = w1dhalf-cfr (A,B) + w2dhalf-cfr (B,A) (2.1)

13

SSD error

Figure 2.3: Illustration of SSD error. The green represents the camera image, and the blue
represents possible rendered candidates. Note that the error increases as the thumb moves
toward the correct location.

where w1 and w2 are arbitrary weights, and

dhalf-cfr (A,B) =
∑
a∈A

min
b∈B

d(a, b). (2.2)

In short, the directed chamfer distance dhalf-cfr (A,B) is the average distance from a point in

A to its closest point in B. Note that although it is commonly referred to as a “distance,”

dcfr (A,B) is not a metric.

One way to compute dhalf-cfr (A,B) begins with calculating a distance transform on B.

As shown in Figure 2.4(b), the value of each pixel in the transformed image is the distance

to the nearest element in B. (Pixels that are in B have a value of 0.) Then, calculating the

dhalf-cfr (A,B) simply involves summing over all the values in the distance transform under

A, as indicated by Figure 2.4(c). Similarly, as illustrated by Figure 2.4(d), dhalf-cfr (B,A)

may be computed by a distance transform on A and summing over the pixels of B.

Computing only dhalf-cfr (camera, rendered) is a popular choice, since it requires only a

single distance transform per camera image. By contrast, computing dhalf-cfr (rendered, camera)

requires a distance transform for every candidate, which can be hundreds or thousands of

times more numerous. Thus, this metric is used by [14] for edges. However, as shown in Fig-

ure 2.5, this metric suffers from the same issues as the SSD. The dhalf-cfr (camera, rendered)

component of the full chamfer distance, illustrated in Figure 2.6, can help us avoid spurious

local minima. In this case, as the thumb abducts toward the correct pose, the error imposed

by the camera’s view of the thumb decreases. Recognizing the importance of this term [12]

14

(a) (b) (c) (d)

Figure 2.4: The chamfer distance. (a) Two shapes A (blue) and B (green). (b) The distance
transform of B. (c) The half-chamfer distance dhalf-cfr (A,B). (d) The half-chamfer distance
dhalf-cfr (B,A).

dhalf-cfr (rendered, camera)

Figure 2.5: Illustration of the half-chamfer distance dhalf-cfr (rendered, camera). The green
represents the camera image, and the blue represents possible rendered candidates. Note
that this suffers the same issues as the SSD distance.

includes it in their tracker. However, because of resource constraints, they use a database-

based embedding to approximate dhalf-cfr (camera, rendered). Using GPU acceleration, we

will actually compute both terms directly.

2.3 OpenGL Renderer

As mentioned in the overview, we combine the candidate image rendering and distance metric

computation in a single step. This task is accomplished by the “renderer” component. The

OpenGL renderer is the older of the two renderers. It was written using general purpose GPU

(GPGPU) style programming, and could work with cards that had limited programmability.

15

dhalf-cfr (rendered, camera)

Figure 2.6: Illustration of the half-chamfer distance dhalf-cfr (camera, rendered). The green
represents the camera image, and the blue represents possible rendered candidates. This
error measure actually decreases as the thumb moves towards the correct location.

OpenGL, like DirectX, is a sophisticated application programming interface (API) designed

for high performance rasterization. As such, there are a few minor perks to using OpenGL

for rendering. First, OpenGL is designed for 3D. We simply need to specify points in the

world coordinate, and the hardware will take care of the different viewpoints, even in the

case of asymmetric view frustums. Similarly, the hardware rasterizer will find the “inside”

of our polygons. This means that parts naturally get bigger as they get closer to the camera.

Finally, the texturing hardware will automatically filter and interpolate the camera image.

This allows us to zoom in and focus our attention to the hand region.

Before this renderer was written, most of the research was conducted using MATLAB.

However, obtaining (and maintaining) an OpenGL context from within MATLAB seemed

too impractical given MATLAB’s limited integration with C. Thus, the initial version was a

standalone program that spoke to a controlling MATLAB process using TCP/IP. However,

the overhead of marshaling data across the TCP channel proved to be prohibitive. As a

result, we replaced the MATLAB component with Python and NumPy. Python, being

a lighter weight host with better C integration, could embed the renderer directly. This

dramatically sped up performance and simplified development.

In order to obtain maximum performance, we applied several techniques. The first is

to minimize the number of polygons drawn by simplifying the geometry. The second is to

use the z-buffer to accelerate the computation of the distance transform. Finally, we use

a combination of OpenGL Shading Language (GLSL) shaders and the mipmap generation

hardware in order to compute the chamfer distance efficiently.

16

Figure 2.7: The polygon rendered to approximate a cylinder.

Figure 2.8: Approximating the chamfer distance by rendering extra polygons.

2.3.1 Hand Geometry Model

For both renderers, we approximate the finger phalanxes using cylinders. To simplify the

geometry for OpenGL, we replace each phalanx with three overlapping 3D rectangles, as

shown in Figure 2.7. When rendered without the lighting, the silhouette of one of these

polygons approximates a cylinder. A similar method, with many more polygons, is applied

to the palm, which is modeled as a single rigid body.

2.3.2 Approximating the Distance Transform

However, we can accelerate an approximate distance transform on the GPU using the tech-

nique proposed by [28].

Figure 2.8 illustrates the method. Every time we render a polygon (blue), we also render

several extra “wings” (orange). These wings are forced back to the far edge of the frame-

buffer, so that they will always be occluded by palm polygons. We assign a texture coordinate

of zero to the edge of the wing polygon that is adjacent to the corresponding palm polygon,

and we assign some maximum value to the far edge. Then, the texture interpolation will

color the each pixel with the distance to the associated palm polygon. In addition, the wing

polygons are progressively sloped away from the camera. Therefore, when two wing polygons

overlap, pixels corresponding to smaller distances (closer to a palm polygon) occludes pixels

corresponding to larger distances. As a result, the final image consists of pixels which record

the smallest distance value.

17

Table 2.1: Relative performance of CPU and GPU implementations. These timings are
based on a Intel Core2 6600 with an NVIDIA GeForce 7600 GT. MESA is a CPU-based
OpenGL implementation.

Comparison/Sec
Batch Size GPU MESA Speedup

1 595.33 29.56 20x
4 1522.61 29.67 51x
16 2430.04 29.43 82x
64 2829.19 29.31 97x

2.3.3 Error Distance Computation

To avoid having to re-read the image from the framebuffer, we render the error image in a

single pass. In order to do this, we apply a different GLSL fragment shader to the hand

polygons and the wings. The shader for hand pixels produces a value of 0 if the corresponding

pixel in the camera image is a 1 (indicating a match). Otherwise, that shader returns the

value of the precomputed distance transform of the camera image. Similarly, the shader

for the wing polygons produces a 0 if the corresponding pixel in the camera image is a

0. Otherwise, it returns an output proportional to its z value. Thus, after rendering, the

framebuffer contains the “error image.”

However, we do not actually need to error image; instead we merely need the sum of all its

pixels. To avoid having to transfer all the pixels back to the central processing unit (CPU),

we perform the summation on the GPU. To do this, we use the hardware mipmap-generation

feature . We use the OpenGL call to build the mipmap pyramid. By reading the appropriate

pixel near the top of the pyramid, we can retrieve the sum of a certain area of the original

image.

2.3.4 Performance

Of course, the major advantage of pushing the work to the GPU is the speed. As Table 2.1

shows, even mediocre GPU hardware can significantly outperform a CPU-based OpenGL

implementation. However, to achieve this speed, it is necessary to batch transactions. To do

this, we allocate a large framebuffer, and then proceed to tile it with multiple hands. Having

multiple hands in flight means that the GPU can parallelize the rendering better and save

on per-transaction overhead. A side effect of this is that it is most efficient to be able to

submit a batch of at least 64 renderings before receiving any results.

18

2.3.5 Drawbacks

Unfortunately, although we are nominally rendering a 3D object, our task does not quite

match the traditional workload of a GPU. The most obvious mismatch is that most ap-

plications do not need to render thousands of frames per second. Even after batching the

workload, we still wish to render many hundreds of frames per second. Clearing the frame-

buffer between each rendering pass is a simple but fairly expensive operation, as it rewrites

every pixel. Also, modern GPU workloads rely on shipping large batches of geometry and

expect to expend large amounts of processing on fragment shader work. This is true if we

are dealing with relatively complex 3D objects that are rendered with sophisticated lighting

equations. However, our hands have a relatively simple geometry and a trivial amount of

work in the fragment shaders.

Another issue is that the OpenGL interface, which is designed to give implementations

flexibility, is very opaque from a programmer’s point of view. Thus, we can only speculate

on some of the reasons for poor performance. On possibility is that the fingers are long

and skinny, leading to large regions of abrupt changes in z value. I suspect that this means

that we are defeating the early z-cull feature of the hardware. This feature is designed to

avoid rendering fragments known to be behind something that has already been rendered.

However, it is normally implemented by a hierarchy of z-buffers, which relies on the fact

that the depth map is relatively smooth. Also, profiling seems to indicate a bottleneck in

the raster operation, where finished pixels are written to the framebuffer. However, writing

only one output channel instead of the four channels for red-green-blue-alpha (RGBA) data

does not seem to increase throughput. This may be caused by issues in the layout of the

framebuffer in the memory or by an issue in updating the z buffer.

Finally, there is an issue with the accuracy of the rendering. The polygons only ap-

proximate the idealized cylinders which should make up the fingers. Also, the wings do not

exactly compute the distance transform. For simplicity, we use only four wing polygons

per rectangle. This yields an exactly accurate result along the edges, but it underestimates

the distance near the corners. Worse, the wings do not extend forever, meaning that the

result can be highly inaccurate if there is a wild mismatch between the camera and rendered

images. As a result of all of this, the resulting distance function is filled with artifacts and

is not smooth with respect to the input parameters.

19

2.4 Software Renderer

In 2007, NVIDIA unveiled its CUDA programming language, which allows for a C-like

environment for programming its GPUs. This change corresponded to a shift in GPU archi-

tecture. Whereas older-generation GPUs have fixed pipelines with limited programmability,

the newer generation hardware was simply a giant unified bank of simple processors. These

processing units are much more flexible than the simplified models of old. They can perform

arbitrary writes to GPU memory. Furthermore, the CUDA environment allows programs

to access the on-chip cache on the GPU itself, and we use this ability to remove the raster

operation bottleneck we saw with the OpenGL renderer.

In developing the software renderer, we actually wrote three versions. The pure-python

version was the initial prototype, and serves as the reference implementation for the unit

tests. The C++ version came next, and it defines the data types necessary for transferring

information to and from the rest of the system. Finally, we have the highly tuned CUDA

version which actually does the heavy lifting. Having multiple implementations increases

the development overhead. However, having a Python-C hybrid allows us to maintain unit

tests to ensure correctness. We also can use Python’s reference counting mechanism in order

to maintain the lifetime of GPU memory resources.

2.4.1 Hand Geometry and Distance Transform

Since we were writing our own renderer from scratch, we were not constrained to the primi-

tives and operations offered by OpenGL. Instead, we use a simple routine renderer designed

to quickly render the relatively simple geometry of the hand. It is geared towards generat-

ing a silhouette and at the same time computing the distance transform. As a result, we

build the hand image from a small set of geometric primitives, rather than completely from

polygons. This simplifies the rendering pipeline, as there is no longer a need to perform

polygonization. We also chose our primitives to simplify distance transform computation.

Like the OpenGL renderer of Section 2.3, the software rendering engine starts with a

the absolute position and orientation of the palm and the set of joint-angles. It uses this

information to generate a 3D “skeleton” of the hand. This produces a line segment for each

phalanx, and two large polygons describing the palm. We then project this skeleton into

each of the camera views.

Ideally, we would like to render each of the phalanxes as a cylinder with hemispherical

end caps. The perspective projection of that 3D shape would have non-parallel edges and

distorted caps. However, to simplify the mathematics, we use an orthographic approxima-

tion, which is a rectangle capped by a semicircle. That is, we represent the phalanx with a

20

“capsule” that consists of the set of all points which are less than a distance r from the 2D

skeleton line segment. Note that we used a perspective projection when converting 3D skele-

ton segments into 2D segments. We only resort to the orthographic approximation afterward.

Also, for simplicity, we currently keep the width of the phalanx a constant, whereas it should

be modulated by the distance to the camera. In practice, however, these approximations

work well when the hand is relatively far away from the camera.

In a similar fashion, we render the palm as two “rounded polygon” primitives. Each of

these is the set of all points which are less than a distance r from the interior of the 2D

projection of the polygon. This is approximately the 3D shape associated with all the points

that are within r of the 3D polygon. Sectioning the palm into two pieces helps with the

hand fold. One quadrilateral section extends from the two wrist keypoints to the MCPs of

the pinkie and index finger. A second triangular section runs from the MCP of the index

finger to the MCP of the thumb to the radial wrist keypoint. This fold does not quite line

up with the “hand fold” joint, and as a result it is possible for the quadrilateral to become

nonconvex under extreme circumstances. In practice, however, this has not been an issue.

To actually produce the rendering, we define a function dci(p) for each capsule ci. This

is defined to be the distance skeleton line segment si minus its radius ri. Note that we now

have an implicit representation of capsule i, with dci(p) < 0 for the interior of the capsule.

We produce a similar function of the palm polygon dp(p). We render the pixel R(p) by

R(p) = min
(

min
i
dci(p), dp(p)

)
. (2.3)

This yields an implicit representation of the hand; R(p) < 0 on the interior of the hand.

Since we performed all the distance computations in 2D, R(p) also happens to be the value

of the distance transform for points outside the hand.

2.4.2 Performance

Unlike the OpenGL renderer, which only touches the regions on or near the hand, the

software renderer performs the same computation for every pixel of the output. As a result,

it performs significantly more computation. However, because the computation is much

more regular and because we are able to take advantage of the on-chip cache, the software

renderer significantly outperforms the OpenGL renderer.

We benchmarked this algorithm on two machines. One is a development desktop which

has an Intel Core2 Quad with an NVIDIA GeForce 9800 GX2. The other is a node of

a cluster, which has two dual-core AMD Opterons attached to an NVIDIA Tesla S1070

containing four GPUs. In both cases, we use exactly one CPU core and one GPU. Table 2.2

21

Table 2.2: Timing of various components. The values given are the times needed for one
comparison.

System Drawing Only CPU Points GPU Points Full Tracker
(µs) (µs) (µs) (µs)

Core2 Quad Q6600
+ G92 (GeForce 9800 GX2)

49.4 58.6 50.7 52.7

Opteron 2216
+ GT200 (Tesla S1070)

31.1 71.0 31.7 35.0

summarizes the results. The initial system only performed the drawing step on the GPU.

The task of finding the vertexes for the capsules and the polygons remained on the CPU. The

drawing part alone runs fast, achieving 20,000 comparisons per second on the development

desktop and 32,000 comparisons per second on a cluster node. However, as the second column

of the table shows, the point calculations slow things down, leading to a noticeable decrease

in performance on the desktop system. However, the performance drops off dramatically

on the cluster node, which features a slower CPU and a faster GPU. Moving the point

calculation onto the GPU restores the lost performance. As the last column suggests, the

rendering portion dominates the overall tracker time. Thus, while it is possible to move more

of the tracker to the GPU, we will begin to suffer diminishing returns.

2.5 Solver

Introduced to the vision community by Isard et al. as the Condensation [15] algorithm,

particle filters have proved to be a successful method of tracking complex states. Unlike

Kalman filters and its nonlinear extensions, which are based on unimodal Gaussians, the

particle filter can represent an arbitrary probability distribution. As a result, it can maintain

multiple hypotheses about the target state, which proves useful when there can be ambigu-

ities in the observations. In this section, we give a brief review of the sequential importance

sampling (SIS) filter, structured on the tutorial paper by Arulampalam et al. [29]. We follow

with a description of the parametrization that we have chosen for our implementation.

Every tracking problem is characterized by two models. The first describes how the

system state evolves over time:

xk = fk(xk−1,vk−1). (2.4)

This function describes how the state sequence {xk} evolves over time under the influence

22

of an independently identically distributed (i.i.d.) noise sequence {vk}. The second equation

zk = hk(xk,nk) (2.5)

describes how {zk}, the sequence of our observations, relates to the underlying {xk}, possibly

corrupted by a (different) i.i.d. noise {nk}. The tracking problem then reduces to determining

{xk} given {zk}. In particular, we usually want to find xk given z1:k = {zi, i = 1, . . . , k},
the set of all observations until time k.

For tracking, we commonly make the Markov assumption p(xk|xk−1, z1:k−1) = p(xk|xk−1).
That is, once we “know” xk−1, we have extracted all available information from the previous

observations z1:k−1. With this, the tracking problem breaks down into two steps. The first

step, “propagates”the system state from the last time frame to the present.

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1. (2.6)

The model of state evolution p(xk|xk−1) is determined by (2.4) and by the known statistics of

vk−1. The second step, “updates” the current estimate with the newly arrived observation.

p(xk|z1:k) =
p(xk|zk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (2.7)

The denominator of the fraction p(zk|z1:k−1) is a normalizing constant which is very difficult

to compute directly. Fortunately, finding its value is not necessary for our filter.

The SIS filter works by representing p(x0:k|z1:k) by a set of Ns particles {xi0:k, wik}
Ns
i=1.

For every i, xi0:k corresponds to a possible evolution of the state from initial time to k.

The weight wik is proportional to the probability that the corresponding xi0:k represents the

true trajectory. The weights are normalized so that
∑

iw
i
k = 1. As a result, we have the

approximation

p(x0:k|z1:k) ≈
n∑
i=1

wikδ(x0:k − xi0:k). (2.8)

With the mathematical derivation detailed in [29], it can be shown that

wik ∝ wik−1
p(zk|xik)p(xik|xi1:k−1)
q(xik|xi0:k−1, z1:k)

(2.9)

where q(xik|xi0:k−1, z1:k) is an arbitrary distribution from which we draw xik. We choose

q(xik|xi0:k−1, z1:k) = p(xik|xi1:k−1) = p(xik|xik−1), causing the denominator to cancel with the

numerator.

23

Algorithm 1 A SIS particle filter without resampling.

Given {xik−1, wik−1} and zk
for i = 1 to Ns do

draw xik from p(xik|xik−1)
wik ← wik−1p(zk|xik)

end for
normalize wik so that

∑
iw

i
k = 1

Algorithm 2 An efficient resampling algorithm.

Given {xik, wik}
c0 ← 0
for i = 1 to Ns do
ci ← ci−1 + wik

end for{cNs should be 1 because wik are normalized}
for i = 1 to Ns do

draw r uniformly from [0, 1)
use binary search to find s such that cs−1 ≤ r < cs
x̂ik ← xsk
ŵik ← 1/Ns

end for

This gives us Algorithm 1. It will work initially, but we will eventually choose a xik so

that p(zk|xik) is very low. After that point, we devote computational effort to updating that

particular trajectory without providing any benefit to our estimate of p(x0:k|z1:k). Eventually,

we find a poor choice of xik for every i, and the tracker loses effectiveness.

To avoid this fate, we introduce resampling. This step replaces {xik, wik} with {x̂ik, ŵik},
concentrating the particles with larger weights. To do this, we draw samples from the discrete

distribution of

p(xk|z1:k) ≈
n∑
i=1

wikδ(xk − xik). (2.10)

That is, we choose x̂jk ← xik with probability proportional to wik. Since we performed a set

of independent draws from (2.10), ŵik = 1/Ns after the update. Algorithm 2 illustrates an

efficient method of performing this update. Although it might be better to wait until certain

conditions are met, we resample after every iteration. This makes our approach consistent

with the sampling importance resampling (SIR) algorithm described in [29].

In our specific implementation of the particle filter, x is the 27-dimensional hand pose

vector from Section 2.1.1. Our observations are zk = {cc}c∈C, the set of images from our

24

cameras. Then, we define

p(zk|xik) ∝ e−γ[
∑

c∈C dcfr(rc(xi
k),cc)]. (2.11)

In this equation rc(x
i
k) is the rendering of xik from the viewpoint of camera c and dcfr (·, ·)

is the chamfer distance. The parameter γ is a scaling constant, which we usually default to

0.5.

There is one other modification we make to the standard SIR algorithm. Instead of

updating the tracker once per frame, we feed the same camera images to the tracker several

times. The level of repeat is controlled by the repeat parameter. This allows the tracker

“more time” to catch up to the motion in the camera. However, by feeding the same

information multiple times, we are implying to the tracker an observation error that is lower

than what the data suggests. This means that the tracker will underestimate the variance

in the hand state. The mean, however, should still provide useful data.

Algorithm 3 summarizes our tracker. Note that the nested loops of lines 11–15 are highly

parallelizable. In particular, all of the distance calculations of line 13 are independent of each

other. Note that the outer loop divides the work over cameras. This should make it easy to

process each camera image on a different GPU or on a different node of a cluster, making

the system relatively scalable in terms of handling cameras. There is still communication

necessary to distribute the xik at the beginning of every iteration and to collect the dc,i

at the end. The amount of data to be exchanged is relatively small, but there will be

synchronization overhead.

25

Algorithm 3 The hand tracker.

1: Given initial state x0

2: for i = 1 to Ns do
3: xi ← x0 {We resample after every step so we don’t need to keep track of the weights.}
4: end for
5: while more frames do
6: Acquire camera images {cc}c∈C
7: for r = 1 to repeat do
8: for i = 1 to Ns do
9: draw xik from p(xik|xik−1)

10: end for
11: for all c ∈ C do
12: for i = 1 to Ns do
13: dc,i ← dcfr (rc(x

i), cc)
14: end for
15: end for
16: for i = 1 to Ns do

17: wik ← e−γ[
∑

c∈C dc,i]

18: end for
19: normalize wik so that

∑
iw

i
k = 1

20: resample according to Algorithm 2
21: end for
22: end while

26

Chapter 3

Data

3.1 Data Collection

In order to collect image data for training and testing, we use the camera rig pictured in

Figure 3.1. Lighting was provided by two umbrella lights and overhead fluorescent lighting.

We used five Point Grey Dragonfly cameras connected by FireWire 400 to a central data-

collection computer. The cameras are synchronized by the FireWire bus and operate at 30

frames per second. They operate at a 640 × 480 resolution. The cameras are color, but

that is implemented with a Bayer filter, which does not increase the number of independent

samples generated by the camera. Still, the five cameras combined produce more data than

the disk write throughput. However, our sequences are relatively short, and the capture

machine has sufficient memory to buffer the frames. No frames were dropped during the

capture. An example of the camera output is shown in Figure 3.2.

For our test and training cases, we use the three gestures from the childhood game rock-

paper-scissors. Each of the training and test sequences consists of a single take showing 60

transitions from one state to another. The sequences were designed to ensure that each of

the 6 possible transitions occur 10 times each. We annotate every five frames with a label

Figure 3.1: The camera rig used to capture our training and test sequences. (The cameras
were in slightly different locations when the sequences were captured.)

27

(0) (1) (2) (3) (4)

Figure 3.2: Raw camera output (after Bayer filtering) for frame 120 of the training set. The
boxes indicate the crop location.

0 1 2 3 4

Frame: 120

Figure 3.3: Sample frame of the training sequence after cropping and rotation.

of “rock,” “paper,” “scissors,” or “transition.” This allows us to compute the evaluation

described in Section 4.1.

The test sequence was shot on the same day as the training sequence. The cameras were

not moved between the shots. Care was taken to provide a clear color boundary at the wrist

and to ensure that other skin-colored regions (such as the face) were not in the frame. The

cameras were equipped with a manual zoom lens, and we adjusted the positions and zoom so

that the hand mostly remained within the view throughout the sequence. We report frame

numbers as they are recorded in the video. The actual training sequence starts at frame 120

and runs to frame 1800. Also, in true computer science fashion, the cameras are numbered

0–4 instead of 1–5.

We do some preprocessing on the frames before feeding them to the rest of the system.

First, we rotate the image to be upright, and we crop to a 384 × 384 square. This is

shown in Figure 3.3. We use these images as a basis for manual labeling. For the actual

tracker, however, we need to perform color segmentation in order to obtain a silhouette.

We do this using manually trained color histograms. The histograms are in the red-green-

blue (RGB) color space, and we use 64 bins for each dimension. Because of the relatively

simple background, the color segmentation is fairly straightforward. However, the lighting

conditions for each camera are different, so we use separate histograms for each camera. The

results of the color segmentation are shown in Figure 3.4.

28

0 1 2 3 4

Frame: 120

Figure 3.4: Sample frame of the training sequence after color segmentation.

3.2 Keypoints

In order to perform the different calibration steps in Section 3.3 and Section 3.4, we need to

be able to identify keypoints of the hand. We use four points associated with each finger,

corresponding to the MCP, PIP, DIP, and fingertip. (For the thumb, we use the CMC, MCP,

PIP, and thumb tip.) Note that the MCP joints of the fingers are closer to the knuckle on

the back of the hand than to the crease at the edge of the palm at the front of the hand. In

addition, we have two keypoints near the wrist to indicate the base of the palm.

In order to streamline the labeling process, we developed a python-based labeling tool,

depicted in Figure 3.5. This tool allows us to drag the keypoints so that they align with the

image. Using matplotlib’s plotting facility, the tool can zoom and pan the image to provide a

more accurate view. It also allows us to set a confidence value for every point. We label points

that are not visible in a particular view with a large circle, indicating greater uncertainty.

The “Solve Points” uses a nonlinear solver to ensure that the points are consistent with the

current camera model. The “Solve Pose” button shifts the points so that they are consistent

with the current camera and shape model.

Using this tool, we label every 15 frames of the training set (113 frames in total). We

use certain key frames (see Section 3.3) to calibrate the camera. For the remainder of the

frames, we use the “Solve Points” button to ensure that our labeling is consistent in 3D.

3.3 Camera Calibration

We model the camera as a simple pinhole with the image centered around the principal point.

We do not take into account radial distortion or even the fact that our cropped images are

actually off-center relative to the lens axis.1 These distortions are relatively minor, and

our simplifications correspond to how the renderer actually generates the image. We also

assume square pixels with no skew, and therefore the intrinsic parameters reduce to a single

1The OpenGL renderer can handle off-center projection matrices. The software renderer currently lacks
that capacity, although it would be relatively easy to add.

29

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

Load Pose

Solve Pose

Load Points

Solve Points

Load Manual
Save

Prev Next

120

Figure 3.5: Screen shot of the keypoint labeling tool. Large circles indicate high uncertainty
in the label while small circles indicate high confidence.

field-of-view value. However, that value is conflated with the position of the camera, so we

can simply fix it to a constant (corresponding to about 28◦). Therefore, our camera model

has only the six extrinsic parameters (three dimensions of position and three dimensions of

rotation).

There is no canonical center for the center (origin) of the world coordinate system, so

we arbitrarily define that to be the location of camera 0. Without an absolute reference,

the camera parameters can only be recovered up to a constant scale factor. This scale

factor cancels out in the rendering, but to keep things consistent, we choose our scale so

that the PIP of the index finger is 5 units long. That makes one unit in world coordinates

approximately 1 cm long.

In order to solve for the camera parameters, we manually labeled keypoints from six

frames (120, 285, 435, 480, 495, 525) of the video. Let xfc,i be the location of the ith keypoint

in camera view c of frame f . Let wfc,i be the corresponding confidence-based weight. We

weigh points that are visible 10 times more than points that are occluded. Then we want to

solve for the camera parameters θc of camera c. In the process, we need to find the location

of the keypoints in world coordinates. Let us denote the 3D location of keypoint i of frame

30

x
604020020406080

y

60
40
20
0
20
40
60
80

z

120

100

80

60

40

20

0

20

0
1
2
3
4

Figure 3.6: Solved camera parameters. Note that the virtual locations do not correspond
with physical locations because the cameras had different focal lengths.

f as wf
i . Then, we formulate an unconstrained nonlinear least squares problem:

min
∑
f

(∑
c

∑
i

wfc,i‖C(wf
i , θc)− xfc,i‖2

)2

+
(
‖wf

4 −wf
5‖2 − 25

) (3.1)

where C(w, θ) projects the 3D point w using camera parameters θ. The first term matches

the camera calibration the camera parameters match the labeled points. The second term

helps maintain the scale by ensuring the distance between the base of the index finger and

its DIP in 3D is five. We could use a scale factor for this regularization term. However, since

it should be possible to drive the term to close to zero, we leave the scale at one.

After obtaining the initial solution, we use our labeling tool to inspect the results. After

a few rounds of interactive tweaking, we were able to produce results which look visually

consistent and yield a value of zero for (3.1). These results are illustrated in Figure 3.6.

3.4 Hand Shape Calibration

The fixed parameters of our hand model were described in Section 2.1.2. We denote these

as h and presume that they are constant across the frames of a sequence and across the

training and test set. In to estimate h, we use the 113 frames that we labeled (Section 3.2).

To solve for the hand parameters, we take a multi-step approach. First, we initialize

an initial estimate of the hand parameters ĥ. For the phalanx lengths, we use the mean of

the distances between the appropriate 3D points. For the other parameters, we use some

manually initialized values. We then solve the pose pf individually for each frame f , using

31

the unconstrained optimization problem

min

(∑
c

∑
i

wfc,i‖C(Pi(p
f ; ĥ), θc)− xfc,i‖2

)
+Kpose(pf). (3.2)

The first term of the equation is similar to the first term in (3.1). As before, xfc,i is the ith

labeled keypoint of camera c of frame f , and wfc,i is its corresponding weight. Also as before,

C(·, θ) projects a 3D point using θ as the camera parameters. Instead of solving for a point

w, however, we use the result of Pi(p;h). This function returns the world coordinate of the

ith keypoint given pose p and hand parameters h. The function Kpose is a soft constraint on

the pose. For each joint, we define an upper (uj) bound and lower (lj) bound, as shown in

Table 3.1. We selected these values manually, ensuring that no frame of the final solution

exceeds the bound by more than 10. We also make sure that the same joints on different

fingers have the same bound. Then, let pj be the element of p corresponding to joint j, and

Kpose(p) =
∑
j

(0.01kj(pj))
2 (3.3)

where

kj(pj) =


pj − lj pj < lj

uj − pj pj > uj

0 otherwise.

(3.4)

Note that the formulation of Kpose ensures that the overall optimization remains a nonlinear

least squares.

Finally, we solve for h, along with all the poses pf simultaneously:

min
∑
f

((∑
c

∑
i

wfc,i‖C(Pi(p
f ; ĥ), θc)− xfc,i‖2

)
+Kpose(pf)

)
+Kshape(h). (3.5)

The soft constraint Kshape(h) contains several terms. It removes the ambiguities introduced

in the hand’s local coordinate system. To do this, we ensure that the base of the thumb

at the origin and that the segment between the two wrist points are parallel to the local x

axis. We also ensure that the two rotation axes at the base of the thumb are perpendicular

to each other. In addition, we make sure that the MCP flexion, PIP, and DIP axes of the

fingers (not the thumb) lie in the positive-x region of the xz plane. Similarly, we force the

axis for MCP adduction to lie in the positive-x region of the xz plane.

32

Table 3.1: Soft constraints used for solving the hand pose. These are the values used in
(3.4).

j

Upper
bound
(uj)

Lower
bound

(lj)

0 70 0
1 85 0
2 115 -20
3 60 0
4 130 -40
5 140 -20
6 105 -45
7 60 -40
8 130 -40
9 140 -20

10 105 -45
11 60 -40
12 130 -40
13 140 -20
14 105 -45
15 60 -40
16 130 -40
17 140 -20
18 105 -45
19 60 -40
20 20 -45
21 180 -180
22 180 -180
23 180 -180
24 20 -10
25 5 -20
26 -40 -80

33

3.5 Ground Truth Pose Data

As described in Section 3.2, we manually labeled every 15 frames of the training data.

When we solved for the hand shape in Section 3.4, we also obtained pose information for

those frames. However, in order to train a motion model (Section 4.3.3) or a classifier for

evaluation (Section 4.1), we need labels for every frame of the sequence. To generate these

labels, we employ our general purpose particle filter. However, since the intent is not to

evaluate tracker performance, we make multiple passes through our sequence and we add

additional terms to enforce regularity.

The underlying basis for solving for the pose of a particular frame is our particle filter

with hard constraints, described in Section 4.3.2. (Although we do impose the constraints

during the solver pass, the final results are usually far away from the bounds. Thus, the

constraints probably did not inhibit the final solution.) However, we operate this particle

filter more like an annealing solver which minimizes an objective function. To that end, we

model the likelihood as

L ∝ exp−0.1

[∑
c

dcfr
(
rc(p

f), cfc
)

+ ‖pf − pf−1‖2 + ‖pf − pf+1‖2

+
∑
c

∑
i

‖C(Pi(p
f ; ĥ), θc)− xfc,i‖2

]
(3.6)

where pf , the pose of frame f , is what we are solving for. In this formula, the first term

represents the match between rendering of pf and the camera images. The next two terms

ensure that pf remains close to the pose of the previous (pf−1) and next (pf+1) frames. The

appropriate term is omitted if f is at the beginning or end of the sequence. The final term

compares the keypoints associated with pf to the manual labels xfc,i. This term is omitted

if there are no manual labels for that frame.

To actually perform the optimization, we treat each frame individually. For frame f , we

initialize the tracker with the previous solution of frames f − 2 through f + 2. (We initialize

with only the available frames near the boundaries.) We then run the tracker for 20 iterations

and look at the weighted mean of the result. We only update the result for the frame if the

new result has a better score than the old. We then make multiple passes through the frames

forwards and backwards until the results roughly converge. Sample results from this process

are shown in Figure 3.7 and Figure 3.8. Note that frames 255 and 270 have manual point

labels while the intermediate frames rely on the solver results.

34

255

256

257

258

259

260

261

262

Figure 3.7: Sample sequence of ground truth tracking results (part 1).

35

263

264

265

266

267

268

269

270

Figure 3.8: Sample sequence of ground truth tracking results (part 2).

36

0 1 2 3 4

Frame: 60

Figure 3.9: First frame of the test sequence after cropping and rotation. This shows the
manually initialized pose for tracker initialization.

0 1 2 3 4

Frame: 60

Figure 3.10: First frame of the test sequence after color segmentation.

3.6 Test Data

The test sequence was recorded on the same day as the training sequence under similar

conditions. This starts at frame 60 of the video and runs to frame 1800. Figure 3.9 shows

the first frame of the test sequence. Although there appeared to be slight lighting variations

(possibly due to the differences in motion), we reuse the histograms that we used for color

segmentation of the training sequence on the test sequence. The resulting segmentation,

illustrated in Figure 3.10, while not perfect, is sufficient for our needs. This sequence is

qualitatively very similar to the training sequence, although the hand is rotated slightly

differently, and it swings in a somewhat different direction.

We do not annotate the test sequence to the same degree as the training sequence.

We label the keypoints for only the first frame, illustrated in Figure 3.9. This labeling is

consistent with the camera and hand shape of the training sequence, and is used to solve

for the initial pose. We also annotate “rock,” “paper,” “scissors,” or “transition” every five

frames. This allows us to perform the evaluation described in Section 4.1.

37

Chapter 4

Classifier Experiments

In this chapter we describe the experimental results of running our tracker on the data. First,

we discuss our evaluation metric, which is based on the output of a multiclass classifier. We

then consider the results of running various forms of the tracker on the full data set. Finally,

we consider various corruptions of the original data, including reduced framerates, fewer

cameras, and distorted hand shapes.

4.1 Evaluation Metric

Determining an appropriate evaluation metric was a minor challenge. We experimented with

using Mahalanobis distance, distance based on the covariance of the tracker particles, and

raw chamfer distance. The main issue is that the there is a high degree of ambiguity in the

images. As a result, it is difficult to judge when the error of a particular tracker output is

“too large.” It is also difficult to accurately compare trackers using different subsets of the

cameras or with different numbers of particles in its particle filter. In the end, we settled

on a classification-based score. For this, train a classifier to distinguish among “rock,”

“paper,” and “scissors” using the labeled training set. We then evaluate that classifier

using the joint-angle data from the tracker output. The score is the percent accuracy of

these classification results compared against the hand labeled data. This metric is relatively

forgiving, as the forced-choice classifier will always return one of the three possible responses.

A non-functioning tracker will yield a score of 33%. However, it is highly improbable for a

tracker to obtain a high score without maintaining some degree of accuracy.

We used support vector machines (SVMs) as our classifiers, as implemented by LIBSVM

[30]. We performed no normalization of the pose data at all before feeding it into the

classifier, although we excluded poses that were labeled “transition.” We chose radial basis

functions (RBFs) as the kernel function for our SVM. This nonlinear kernel has the form

38

of K(x,y) = e−γ‖x−y‖
2

and we set γ = 0.0001 for our experiments. We set the penalty

parameter C of the SVM to 10, but that should be of minor importance since the final

classifier can perfectly separate the training data.

The SVM classifier is normally a binary classifier. However, there are several ways of

adapting it to handle multiple classes. The first is the “one-versus-one” method, which is

the default for LIBSVM. Under this scheme, we train three classifiers, one for “rock-versus-

scissors,” one for “rock-versus-paper,” and one for “paper-versus-scissors.” At evaluation,

we run the test data through all three classifiers. Each classifier casts a vote for a particular

pose. For example, if the “rock-versus-scissors” classifier returns scissors, the “rock-versus-

paper” returns rock, and the “paper-versus-scissors” return scissors, the overall result is

scissors. In the case of inconsistent results, the classifier returns the first choice, which is

“rock” in our case.

An alternative method of adapting the SVM to handle multiple classes is to use the

“one-versus-all” technique. Under this method, we also train three classifiers. However,

these classifiers are “rock-versus-not-rock,” “paper-versus-not-paper,” and “scissors-versus-

not-scissors.” At evaluation time, we run the test data through all three classifiers. In

theory, exactly one of the classifiers will return positive, indicating the final result. In the

case of ambiguity, we use the raw SVM score as a confidence measure, choosing the class

corresponding to the highest score.

We evaluated both of these alternatives, along with a version which uses only the local

components of the pose data. (It ignores the three global translations and the three global

rotation parameters of the palm.) These versions yield similar results, with the “one-versus-

one” version using the full pose information performing slightly better than the others. This

is the version that we will use for the rest of this work.

Looking at the training data, one can see that the classification task is very simple.

Figure 4.1 shows the data projected into 2D using the ISOMAP [31]. ISOMAP is a nonlinear

dimension reduction technique which tries to preserve the geodesic distance between points.

The large markers indicate the ground truth labeling. Note that all the points associated

with one pose are close to each other and distant from the other poses. While the distances

are distorted by the projection from the original high-dimensional space to 2D, the figure

suggests that the poses are easily separable. With our choice of a RBF kernel with a very

low value of γ, the SVM essentially becomes a nearest neighbor classifier. This is indicated

by the small dots, which illustrate the SVM classifier results. These show that the decision

boundary is roughly halfway between the clusters. As a result, we expect that almost all

classification schemes will yield similar results.

39

150 100 50 0 50 100 150 200

100

50

0

50

100
Rock
Paper
Scissor
Trans.

Figure 4.1: Overview of SVM classification. This figure shows the training data projected
into two dimensions using ISOMAP. The large markers indicate the manual labels used to
train the SVM. The smaller markers represent the remainder of the data, and they are
drawn according to the result of the SVM.

4.2 Visualizing Results

In the following discussions, we will be comparing tracker performance under varying condi-

tions. Since a particle filter is an inherently stochastic process, we need to conduct multiple

trials in order to obtain an accurate view of the performance. Unless otherwise specified, we

conduct 31 runs of each setting. To visualize the results, we use box plots [32]. Figure 4.2

gives an example. This plot shows several key statistics in a clear fashion. The red line

through the middle indicates the median of the data set. The top and bottom of the box

represent upper and lower quartiles, respectively. The plus symbols indicate outliers, which

are defined as points which lie more than 1.5 times the interquartile distance (IQR) away

from the median. The IQR is the difference between the upper quartile and the lower quar-

tile. On a normal distribution, the IQR represents about 5 standard deviations, and covers

the middle 98% of the data. The “whiskers” extend to cover the range of the data values,

excluding the outliers. These plots make it easy to see the median value and provide a good

visual indication of the variation of the results. When comparing across three variables, it

becomes too cumbersome to show box plots; in these cases, we provide tables of the median

and mean values.

40

 7.5
 6.74

median

mean

median
mean

1
0

2

4

6

8

10

25%

median
75%

mean

min (within 1.5 IQR)

max (within 1.5 IQR)

outlier

Figure 4.2: A sample box plot.

4.3 System Models

When we described Algorithm 3, we left out the exact mechanism we used for drawing new

candidate poses in line 9. In this section, we describe several variations for drawing from

p(xik|xik−1). For these tests, we use all five of our available cameras and completely accurate

hand models. We also process every frame, at times computing at significantly slower than

real-time speeds. The purpose of this section is to explore the consequences of the different

static and dynamic hand models, as well as to tune parameters for the trackers.

4.3.1 Simple Model

The simplest pose model is to use

p(xik|xik−1) = N (xik−1,Σ) (4.1)

where N (xik−1,Σ) is a multivariate normal distribution with mean xik−1 and a constant

covariance Σ. This corresponds to a “constant position model,” where the system equation

of (2.4) is simply

fk(xk−1,vk−1) = xk−1 + vk−1 (4.2)

and the “noise” term vk−1 is distributed according to the zero-mean N (0,Σ). This is also

how we implement line 9 of Algorithm 3—we simply draw from N (0,Σ) and add it to xik−1.

As for the parameter Σ, we use

Σ = σΣglobal (4.3)

where Σglobal is a diagonal covariance matrix that is approximately the variance exhibited by

41

0 1 2 3 4

Frame: 1695

Figure 4.3: Sample frame from a tracking result with the simple model with with repeat = 20
and σ = 0.1. Note that although the solver gets the shape generally correct, the ring and
pinkie fingers are in completely unnatural positions.

the joint-angles in our training set. The scale factor σ is a tunable parameter which defaults

to 0.1.

Even this crude model is capable of roughly keeping track of the palm. However, it has

a number of drawbacks. One is that it can wrap around; since we measure joint-angles

in degrees, a value of 720 is the same as a value of 0. This has a tendency to produce

results with very large values, and may pose problems when computing the weighted mean.

More significantly, however, this model often proposes completely unrealistic hand poses,

as illustrated in Figure 4.3. Note that the ring finger is bent downward to an unattainable

degree. Also note that the distal phalanx of the pinkie is folded backwards. Finally, because

the abduction DoF of the MCP joints are unconstrained, the palm is out of position relative

to the fingers.

Quantitative results are illustrated in Figure 4.4. In general, this tracker performs very

poorly, occasionally yielding results that are merely chance. Examining the tracks more

closely, we see that many of the mistakes were associated with the classifier returning 0

(rock). This is the classifier output in the case of inconsistent results from the one-versus-

one classifiers. However, changing to a one-versus-all classifier or renumbering the pose

names does not affect the overall outcome. It may be that “rock” is simply the closest

labeled pose in the data set to the strange poses that this tracker outputs.

Fixing the state size and examining the relationship between repeat and σ shows that

this tracker is relatively fragile. As Figure 4.5 shows, at low values of repeat, a high value

of σ is needed for the particles to drift fast enough to cover the change from one frame to

the next. At high values of repeat, however, a high σ allows the tracker to confuse itself by

drifting too much. As a result, it is difficult to tune this tracker to achieve good performance,

and the exact parameters necessary will likely vary from dataset to dataset.

42

 35.3 35.3 35.3
36.95 36.61 36.65

 34.5 34.9 35.3
34.88 35.00 35.46

 33.3 33.7 34.1
33.89 33.36 34.19

median
mean

repeat=10 repeat=20 repeat=40
30

35

40

45

50

55

60

C
la

ss
if
ie

r
A

cc
u
ra

cy
 (

%
)

state_size=256

state_size=512

state_size=1024

Figure 4.4: Results of tracking using the simple tracker. In these trials, σ = 0.1.

 36.1 36.9 35.3 32.5
38.42 38.57 36.61 32.30

 36.9 37.3 34.9 30.6
39.13 41.00 35.00 30.88

 37.3 35.7 33.7 30.6
39.65 39.30 33.36 30.59

median
mean

repeat=10 repeat=20 repeat=40
30

35

40

45

50

55

60

65

C
la

ss
if
ie

r
A

cc
u
ra

cy
 (

%
)

sigma=0.02

sigma=0.05

sigma=0.10

sigma=0.20

Figure 4.5: Results of tracking using the simple tracker. In these trials, state size = 512.

4.3.2 Constrained Pose

Since the unconstrained model can generate completely unrealistic poses, we add some hard

constraints to the joints. The system equation now becomes

fk(xk−1,vk−1) = K(xk−1 + vk−1) (4.4)

where K is a function which maps out-of-bounds joint angles to angles which are in bounds.

We apply the constraints on a per-joint basis.

K(x) =


K0(x0)

K1(x1)
...

K26(x26)

 (4.5)

43

 94.1 96.1 98.8
93.59 95.89 97.96

 97.6 97.6 98.8
97.03 97.24 97.99

 97.6 98.8 98.8
96.91 97.70 98.24

median
mean

repeat=10 repeat=20 repeat=40
82

84

86

88

90

92

94

96

98

100

C
la

ss
if
ie

r
A

cc
u
ra

cy
 (

%
)

state_size=256

state_size=512

state_size=1024

Figure 4.6: Results of tracking using the constrained tracker. In these trials, σ = 0.1.

where xj is the jth component of x.

The constraints themselves are listed in Table 4.1. These values are exactly 20 degrees

more lax than those found in Table 3.1. Since we ensured that the values in Table 3.1 were

within 10 degrees of the final solution in Section 4.3.2, the constraints in Table 4.1 are at

least 10 degrees more lax than any pose found in our manually labeled frames.

Ki(xi) =


li xi ≤ li

xi li < xi ≤ hi

hi hi < xi

. (4.6)

We apply the constraints in Table 4.1 on a per-particle basis. As a result it is unlikely for

the weighted mean of the particles to actually achieve any of the constraints.

Even without considering inter-joint dependencies, these simple constraints are sufficient

to significantly improve tracker performance, as shown in Figure 4.6. The classification

accuracy usually surpasses 95%, and some of the trials yield a perfect score. This figure shows

the general trend that increasing repeat is more productive than increasing state size.

However, beyond a certain point, increasing either will not improve the median score, and

no setting can consistently provide a perfect score on every trial.

4.3.3 Motion Model

A more sophisticated model involves taking into account the actual motions exhibited by

the training data.

fk(xk−1,vk−1) = K(xk−1 +m(xk−1,vk−1)) (4.7)

44

Table 4.1: Hard constraints for tracking.

j

Upper
bound
(uj)

Lower
bound

(lj)

0 70 0
1 85 0
2 115 -20
3 60 0
4 130 -40
5 140 -20
6 105 -45
7 60 -40
8 130 -40
9 140 -20

10 105 -45
11 60 -40
12 130 -40
13 140 -20
14 105 -45
15 60 -40
16 130 -40
17 140 -20
18 105 -45
19 60 -40
20 20 -45
21 180 -180
22 180 -180
23 180 -180
24 20 -10
25 5 -20
26 -40 -80

45

where m(x,v) is a motion model which takes into account the current position when sug-

gesting an update direction. We propose a simple motion model based on our training data.

Note that we continue to apply the per-joint constraints as in Section 4.3.2.

To create our model, we partition the training data into k regions using k-means cluster-

ing. This gives cluster centers {ci}ki=1. First, we partition the training data by the clustering.

f ∈ Fi iff arg min
j
‖pf − cj‖ = i. (4.8)

Then, we train (full) covariance matrices based on the clustering.

Σi = cov
{

(pf+1 − pf)
}
f∈Fi

. (4.9)

Note that these covariances are based on the differences between adjacent frames, not on

the poses themselves. This means that, even with k = 1, we are still using our training data

for motion information.

During tracking, we reverse the process used to generate the model.

m(x,v) =
√

Σ(argminj‖x−cj)v (4.10)

where
√
· is a matrix square root (we use the Cholesky decomposition) and v is distributed

according to N (0, 1). In words, we compute the distance from the current candidate particle

to each of the cluster centers. Then, we look up the corresponding Σi and alter v so that it

is distributed by N (0,Σi). In summary, we essentially have

fk(xk−1,vk−1) = K(xk−1 +m(xk−1,vk−1)) (4.11)

where vk−1 is distributed by Σ(argminj‖x−cj).

As shown in Table 4.2, this is a very powerful model, achieving better accuracy than the

constraints alone while expending an order of magnitude fewer particles. In particular, with

sufficiently many repeats, it is possible to reliably achieve a classification accuracy of 100%.

Note that as k increases above three, the performance decreases. This is probably due to

the fact that we only have 1680 training data points. Dividing that set into five or ten may

not leave enough points to accurately estimate a 27-dimensional covariance matrix.

The table also shows that the motion-model tracker performs well even with a very small

number of particles. For instance, running with state size = 128 and repeat = 1 at 30

frames per second and five cameras requires 19,200 comparisons per second. This is well

within the capabilities of a single NVIDIA GT200 GPU, and yields a respectable 93.9%

46

Table 4.2: Results of tracking using a motion-model tracker. The values represent the
median/mean accuracy of 31 trials with σ = 1.0.

k state size repeat = 1 repeat = 2 repeat = 5 repeat = 10

1 128 92.5/ 91.90 98.8/ 97.27 100.0/ 98.89 100.0/ 99.03
1 256 94.9/ 94.45 99.2/ 98.89 100.0/ 99.44 100.0/ 99.33
1 512 95.7/ 95.52 99.6/ 99.24 100.0/ 99.51 100.0/ 99.71
1 1024 96.5/ 96.56 99.6/ 99.52 100.0/ 99.84 100.0/100.00

3 128 93.3/ 92.89 98.8/ 97.71 100.0/ 99.37 100.0/ 99.17
3 256 94.5/ 94.54 99.2/ 98.46 100.0/ 99.11 100.0/ 99.47
3 512 96.1/ 96.07 99.6/ 99.66 100.0/ 99.89 100.0/ 99.91
3 1024 96.5/ 96.66 100.0/ 99.62 100.0/ 99.85 100.0/ 99.99

5 128 88.2/ 88.41 97.3/ 96.37 99.6/ 98.94 100.0/ 99.27
5 256 91.0/ 90.75 98.0/ 98.00 100.0/ 99.77 100.0/ 99.68
5 512 92.5/ 92.61 98.8/ 98.61 100.0/ 99.90 100.0/ 99.97
5 1024 94.1/ 93.74 98.8/ 98.92 100.0/ 99.97 100.0/ 99.85

10 128 84.3/ 84.30 95.7/ 95.23 99.6/ 98.48 100.0/ 99.80
10 256 88.6/ 88.72 97.3/ 96.86 100.0/ 99.39 100.0/ 99.86
10 512 90.2/ 89.61 98.0/ 97.91 100.0/ 99.92 100.0/ 99.66
10 1024 92.5/ 92.25 98.8/ 98.62 100.0/ 99.95 100.0/ 99.99

median accuracy when k = 3. Using ten times more processing power (state size = 256

and repeat = 5), it is possible to almost assure 100% tracking accuracy. By comparison,

the constrained tracker with (state size = 512 and repeat = 20) consumes eight times

the number of particles and yields only 97.6% accuracy.

4.4 Reduced Framerate

There is a certain amount of overhead in reading the frames from the camera. There might

be limited bandwidth on the inputs of the host machine, especially when there are a large

number of cameras. There is also some amount of processing overhead and CPU–GPU

communication needed for every frame. Also, reducing the framerate allows us to increase

the exposure time of the camera. This may improve the image quality at the expense of

possible motion blur.

We simulate a reduced camera framerate by processing only one in every five frames. At

this speed, there can be very large displacement between subsequent frames, and the problem

looks more like a detection problem as the knowledge of the pose at the previous frame

becomes less informative. In an attempt to compensate for the increase in pose differences

47

 66.3 80.8 78.8 71.4

65.81 79.90 78.08 71.57

 78.8 87.1 80.8 74.1

76.85 87.24 80.39 75.29

 87.8 89.8 83.5 75.7

87.64 89.51 83.34 75.15

 90.6 91.4 81.6 76.9

89.30 90.68 82.75 76.90

 89.4 88.2 83.5 77.6

89.16 87.93 82.44 77.33

median
mean

repeat=10 repeat=20 repeat=40 repeat=50 repeat=100
50

60

70

80

90

100

C
la

ss
if
ie

r
A

cc
u
ra

cy
 (

%
)

sigma=0.10

sigma=0.20

sigma=0.30

sigma=0.40

Figure 4.7: Results of reduced framerate tracking using the constrained tracker. In these
trials, we process only every 5 frames, and state size = 512.

between frames, we experiment with different values of σ. The results are summarized in

Figure 4.7.

Comparing Figure 4.7 with Figure 4.6 shows a significant drop in performance at the

reduced framerate. For example, processing one in every five frames with repeat = 50

consumes as many comparisons as processing every frame with repeat = 10. However,

the former is 5% less accurate than the latter. Furthermore, the highest score achieved at

the reduce framerate, with repeat = 100, is 92.7%. This is between the performance of

repeat = 5 and repeat = 10 at the full framerate. This implies that running at the full

framerate can reduce the number of comparisons needed by a factor of two to four. Finally,

note that Figure 4.7 demonstrates the optimal σ varies with repeat. As with the simple

model, this suggests that we are beyond the boundary of reliable tracking.

With a motion model, however, the problem becomes much more tractable. Figure 4.8

shows the results of tracking using a motion model with k = 3. Note that, while the σ

variable serves the same purpose as in the constrained tracker, the version used for the

motion-model tracker uses a different scale. For the motion-model tracker, σ = 1.0 is the

default σ, and that value represents the standard deviation of the training data without any

additional scaling. In theory, since we are reducing the number of frames by five, we should

use σ = 5.0 to compensate. However, that yields very poor performance. This is probably

due to the fact that the actual motion of the video consists of short bursts of activity. As a

result, the maximum change in pose over five frames is not five times the change found over

one frame.

Compared to Table 4.2, the results for the reduced framerate tracking are similar. At the

reduced framerate, repeat = 5 is equivalent to repeat = 1 at the full framerate. Under these

circumstances, it is possible to tweak σ so that the reduced framerate tracker outperforms

48

 96.9 97.6 99.2 98.0 85.9
96.76 96.71 98.46 97.87 85.93

100.0 100.0 99.6 97.6 84.7
99.04 99.42 98.91 97.32 85.29

100.0 100.0 99.2 97.6 86.7
99.03 98.63 98.91 97.08 86.22

median
mean

repeat=5 repeat=10 repeat=20
70

75

80

85

90

95

100

C
la

ss
if
ie

r
A

cc
u
ra

cy
 (

%
)

sigma=1.00

sigma=1.10

sigma=1.50

sigma=2.00

sigma=5.00

Figure 4.8: Results of reduced framerate tracking using the motion-model tracker (k = 3).
In these trials, we process only every 5 frames, and state size = 512.

the regular tracker. Similarly, reduced framerate repeat = 10 outperforms regular framerate

repeat = 2. In these cases, it seems that the pattern of higher repeat trumping state size

holds. However, the reduced framerate tracker never quite reaches the accuracy level of the

full framerate tracker. (The median of reduced framerate trials reaches 100%, but the mean

never breaks 99.9%.)

4.5 Camera Subsets

To ensure that we had enough information to perform tracking, we used five cameras spaced

around the hand. However, this is a large number of cameras to set up and maintain, making

the system relatively impractical for real-world deployment. Also, each camera comes with

additional computation burden. In this section, we examine how many and which cameras

we need to obtain good performance. We conduct trials with every possible subset of one,

two, and four cameras. The results are summarized in Table 4.3.

The second column for each tracker deserves some explanation. In order to convert the

chamfer distance into a probability distribution, we use the formula

p(p) ∝ e−γ[
∑

c∈C dcfr(rc(p),cc)]. (4.12)

That is, we sum the chamfer distance from each camera and scale that sum by γ before

taking the exponent. The default γ is 0.5, which was a value tuned by experimentation. If

we reduce the number of cameras, however, we should increase γ in order to keep the values

49

Table 4.3: Results of tracking using a subset of the cameras. The values represent the
median/mean accuracy of 31 trials with state size = 512.

camera set
(C)

constrained
(repeat = 20, σ = 0.1)

motion-model
(k = 3, repeat = 2, σ = 1.0)

γ = 0.5 γ = 2.5
|C| γ = 0.5 γ = 2.5

|C|

{0} 42.7/ 43.02 41.6/ 42.15 83.1/ 82.67 73.3/ 74.83
{1} 60.0/ 60.90 44.3/ 45.49 91.4/ 91.45 83.9/ 83.49
{2} 65.1/ 62.83 46.7/ 46.88 82.0/ 82.44 74.9/ 74.09
{3} 52.5/ 53.00 50.2/ 49.55 83.9/ 81.97 71.8/ 70.37
{4} 54.1/ 53.75 51.0/ 51.87 96.9/ 94.40 87.1/ 85.01

{0,1} 71.4/ 70.49 65.1/ 65.36 96.9/ 95.75 96.5/ 95.37
{0,2} 67.8/ 68.30 63.9/ 65.53 98.0/ 97.56 95.7/ 94.24
{0,3} 64.7/ 65.43 63.9/ 64.53 98.4/ 96.82 95.7/ 94.24
{0,4} 77.3/ 76.53 69.0/ 69.59 99.2/ 98.63 99.6/ 98.46
{1,2} 80.0/ 78.20 72.9/ 72.81 90.6/ 89.85 91.8/ 90.28
{1,3} 82.7/ 82.90 80.0/ 80.24 98.0/ 96.89 97.6/ 96.14
{1,4} 66.7/ 67.92 63.1/ 62.61 97.6/ 97.18 98.0/ 97.41
{2,3} 75.3/ 76.14 78.8/ 79.42 97.3/ 96.31 97.6/ 96.08
{2,4} 66.3/ 67.46 66.7/ 67.89 99.6/ 98.48 98.8/ 96.74
{3,4} 63.9/ 61.39 62.0/ 62.29 88.6/ 87.91 87.5/ 87.27

{0,1,2} 75.7/ 75.27 74.1/ 74.14 98.0/ 97.82 98.8/ 98.12
{0,1,3} 92.5/ 92.07 93.3/ 92.09 99.6/ 98.86 99.6/ 98.58
{0,1,4} 86.3/ 85.52 82.7/ 82.86 98.8/ 98.75 98.8/ 98.86
{0,2,3} 77.6/ 78.10 76.9/ 78.10 99.6/ 98.79 99.6/ 98.49
{0,2,4} 92.9/ 92.95 95.7/ 93.98 99.6/ 99.17 99.6/ 99.54
{0,3,4} 83.9/ 82.34 77.3/ 76.58 100.0/ 99.44 99.6/ 98.60
{1,2,3} 88.6/ 87.45 88.6/ 88.84 98.8/ 98.10 99.2/ 98.39
{1,2,4} 72.2/ 72.38 71.8/ 71.80 98.4/ 97.82 98.0/ 97.46
{1,3,4} 79.2/ 78.06 76.1/ 75.71 99.2/ 98.49 98.8/ 97.08
{2,3,4} 79.2/ 75.86 80.0/ 76.91 99.2/ 97.84 99.2/ 97.51

{0,1,2,3} 92.9/ 92.46 92.2/ 91.59 100.0/ 99.62 99.6/ 99.43
{0,1,2,4} 96.9/ 95.93 97.6/ 96.38 99.2/ 99.06 99.2/ 98.92
{0,1,3,4} 96.1/ 95.53 94.9/ 95.02 99.6/ 99.30 99.6/ 99.65
{0,2,3,4} 94.5/ 94.70 95.7/ 93.56 100.0/ 99.63 100.0/ 99.54
{1,2,3,4} 85.9/ 85.50 81.6/ 82.47 99.2/ 98.71 99.2/ 98.43

{0,1,2,3,4} 97.6/ 97.24 97.6/ 97.24 99.6/ 99.66 99.6/ 99.66

50

in the same range. Thus, we use a γ of

γ =
2.5

|C|
(4.13)

where |C| is the number of cameras in the subset.

Adjusting γ in this way does not appear to improve performance. In general, the trackers

are relatively robust to changes in γ. At very high values of γ, however, minor variations in

the chamfer distance lead to very large shifts in probability, and the tracker loses its ability

to maintain multiple hypotheses.

4.6 Suboptimal Hand Shape

Throughout the previous discussion, we have been using the highly tuned hand shape that

we calibrated in Section 3.4. However, in practice, it would be impractical to calibrate the

hand shape to this degree. Thus, in this section, we examine the effect of miscalibrations on

tracker performance.

It might be easier to estimate overall hand length than to compute the lengths of individ-

ual phalanxes. Thus, we consider adjusting the proportion of the phalanx lengths to match

those given by Buchholz et al. [6]. (See Table 1.1 in Section 1.1.) Next, we investigate the

effects of misestimating the hand size by making the hand 10% smaller and larger. We also

consider the effects of misestimating the joint angles by forcing all of the joint axes to be

perfectly horizontal. Finally, we consider a hand model that lacks the palm-folding joint.

Figure 4.9 shows the effect of the suboptimal shapes under different camera subsets.

These cameras represent the best median accuracy of Table 4.3. We also repeat the perfor-

mance result of the calibrated hand model as a comparison.

Note that increasing the hand size is particularly disastrous for recognition. By contrast,

using a model that is smaller than the real hand does not affect performance as much. The

next most significant drop in performance comes from using simplified joint axes. This causes

around 7% drop in classifier accuracy, although it seems to increase performance in the single

camera case. In general, changing the relative proportion of the phalanx lengths does not

appear to affect tracker performance, particularly because all of our gestures have the fingers

either fully extended or fully flexed. Although the “hand fold” joint was necessary to achieve

a good fit with the manually labeled point data in Section 3.4, it does not seem to actually

be necessary for tracking. In fact, eliminating the hand fold dimension seems to actually

improve performance, probably because of the reduced search space.

The picture is somewhat different if we use the motion model. Figure 4.10 shows the

51

 63.1 68.2 59.6 76.9 51.4 60.0

60.67 66.57 58.63 76.36 52.79 60.90

 82.4 84.7 55.3 72.9 83.9 82.7

81.14 84.15 55.67 72.75 84.06 82.90

 95.3 97.3 47.5 89.0 98.0 96.1

94.36 96.53 47.44 88.29 97.71 95.53

 97.6 95.3 60.8 89.0 98.4 97.6

97.63 94.35 61.77 88.01 98.18 97.24

median
mean

camera={1} camera={1,3} camera={0,1,3,4} camera={0,1,2,3,4}
30

40

50

60

70

80

90

100

C
la

ss
if
ie

r
A

cc
u
ra

cy
 (

%
)

shape=buchholz

shape=10% smaller

shape=10% larger

shape=simple joint

shape=no fold

shape=good

Figure 4.9: Results of tracking using the constrained tracker with different shape models. In
these trials, state size = 512, repeat = 20, and σ = 0.1.

 96.9 96.1 97.3 94.9 96.1 96.9

95.36 94.89 94.98 90.50 94.40 94.40

 98.8 98.0 95.3 99.2 99.6 99.2

97.72 96.32 94.72 97.91 99.19 98.63

 99.6 99.2 97.6 100.0 99.6 100.0

98.73 97.58 96.71 99.30 99.51 99.62

 99.6 100.0 97.6 99.6 99.6 99.6

98.79 99.52 97.79 98.20 99.47 99.66

median
mean

camera={4} camera={0,4} camera={0,1,2,3} camera={0,1,2,3,4}
65

70

75

80

85

90

95

100

C
la

ss
if
ie

r
A

cc
u
ra

cy
 (

%
)

shape=buchholz

shape=10% smaller

shape=10% larger

shape=simple joint

shape=no fold

shape=good

Figure 4.10: Results of tracking using the motion-model tracker (k = 3) with different shape
models. In these trials, state size = 512, repeat = 2, and σ = 1.0.

results. Increasing the hand size no longer differs as much as decreasing the hand size. Also,

removing the fold joint seems to have a more deleterious effect. Changing the proportions of

the phalanxes seems to have more of an impact, especially with a large number of cameras.

In both cases, the effect of suboptimal shapes increases as the number of cameras de-

creases. This is especially apparent in the two-camera case with the motion-model tracker.

Fortunately, as shown in Figure 4.11, increasing the repeat can bring the performance back

up to levels similar to adding cameras. However, as shown in Figure 4.12, even with all five

cameras, incorrect hand shapes can still degrade performance. In particular, note that in-

stead of saturating to 100% accuracy as repeat increases, the performance degrades beyond

a certain point.

52

 98.8 98.0 95.3 99.2 99.6 99.2

97.72 96.32 94.72 97.91 99.19 98.63

 98.8 94.5 96.5 96.1 100.0 98.8

98.20 93.73 95.48 94.61 99.62 97.74

 96.5 86.3 91.4 96.5 100.0 98.0

94.99 85.71 90.21 93.27 98.90 96.41
median

mean

repeat=2 repeat=5 repeat=10
70

75

80

85

90

95

100

C
la

ss
if
ie

r
A

cc
u
ra

cy
 (

%
)

shape=buchholz

shape=10% smaller

shape=10% larger

shape=simple joint

shape=no fold

shape=good

Figure 4.11: Results of tracking using the motion-model tracker (k = 3) with different shape
models. In these trials, C = {0, 4}, state size = 512, and σ = 1.0.

 99.6 100.0 97.6 99.6 99.6 99.6

98.79 99.52 97.79 98.20 99.47 99.66

100.0 100.0 99.6 100.0 100.0 100.0

99.72 99.18 99.39 97.99 99.85 99.89

100.0 100.0 98.4 98.4 100.0 100.0

98.99 99.00 97.25 97.03 99.90 99.91
median

mean

repeat=2 repeat=5 repeat=10
75

80

85

90

95

100

C
la

ss
if
ie

r
A

cc
u
ra

cy
 (

%
)

shape=buchholz

shape=10% smaller

shape=10% larger

shape=simple joint

shape=no fold

shape=good

Figure 4.12: Results of tracking using the motion-model tracker (k = 3) with different shape
models. In these trials, C = {0, 1, 2, 3, 4}, state size = 512, and σ = 1.0.

4.7 Conclusion

As we demonstrated in Section 4.3.3, when we have optimal conditions (restricted set of

motions, all five cameras, and a highly tuned hand shape) we can achieve almost perfect

tracking using 192,000 comparisons per second. This is approximately the peak throughput

of six NVIDIA GT200 chips. Without constraints on the motions, we will need four to eight

times more computation capacity to achieve similar (but inferior) results. We can reduce

the number of cameras to four without compromising quality. However, further reductions

increase errors. Finally, almost every deviation from the optimal hand shape introduces

more errors. The exception is in the hand fold joint, which does not seem to actually benefit

tracking. In all cases, we want to make sure that we can run the camera at the highest

framerate possible. This means that a perfect tracker will require an unreasonable level of

calibration. It will also consume more computation power than is commonly available on a

53

2009-level workstation.

In the end, however, the system parameters depend highly on the application. If only

90% accuracy is required, it may be feasible to field a two-camera system running with a

motion model with state size = 512 and repeat = 2. As shown in Figure 4.10, this system

remains within tolerances even when given somewhat inaccurate hand shape information. It

also only consumes 61,440 comparisons per second, which is within the peak performance

of two GT200 cards. Given that dual-card setups are available for gaming machines, this is

within reach of a commercially available, if somewhat exotic, desktop system. Also, Moore’s

law marches on, and new processors will become available with even more capacity. Given

the scalable nature of our tracking algorithm, it should be possible to achieve real-time

tracking of highly complex articulated objects in the near future.

54

Chapter 5

Tracking Experiments

While the experiments in Chapter 4 highlight how various parameters affect performance,

they do not explain how well the tracker works in general. To highlight this aspect, we

recorded two additional test sequences:

• The “easy” sequence (Figure 5.1) is a relatively simple sequence with the hand rotating

in place while fingers are extended and flexed. The fingers remain extended throughout

a large portion of the sequence. This sequence contains 1680 frames (numbered 120–

1799 inclusive).

• The “pen” sequence (Figure 5.2) is a more challenging sequence of the hand twirling

a pen. The pen causes partial occlusion of the hand, and it can force joints beyond

their normal bounds. Also, because the hand is similar to the background, there are

often segmentation errors. This sequence contains 1680 frames (numbered 120–1799

inclusive).

For each sequence, we solve for the camera calibration, but we keep the hand shape

parameters that we solved in Section 3.4. The new sequences are of the same hand, and

although these sequences were acquired over six months later, we presume that the hand

shape has not changed significantly. We begin tracking with manual initialization at frame

120, and run the tracker until frame 1799.

5.1 Evaluation Metric

In order to understand how well the tracker performs, we need an evaluation metric. This

should be a technique-independent method, and this precludes the use of the chamfer distance

used by the tracker (Section 2.2). We consider three potential candidates:

55

120

300

540

600

960

1080

1560

1740

Figure 5.1: Sample frames from the “easy” sequence, along with ground truth labels.

56

120

120

180

180

780

780

1740

1740

Figure 5.2: Sample frames from the “pen” sequence, along with ground truth labels. Note
that because of occlusion and lighting, some of the hand segmentation is wrong.

57

• The root mean squared (RMS) error in joint space. Under this system, we describe

ground truth of the hand with the 27-dimensional vector as given in Section 2.1.1.

Since this is the native output of the tracker, it is trivial to compute the RMS error.

There may be a minor issue because the global position portion of the pose is measured

in distance units where every other dimension is measured in angle.

• The RMS distance of the keypoints. We label the positions of certain keypoints (de-

scribed in Section 3.2) in 3D as ground truth. (Note that this labeling does not neces-

sarily respect the hand shape.) We then compute the position of the key points based

on the pose output of the tracker. Then, we compute RMS of the distances between

the corresponding points. This should be roughly equivalent to computing the mean

or some method of averaging of the distances.

• The maximum distance of the keypoints. This measure is similar to the previous

one, except that we take the maximum of the distances instead of the mean. This

emphasizes the worst mismatch, and is reminiscent of the Hausdorff distance.

Figure 5.3 shows the result of choosing the RMS error in joint-angle space. Note that the

state depicted in Figure 5.3b has a lower error than that in Figure 5.3a even though there is

a significant mismatch of the ring and index fingers in the second example. One issue with

RMS error in joint-angle space is that it weights all of the joints equally, even though those

at the base of the kinematic chain are going to have a larger effect on the overall appearance.

There is also a possibility of ambiguities in the representation, which results in two solutions

that look very similar varying significantly in joint-angle space. Overall, although a very low

joint-angle error implies a good match with the ground truth, medium and sometimes even

high joint-angle errors do not signal a significant mismatch.

Unlike the joint-angle based metric, the two 3D-point based metrics generally correlate

well. The results in this chapter would probably be similar regardless of which one was

used. Figure 5.4 illustrates the rather subtle difference between the two measures. Again,

Figure 5.4a has a higher RMS error than Figure 5.4b even though the latter has a more

significant ring finger error. It appears that taking the 2-norm can average out errors while

taking the maximum emphasizes the grossest mismatch. As a result, we adopt the maximum

distance of 3D keypoints as our per-frame error metric.

Once we have settled on a metric for a single frame, we need some way of collating

the data across an entire sequence. One possibility is to continue the use of the maximum

operator and report the highest error across the frames. The problem with this technique

is that it emphasizes the importance of the most difficult frame at the expense of reporting

on the other frames in the sequence. Computing the mean or some other average across the

58

0 1 2 3 4
joint_angle_rms:

 65.8128

3d_rms:
 0.4899

3d_max:
 0.8334

(a)

0 1 2 3 4
joint_angle_rms:

 59.3207

3d_rms:
 1.0148

3d_max:
 3.1823

(b)

Figure 5.3: Comparison of joint-angle based error metric against 3D-point based error met-
rics. (a) An example with high joint-angle error. (b) An example with a low joint-angle
error.

frames is another possibility. However, the exact meaning of such a measure is difficult to

understand. Since the overall goal of the tracker is to service a higher layer, we settled on

reporting the percentage of frames where the tracker error was below a certain threshold. A

threshold value of 2.5 was chosen based on inspection. It allows the tracker to report 100%

success on some runs of the “easy” sequence.

5.2 Results

To obtain the results, we manually label the ground truth of every 60 frames. We then

conduct 31 runs of tracking at various settings. As Figure 5.5 shows, the tracker is easily

able to handle the “easy” sequence. Even at lower values of repeat, a proper tuning of σ

grants a fairly reliable result. However, even at high values of repeat, it is not possible to

always obtain good tracking, although the number of outliers appears to drop. These results

serve as a reasonable baseline of what a finger tracking system should achieve.

Unfortunately, the results for the “pen” sequence are not as rosy. Regardless of the

settings, the tracker performs with only middling accuracy. In some frames, the pen breaks

the fingers in two, causing tracking degradation. For example, one of the least reliably

tracked frames was frame 180. As shown in Figure 5.6, the fingers are broken into two pieces

in the first and last camera view. It appears that a motion model or some way of explicitly

modeling the pen will be necessary to overcome these challenges.

59

0 1 2 3 4
joint_angle_rms:

 45.6749

3d_rms:
 1.3465

3d_max:
 2.2983

(a)

0 1 2 3 4
joint_angle_rms:

 67.4605

3d_rms:
 0.9847

3d_max:
 2.3954

(b)

Figure 5.4: Comparison of joint-angle based error metric against 3D-point based error met-
rics. (a) An example with high RMS error. (b) An example with a low RMS error.

 79.5 94.6 99.2 97.7 92.4

76.24 93.55 98.25 96.68 90.70

 90.1 99.7 99.5 98.7 92.4

89.02 98.88 98.37 97.49 92.13

 96.8 99.8 99.5 98.2 93.5

96.47 99.49 99.56 97.03 92.73

 99.5 99.8 99.5 98.5 93.7

99.40 99.79 99.42 97.54 93.55

median
mean

repeat=5 repeat=10 repeat=20 repeat=40
60

65

70

75

80

85

90

95

100

T
ra

ck
e
r

A
cc

u
ra

cy
 (

%
)

sigma=0.02

sigma=0.05

sigma=0.10

sigma=0.20

sigma=0.30

Figure 5.5: Results of tracking the “easy” sequence. In these trials, C = {0, 1, 2, 3, 4}, and
state size = 512.

5.3 Conclusion

In this chapter, we demonstrate that the system is capable of performing general purpose

tracking under some circumstances. It still requires more computation power than is gen-

erally available for a real-time application. Also, the results are highly sensitive to the

silhouette information. Instances where the fingers are flexed yield very little information

in the silhouette, leading to poor tracking. Occlusions also present great difficulties for the

tracker. Based on the conclusions from Chapter 4, we would need an enhanced motion model

to overcome these challenges. In summary, this work represents a significant step in under-

60

 73.4 75.5 76.6 77.1 73.5

73.16 76.04 76.40 75.18 70.45

 74.5 76.6 76.8 78.9 76.1

74.57 76.22 73.18 76.79 71.60

 78.2 75.5 74.5 79.7 76.1

77.69 75.32 73.21 77.01 72.51

 75.0 66.2 74.5 76.9 74.8

75.17 68.48 73.39 75.85 72.79

median
mean

repeat=5 repeat=10 repeat=20 repeat=40
50

55

60

65

70

75

80

85

90

T
ra

ck
e
r

A
cc

u
ra

cy
 (

%
)

sigma=0.02

sigma=0.05

sigma=0.10

sigma=0.20

sigma=0.30

Figure 5.6: Results of tracking the “pen” sequence. In these trials, C = {0, 1, 2, 3, 4}, and
state size = 512.

standing how to track the human hand, but it is one of many needed for a fully automatic

and robust system.

61

References

[1] D. C. Riordan, MD, “A walk through the anatomy of the hand and forearm,” Journal

of Hand Therapy, vol. 8, no. 2, pp. 68–78, Apr.–Jun. 1995.

[2] J. M. F. Landsmeer, “Studies in the anatomy of articulation,” Acta Morphologica

Neerlando-Scandinavica, vol. 3, pp. 287–303, 1961.

[3] K. N. An, E. Y. Chao, W. P. Cooney, III, and R. L. Linscheid, “Normative model of

human hand for biomechanical analysis,” Journal of Biomechanics, vol. 12, no. 10, pp.

775–788, 1979.

[4] E. Y. Chao, J. D. Opgrande, and F. E. Axmear, “Three-dimensional force analysis

of finger joints in selected isometric hand functions,” Journal of Biomechanics, vol. 9,

no. 6, pp. 387–396, 1976.

[5] N. Brook, J. Mizrahi, M. Shoham, and J. Dayan, “A biomechanical model of index

finger dynamics,” Medical Engineering and Physics, vol. 17, no. 1, pp. 54–63, Jan. 1995.

[6] B. Buchholz, T. J. Armstrong, and S. A. Goldstein, “Anthropometric data for describing

the kinematics of the human hand,” Ergonomics, vol. 35, no. 3, pp. 261–273, Mar. 1992.

[7] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly, “Vision-based hand

pose estimation: A review,” Computer Vision and Image Understanding, vol. 108, no.

1-2, pp. 52–73, 2007.

[8] C. Tomasi, S. Petrov, and A. Sastry, “3d tracking = classification + interpolation,” in

Ninth IEEE International Conference on Computer Vision, Nice, France, Oct. 13–16,

2003, pp. 1441–1448.

[9] H. Zhou, D. Lin, and T. Huang, “Static hand gesture recognition based on local orien-

tation histogram feature distribution model,” in IEEE Conference on Computer Vision

and Pattern Recognition Workshop, 2004, p. 161.

62

[10] P. Dreuw, C. Neidle, V. Athitsos, S. Sclaroff, and H. Ney, “Benchmark databases

for video-based automatic sign language recognition,” in Proceedings of the

Sixth International Conference on Language Resources and Evaluation, Marrakech,

Morroco, May 2008. [Online]. Available: http://www.lrec-conf.org/proceedings/

lrec2008/summaries/287.html

[11] R. Rosales, V. Athitsos, L. Sigal, and S. Sclaroff, “3d hand pose reconstruction using

specialized mappings,” in Eighth IEEE International Conference on Computer Vision,

2001, pp. 378–385.

[12] V. Athitsos and S. Sclaroff, “Estimating 3d hand pose from a cluttered image,” in

IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, June 2003, pp.

432–439.

[13] M. Potamias and V. Athitsos, “Nearest neighbor search methods for handshape recog-

nition,” in Proceedings of the 1st International Conference on PErvasive Technologies

Related to Assistive Environments, 2008, pp. 1–8.

[14] B. Stenger, A. Thayananthan, P. Torr, and R. Cipolla, “Model-based hand tracking

using a hierarchical Bayesian filter,” in IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2006, pp. 1372–1384.

[15] M. Isard and A. Blake, “Condensation—Conditional density propagation for visual

tracking,” International Journal of Computer Vision, vol. 29, no. 1, pp. 5–28, 1998.

[16] T. Heap and D. Hogg, “Towards 3d hand tracking using a deformable model,” in Second

IEEE International Conference on Automatic Face and Gesture Recognition, Killington,

VT, Oct. 14–16, 1996, pp. 140–145.

[17] J. M. Rehg and T. Kanade, “Visual tracking of high DOF articulated structures: An ap-

plication to human hand tracking,” in Third European Conference on Computer Vision,

vol. 801/1994, 1994, pp. 35–46.

[18] J. M. Rehg, “Visual analysis of high DOF articulated objects with application to hand

tracking,” Ph.D. dissertation, Carnegie Mellon University, Pittsburg, PA, 1995.

[19] E. Ueda, Y. Matsumoto, M. Imai, and T. Ogasawara, “Hand pose estimation

using multi-viewpoint silhouette images,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, vol. 4, 2001, pp. 1989–1996. [Online]. Available:

http://robotics.aist-nara.ac.jp/∼etsuko-u/iros2001.pdf

63

http://www.lrec-conf.org/proceedings/lrec2008/summaries/287.html
http://www.lrec-conf.org/proceedings/lrec2008/summaries/287.html
http://robotics.aist-nara.ac.jp/~etsuko-u/iros2001.pdf

[20] E. Sudderth, M. Mandel, W. Freeman, and A. Willsky, “Visual hand tracking using non-

parametric belief propagation,” in IEEE Conference on Computer Vision and Pattern

Recognition Workshop, Jun. 2004, p. 189.

[21] M. de La Gorce, N. Paragios, and D. J. Fleet, “Model-based hand tracking with texture,

shading and self-occlusions,” in IEEE Conference on Computer Vision and Pattern

Recognition, Jun. 23–28, 2008, pp. 1–8.

[22] D. Abrahams and R. W. Grosse-Kunstleve, “Building hybrid systems with

Boost.Python,” C/C++ Users Journal, vol. 21, no. 7, pp. 29–36, July 2003. [Online].

Available: http://www.osti.gov/energycitations/product.biblio.jsp?osti id=815409

[23] T. E. Oliphant, “Python for scientific computing,” Computing in Science & Engineering,

vol. 9, no. 3, pp. 10–20, May/Jun. 2007.

[24] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & En-

gineering, vol. 9, no. 3, pp. 90–95, May/Jun. 2007.

[25] W.-Y. Chang, C.-S. Chen, and Y.-D. Jian, “Visual tracking in high-dimensional state

space by appearance-guided particle filtering,” IEEE Transactions on Image Processing,

vol. 17, no. 7, pp. 1154–1167, 2008.

[26] M. B. Wakin, D. L. Donoho, H. Choi, and R. G. Baraniuk, “The multiscale structure of

non-differentiable image manifolds,” in Proceedings of SPIE Wavelets XI, M. Papadakis,

A. F. Laine, and M. A. Unser, Eds., vol. 5914, 2005, p. 59141B.

[27] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, “Parametric correspon-

dence and chamfer matching: Two new techniques for image matching,” in Proc. 5th

Int. Joint Conf. Artificial Intelligence, 1977, pp. 659–663.

[28] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver, “Fast computation

of generalized voronoi diagrams using graphics hardware,” in Proceedings of the 26th

Annual Conference on Computer Graphics and Interactive Techniques, 1999, pp. 277–

286.

[29] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters

for on-line non-linear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal

Processing, vol. 50, no. 2, pp. 174–188, Feb. 2002.

[30] C.-C. Chang and C.-J. Lin. (2009, Nov.). LIBSVM: A library for support vector

machines. [Online]. Available: http://www.csie.ntu.edu.tw/∼cjlin/libsvm

64

http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=815409
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[31] M. Balasubramanian, E. L. Schwartz, J. B. Tenenbaum, V. de Silva, and J. C. Langford,

“The isomap algorithm and topological stability,” Science, vol. 295, no. 5552, p. 7a,

2002.

[32] J. W. Tukey, Exploratory Data Analysis. Reading, MA: Addison-Wesley, 1977.

65

	Introduction
	Hand Anatomy
	Related Works

	Hand Tracker
	Hand Model
	Distance Function
	OpenGL Renderer
	Software Renderer
	Solver

	Data
	Data Collection
	Keypoints
	Camera Calibration
	Hand Shape Calibration
	Ground Truth Pose Data
	Test Data

	Classifier Experiments
	Evaluation Metric
	Visualizing Results
	System Models
	Reduced Framerate
	Camera Subsets
	Suboptimal Hand Shape
	Conclusion

	Tracking Experiments
	Evaluation Metric
	Results
	Conclusion

	References

