
141

Structural Eng./Earthquake Eng, Vol.S. No.1, 119s-127s. April 1988
Japan Society 0/ Civil Engineers (Proc. of JSCE No,392/1-9)

AN ANALYSIS OF ELASTO-PLASTIC BENDING

OF RECTANGULAR PLATE

By Hi"os"i MATSUDA* and Takes"i SAKIYAMA**

'In this paper, a discrete method for analyzing the problem of elasto-plastic bending of a

rectangular plate is proposed. The solutions for partial differential equation of rectangular

plate are obtained in discrete forms by applying numerical integnltion.

An incremental variable elasticity procedure has been used for the clasta-plastic analysis

of the rectangular plate. As the applications of the proposed method, clasta-plastic

bending of rectangular plate with four types of boundary conditions are calculated.

Keywords: rectangular plate, elas/o-plaslic bending, a discrete me/hod

1. INTRODUCTION

The elasto-plastic bending problems of the rectangular plates have been analyzed by many researchers,

The upper- and lower-hounds ultimate capacities of the plate structures of perfectly plastic material can

be determined with the theorems of limit analysis1l.2l,

The elasto-plastic behavior beyond the first yielding of the rectangular plate is analyzed by the direct

numerical methods such as the finite difference methods3J - 5l , the discrete element methodsGl , the finite

element methods7l - 9J , etc. 10). III •

In this paper, a discrete method for analyzing the elasto-plastic bending problems of the rectangular

plate is proposed. The discrete solutions of partial differential equations governing the elasto-plastic

bending behavior of the rectangular plate are obtained in discr~te forms, by transforming the differential

equations into integral equations and applying numerical integrations, and they give the transverse shear

forces, twisting moments, bending moments, rotations and deflections at all discrete points which are

intersection of the vertical and horizontal equally dividing lines on the plate:

For the elasto-plastic analysis of the rectangular plate, an incremental variable elasticity procedure has

been used. It is assumed that the Prandtl-Reuss' law, and the von Mises yield criterion are valid in this

paper. In order to consider the extent of the yielded portions in the directions of the cross sections, the

cross section of the plate is divided into many layers. As the application of the proposed method, numerical

solutions for square plates with foul' types of boundary conditions: four simply supported edges, four

clamped edges, two opposite edges simply supported and the other two edges clamped, and two opposite

edges simply supported and the other two edges free, are presented. All four problems involve square
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x~a

Rectangular Plate and Coordinate

System.
Fig. 1

We consider a rectangular plate which is l'eferred to as an

x-y-Z system of rectangular coordinates, and determine the

position of the origin 0 of the x~y-z system at the corner of the

middle plane of the plate as shown in Fig.1. The surface of the plate are at z= ±h/Z, where h is the

thickness of the plate. The transverse deflection and the rotations of the middle plane are denoted by wand

Bx, By. If D is the flexural rigidity of the plate and E the modulus of elasticity, G the shear modulus of

elasticity, v the Poisson's l"atio, x the shear coefficient, Qyand Qx the transverse shear forces, Mxy the

twisting moment, My and Mx the bending moments, then the fundamental differential equations governing

the elasto-plastic bending of the rectangular plates which are subjected to the distributed lateral load

q(x, y) as shown in Fig. 1 are given as Eqs. (1. a) - (1. h). Since an incremental procedure is used, the

fundamental differential equations are presented in incremental forms,

2. FUNDAMENTAL DIFFERENTIAL EQUATIONS

plates subjected to lateral loads that are uniformly distributed

throughout the plate,

aLlQx aLlQy aLi By 1
------ax-+----ay+Llq=O O. a) ay= D (b'lLlMx+ b"LlMy+ b23 L1Mxy) (1. e)

aLlMx aLlMxy aLlB", aLlOy 1--+---LlQ =0·· .. ·.. (1. b) --+--=- (balLiM + b3,LlM +baaLiM ) ....... (1 f)ax ay r ay ax Dry xy .

aLi My aLlMxy aLlw LlQx
----ay+------ax--LlQy=O· ·.. , (1. c) ~+Llax= l!Gh (1. g)

aLlBr 1 aLi w LlQy-----ar= D (bllLlM",+ b1,LlMy+ b'3L1Mxy) .. " (1. d) ay+LlBy= xGh " (1. h)

where D=Eh3jOZ (I-v')], G=E/[Z (1 + II)], l!=5/6, btl: APPENDIX I, LlQy, LlQr=increments of

shear fOl'ces Qy, Qx; LlMxy, LIMy, LlMx=increments of moments M",y, My, Mr ; LlOy, LlBx=increments of

rotations By, ax; Llw=increment of deflection w, Llq=increment of load q.
By using the following non-dimensional expressions,

XI = a'Qy/[Do(l- II')], X,= a'Qx/[Do(I- II')), Xa= aMxy/[Do(l- v')], Xj = aMy/[Do(l- )I')],

Xs=aMr/[Do(l-v')], X6=By, X1 ={}x, Xa= w/a, rt=x/a, l;=y/ b
the differential Eqs. (1. a) - (1. h) are rewritten as follows:

t. [Fits a~t.!·+ Fus a~:s +FatsLlXsJ+O'ltLlq=O .. ,., " .. " (2)

where 0' is Kronecker's delta, a and b are length and width of the plate, q=,uqoa3/[Do(l- II')] [q(x, y)/

qo], qo is standat'd load intensity, ,u=b/a, t=l. 2, ''', 8 and F kts is defined in Appendix II.

3. DISCRETE SOLUTIONS OF DIFFERENTIAL EQUATIONS

We divide a rectangular plate vertically into m equal-length

parts and horizontally into n equal-length parts as shown in

Fig.2, and consider the plate as a group of discI'ete points

which are the intersections of the vertical and horizontal divid

ing line.

The rectangular area, O~rJ~rJt and o~t;;;;;l;Jo corresponding

to an arbitrary intersection (i, j) shown in Fig. 2, is express

ed as the al'ea [i, j] in this paper, and the intersection (i, j)
denoted by 0 is called the main point of the area [i, j], and

the intersections denoted by 0 as the inner dependent points,

the intersections denoted by • as the boundary dependent

J I I I I
I I

I I (' .)
I 1 'oJ

, I
I I
I I
I I
I I

I

Flg.2 Discrete Points on Rectangular Plate,
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points.

By integrating Eq. (2) over the area [i, j], the following integral equation is obtained.
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By applying the numerical integration to Eq. (3), a simultaneous equation of unknown quantities XstJ
(8 = 1-8) which are the dimensionless shear forces, twisting moment, bending moments, rotations and

deflection at the main point (i, j) of the area [i, j] is obtained as follows:

1 }
+ IJIt ~ ~ fltJl}IiJ.7jkl=O··'·,,··· .. · 00 ' .. 00 " .. • " .. •• , (4)

k~{) I-{)

where 7jkl is the value of function 7j ('fl, t) at point (k, l).
The solution XPI} to the simultaneous Eq. (4) is expressed as follows;

8 { t J
iJ.XptJ= ~ ~~ Apr,sIJiJ.X1ko - iJ.X/kAl- Okl)] +&; Bpt,sjJ[iJ.Xtol~ iJ.Xm(l ~OlJ)]

i j } t J+~ ~ Cpt~I,sIJlJIiJ.X/kl(l ~OkllJlJ) ~ Apt ~ ~jJIJlJliJ.7jkt (5)
k~O I~O k~O t-O

where p=l, 2, "',8, i=l, 2, ''', m, j=l, 2, "', n, ,slk=alk/m, ,sJ/=aJ//n, Apt, Bp!o Cptkl:
APPENDIX III.

The coefficients ,slk, ,sil are the weight coefficients of numerical integration, The trapezoidal rule of

approximate numerical integration are applied in this papel', therefore the values of all', ajl are given as

follows:

atk=l-(ook+ 0Ik)/2, aJ/=l-(lJol+ojl)/2
In Eq. (5), the quantity XP1J at the main point (i, j) of the area [i, j] is related to the quantities Xu,o and

X/OJ at the boundary dependent points of the area [i, j] and the quantities X/ki> XU! and XliiI at the inner

dependent points of the area [i, j]. With the spreading of the area [i, j] according to regular order as

[1, I), [1, 2], "', [1, n], [2,1], [2,2], "', [2, n], "', em, 1], em, 2], "', em, n], the main point
of smaller aI'ea becomes one of the inner dependent points of the following larger areas. Whenever one

obtains the quantity XP1J at the main point (i, j) of the area [i, j] by using Eq. (5) in above mentioned

order, one can eliminate the quantities X1ki> XIII and X llit at the inner dependent points of the following

larger' areas by substituting the obtained results into the corresponding terms of the right hand side of Eq.

( 5 ). By repeating this process, the quantity Xp1j at the main point is related to only the quantities X/!<o and

Xtol at the boundary dependent points. The results are as follows:

j

+I; lbpu9,(iJ.Qx)o9+ bplm(iJ.Mxy)oo+ bo,jgliJ.Mx)og+ bp/j9.(iJ.8y)oo+ bp1jg.(iJ.8x!oo+ bpIJ96(iJ.W)ogl
g~O

+iJ.qpu· .. ·· .. ··· .. ········· .. ······ .. ···· .. ················ .. · (6)

where integral constants: (Qy)=X1, (QX)=X2' (MXY)=X3, (My)= X., (MJ=X., (8y)=X~, (8x)=X1f (w)=

Xa, aplJfd, bPij9d' qPiJ: APPENDIX N.
Eq. (6) can be recognized as the discrete solutions of the fundamental partial differential Eq. (2).

4. INTEGRAL CONSTANTS AND BOUNDARY CONDITIONS

The integral constants mean the quantities at the discrete points along the edges y=O (t=O) and x=O
('fl=O) of the rectangular plate. There are six integral constants at each discrete point, and three of them
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Qx'O

~lxy'O

Ox~O
L......L~~-'

~ Qy,Mxy,Oy[Qy,oYI

rr- r-r-,L..:::.:L..------l IQx' OxI
Qx
Mxy
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0y"O
Qx·O,Ox~O

~I I
~lxy.O

;1 I
Qx·O
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~lxy"O
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(1) SSSS (2) ccce (3) sese (4) SFSF

Flg.3 Integral Constants and Boundary Conditions,

are self-evident accot'ding to the boundary conditions along the edges y=O and x=O. The remaining three

integral constants ciln be determined by the boundary conditions along the edges y= band x= a.
The integral constants and the boundary conditions of rectangular plate with four simply supported edges

(SSSS), four clamped edges (CCCC) , two opposite edges simply suppot'ted and the other two edges

clamped (SCSC) , and two opposite edges simply supported and the other two edges free (SFSF) are

shown in Fig. 3 ( 1 ) - ( 4 ), respectively. These figures represent one quarter of the rectangular plate

with two symmetdcal axes. The integral constants and the boundary conditions at the corners of each plate

are shown in the boxes. For the details of dealing with the integral constants and boundary conditions, see

Ref. 12),

5. COMPUTATIONAL PROCEDURE

Subdivision o{ Cross

Section into Layers,

Fig. 4

In this paper, the main assumptions are that: (a) displacement is small compared with the plate

thickness; (b) the stress normal to the midsurface of the plate is negligible; (c) normals to the midsurface

before deformation remain straight but not necessarily normal to the midsurface aftet' deformation; (d)

PI'andtl-Reuss's law obeying the von Mises yield o'iterion is assumed; (e) the plate is made of non

hardening elasto-plastic material.

For the elasto~plastic analysis by the discrete method, an incremental val'iable elasticity pl'ocedure has

been used. This procedure has many advantages in rapidity of convergence when materials with very flat

stress-stl'ain diagrams are used. Generally, it suffices to take the elasto-plastic stress-strain relations

corresponding to the initial stress levels at the start of an increment (Ref. 13». In order to consider the

extension of the yielded portions in the directions of thickness of the element, it is divided into many layers

(Fig, 4) .
In the previous increment; [n-lJ-st load incremental step

(Tx n~l L1ux (Ty n~1 L1uy 'XY 1l~1 L1 rXY[DATA] ---=L:~, -=L:~,-=L:~ .... ·.......... ··(7)
(To (To (To (To (To (To

0'=«(T~+(T~-(Tx(TY+3 ,~y)t: (To, 0': equivalent stress, (To: yield stress
[

If in the previous increment the plastic range in the section has been

created, an elasto-plastic stress-strain relation has to be used (loading), and

if in the previous increment a decrease of strain occurred, then an elastic

stress-strain relation is insel'ted for the present increment (unloading). The

load is considered to be applied in incrementally, but the total strain occurring during the increment is

treated, by the use of a suitably modified modulus, as if the material wa; elastic.

In the present increment; [n]-th load incremental step

( 1) Nondimensional deviatoric stress

0'~=t(2 ::~ ::), 0'~=t(2 ::- ::). r~y= ~oY ,,, .. ,, .. ,, ,, •• , ,,,,,, , ,,,, (8)
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(2 )

( 3 )

(4)

( 5 )

( 6 )

a=a~+ va~, b= va~+u~, c=(I- v)r~y, d=au~+bu~+2 cr~y""" " " (9)

[::: ::: :::J{ l (1-~,)/J~E~ :: ~l· (to)

atJ= 12 h31~ atJfidg " ,' (11)
-2 .

[btJ]=[atJ]-t., " .. " " , ' " .. ," " ,,,' ,, , ,.. , ,,' , (12)

The incremental moments dM"" dMy, dM",y are calculated by the discrete solutions.

(7) :::] -,[J::.] (13)

::: :::][E. ]HH.......H... (14)

(8) O""'=I; dO"x, O"Y=I; dO"y, TXY=I; dTxy " " " " (15)
Jo 0"0 (To 0"0 0"0 0"0

6. NUMERICAL RESULTS

Numerical solutions for four specific problems are presented, All four problems involve square plates

subjected to lateral loads that are uniformly distributed throughout the plate. From the results of the

elastic bending analysis of variable thickness plates (Ref. 14)) and the elasto-plastic analysis of the four

edges simply supported plates which is divided into m=n=4, 6, 8, 10, the elasto-plastic numerical

solutions converged with the divisional meshes m = n=8. And the number of layers in the direction of the

cross section was nz=20, h'om the results of the elasto-plastic analysis of the plate which is divided into

nz=lO, 20, 30, 40 (Ref. 14)). Moreover, the numbel' of layers is hardly affected by computer storage and

time.

( 1) Simply supported plate (SSSS)
First, in order to confirm the convergency and accuracy of the numerical solutions obtained by the

discrete method, let it be applied to the elasto-plastic analysis of the square plate with four simple

supported edges under uniform load, The results are summarized in Figs. 5 through 7, Fig.5 shows the

load-deflection curves with respect to the maximum deflection when nondimensional incremental load

intensity is dqa 2/M,,=2. 0, 1.0, 0.4, 0.2 (Mp =O"ohz/4 : fully plastic moment). This figure also shows a
comparison among the discrete solution lind the finite difference solutions obtained by Bhaumik and

Hanley~) and the finite element solution by Owen and Hin tonS) , I! is found from this figure that the numerical

0.0\-~..~~A!"':::.....l,~~---l

i ~~~:~!«<lJ/./'Ip'" 22.'0

-0.0.4
Twisting Nomeots ~1}(j' along )'",0

C.L, qol.~/f-':::.o

! 10.4

....-:::::=+=<~1].•

Bending ~lOJ-;)ents- Hx along '1=b/2
1Iq.'/Hp"l. 0
6q.' /11p"O. 4

6q.' /1~p"O, ~

q.'
30 MP

Upper Bound=26. 5

Lower BotJnd=24.09-0~~~~~~;;;;;~~~:;;:;;:~;;;;

20

0.006 13.6

wO/qll eo ~ qa'/t1'p=1~'2~O
lilendinlJ I~oments. My >lloog y=b/2 Deflections 'rl along y!!!<b/2

o Bhaumik

DOwenm"'n=8
wO

o~ ~-=-nLz=~~O~:_Nu_m_b._r_o_f_L..,:ayLe~rs c-'-=-__J.F"'---P.

0.0 0.1 0.2 0.3

10

Fig,5 Load-Deflection Cm'ves for Simply Supported Square

Plate.

Fig.6 Typical Moment and Deflection Diagrams for Simply

Supported Sq ua"e Plate,
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solutiollS obtained by the discrete method (when !J.qa'!Mp=O. 2) agree with those obtained by the finite

element and the finite difference method. Spatial redistributions of moments and deflection are illustrated

in Fig.6 for three levels of loading. It is found from this fignre that spatial redistribution of moments is
I

smooth aceoI'ding to the extent of the plastic region. Fig.7 shows the progression of the plastic regions at

different levels of loading. From this figure, first yielding is observed at the four corners of the plate and

then at the center, and the plastic regions extend along the diagonals. In this paper, hiho represents the

elastic portions in the directions of thickness of the element. (hiho= 1. 0 : fully elastic portion, hiho=

o. 0 : fully plastic portion)

( 2) Plate supported with clamps (CCCC)

In Figs. 8 through 10 are presented the corresponding results for a square plate with all edges clamped.

Fig. 8 shows the load-deflection curve with respect to maximum deflection. In Fig. 8, the numerical

solutions obtained from the discrete method are compared with those of the finite difference method3
), a

good agreement exists between these sets of results, Fig, 9 illustrates the redistribution of moments and

deflection for three levels of loading. The progressions of the yield regions at different levels of loading is

summarized in Fig, 10, In this case, the first yielding of the plate occurs at the middle of the four edges,

and- the plastic regions extend along these edges until the center of the plate yields.

(3) Plate with two edges clamped (SCSC)

Results similar to those described above for a square plate with two opposite edges simply supported and

the other' two edges clamped are described in Figs. 11 through 13, Fig. 11 shows the load-deflection curve

with respect to maximum deflection. The redistribution of moments and deflection are illustrated in

Fig. 12, and the progr'ession of the yield regions is summarized in Fig, 13.

( 4) Plate with two edges free (SFSF)
In Figs. 14 through 16 are presented the corresponding results for a square plate with two opposite edges

simply supported and the other two edges free. Fig. 14 shows the load-deflection curve with respect to

Fig, (I Typical Moment and Deflection Diagrams for Clamped

Squarc pia Ie.

O.QO.l - 15

"q..\)IJW=.:m

OeflecUoros w alQng y-.J:J/'l

...,~"Ylq"m'C.;L.

-·--1. I'
--<>'<:1-1' 23I'fl~I./fp"J8

Bond'ing Maments My lllang y::b/2

Sendlng ~IOf:'Ients Mx alt:mg y::b/2

h/hO
0.0-0.2 _
0.2-0.4 _
0.4-0.6~
O.6-0.6~

0.8-1.0 =

Fig.7 Progrcssion of Yicld Regions (SSSS).

Upper Bound"'48. 0

I-~~---=-Lo=wer Bound..44. 3

0.6-0.6 =
0.8-1.0 = h/ho

0.0-0.2 _
0.2-0.4 _
0.4-0.6 _

wo
MP7

!

o Bhaumik

0,2 0.30.1

lIq.'/Hp"1.0 monoS
nz=20: Number of Layers

I

40 ..

30

Fig.8 Load-Deflection Curves for Clamped Square Plate. Fig. 10 Progression of Yield Regions (CCCC).
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40

.!IL'
Np

10 Upper' Baund",,9. 2

30 Lower Bound
·24.0

lowe\'" Bound:>"8.0

20

10

~q.' II~p.O. 2 m'n"B wD
nz:a20: Numbor of Layers M"P"?'

O.~__~~~~~--:-'!-::-~~-'.-~~----;c'-I-::-~~~~~----:c'
0.0 0.1 0.2 0.3

Fig.12 Momenl and Deflection Diagrams for Square Plate

with Two Opposite Edges Simply Supported and the

Other Two Edges Clamped.

0.04

l_~~=:::::t~~;;~Jo.en0.0 0,0
KPIJ/i. FbIJ

Bending MQme!1t"i. My

o~~~~~lf2f
0.01 1.6 0.02

O.OJ 6.6 0,0:1
~D/qoa\ qaJ/lip-''J,-'

Deflection w

:~l~iTj::
0.0 0.0

X"'~j:l Y"b/2
llendi r1-C] r.o[!l~nt., Mx

Fig.15 Moment and Defleetiou Diag,'ams (S1'SF).

Fig.14 Load-Deflection Curves for Squarc Plate with Two

Opposite Edges Simply Supported and the Other Two

Edges Free.

~q.'/Np~l.O rn"n"8
nz..,,20: Number of Layers

Fig.11

wO
MPa'O';;--_.L.-_----,:O,-:-__---'---__-,-l-__~_____.J

0.0 0.1 0.2 0.3

Load-Deflection Cm'ves for Square Plate with Two

Opposite Edges Simply Supported and the Other Two

Edges Clamped,

0,0-0.2 .
0.'-0.4 _
0,4-0.6 _

0.6-0.8 =
o .•-1.0 = h/ho

qa 2 /Mp=8.6

0.0-0.2 .
0.2-0.4 mmml
0.4-0.6~

0.6-0.8 =
0.8-1.0 = h/ho

Fig.13 Progression of Yield Regions (SCSC). Fig.16 Progr'ession of Yield Hegions (SI'SI').

maximum deflection. The redistribution of moments and deflection are illustrated In Fig. 15, and the

progression of the yield regions is summarized in Fig. 16.

7. CONCLUSIONS

The main conclusions of the work described in this paper are slunmal'ized as follows.

( 1) A general numerical method for the elasto-plastic bending of rectangular plate has been proposed,

and the proposed method has been applied to the square plates with four types of boundary conditions,

(2) The discl'ete solutions are obtained by transforming the differential equations into integral

equations and applying numerical integrations, and they give the transverse shear forces, twisting

moments, bending moments, rotations and deflections at all the discrete points which are the intersection
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of the vertical and horizontal equally dividing lines on the plate. Thus, the proposed method does not

require prior assumption of the shape of the deflection of the plate,

( 3 ) By utilizing the present method, the elasto-plastic problems for the rectangular plates having

various boundary conditions can be treated with acceptable accuracy.

APPENDIX I

[6£1] =[aij]-\ [a £1]=12!: [alj]~2d~,, ::: ] = [ ~
an a" 0

~ ~ ] --IE [ ::

° (l-v)12 ac

ba

b'

be

ea]
cb

e'

CPlkl =/-IYP3+ Yps/-IKkl

Cp2kl = /-IYP2+ YP/Kkl

Cp3kl = Ik,( YP4 bl'kl+ yp, b;'kl+ YP6 b33kl )
Cpm = Ik,( YP4 b12k/+ yp, b22k1 +. Yps b32k1}

Cp5kl = IklYp4 bl1k/+ YP5 b2Ik,+ Yps b'lk'}

Cp6kl = - VYps

Cp1kl = -YP/

Cp8kt =O

a, b, c, d: refer to Eqs. ( 8) and (9)

APPENDIX n
Fill = F 123 = FI34=Fl'S=FI61= F,!,= F 218 = F3n=1.O.
Fm=Fns=F233=F'41=F'6S=F3!6= - Fm = - F331 =/-1: F345 = - bill, Fm =- b12I, Fw =- b13I.

F'5,=-b"I, Fm=-b"I, F",=-b'3I, F,s,=-b'II, F364 =-b,d, F36,=-b"I.
F312=-K, Fm=-/-IK, other Fm=O, I=/-I(1-v'){h~/h)3, K=(ho/a)"(ho/h)E/(12xG}

APPENDIX ill

PIl=(3U, P,,=f.J!JJj, P,,=-f.J!JI/> Pn=(3u, p,,=fJfIj), P31=-f.J!JO' f!B3 = f.J!JJj, P34=(3",

PH = - I,I(3ubl2l/, PH = - I'lflv b121/, PH = - Iu(311 bill/> P41= IlfJJj, P,3= - !U(311 bm }, p,,= - I,}(311 b,w,

P"=-!O(3llb21i/' P56=(3", PS3=-I,J(31j b33t/ , Ps,=-!u(3/lb3W , Ps,=-Ivf3l/b3w, PSS=f.J!JJ/' PS1=(311'

Pr,=-flvK£1 , P71=(31J, Pl,=(3JJ, P81=-/.!fJV KU, P86=f.J!JI}, P88=(3U, (31/=(3,,'(3Jj

[YPt]=[ptp]-1

Apl=YPI Bpl=O

Ap2 =O B,,,=/-IYp,

Ap3 =Yp, B p3 =/-IYm

Ap,= YP3 BM=O

Ap,=O Bp,=;.J.YP2

Aps = yp, BpS=;'J.Yps

Ap1 =Yps Bp/=/-IYp,

Aps = Yps B p,= Yp1

APPENDIX N

8 [ I I
apI}fd= t;:; ApI~ (3IJalkOfd- atkJfd(l- O'kJ]+ BpI t;(3J/[atolfd- alllfd(l- o,J]

+id ~ CP!kl(31~J/atklfd(l-okI0'1I) l
8 [ I }

bpllpd= t;:; Apt~ (3uIb tkMd - blklyd(l- Okl)]+' Bill t; f3Jl[ btO '9<1- btl/p,D -Oil)]

+. td ~ CPtkl(3/~lt btktyatl- OklOlJ)l

b51003
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1
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