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BENDING ANALYSIS OF RECTANGULAR PLATE ON
NON-UNIFORM ELASTIC FOUNDATIONS

By Hiroshi MATSUDA* and Takeshi SAKIYAMA**

In this paper, an approximate method for analyzing the bending problems of rectangular
Mindlin plates on elastic foundations is propesed, The solutions of the partial differential
equations of the bending are obtained in the discrete form, by translating the differential
equations inte integral equations and applying numerical integration,

In order to confirm the convergency and accuracy of numerical solutions, comparisons
with numerical selutions obtained by other investigators are made. As the application, the
bending behavior of rectangular plate on nonlinear elastic foundations and on non-uniform
elastic foundations are calculated,

Keywords | reclangular plate, nonlinear elastic foundations, non-uniform elastic found-
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1. INTRODUCTION

The problems on the bending of rectangular plate on elastic foundations have been analyzed by many
investigators, by using numerical methods such as FEM, FDM and series solutions,

Nohmachi® expanded “Finite Fourier Transformation” to biharmonic differential equation by means of
Green’s formula, and gave the solutions for the bending of the rectangular plate on elastic foundations with
four free edges. Kurata, Takahashi and Tanihira? obtained the numerical solutions of rectangular plate
with all free boundaries on nonlinear elastic foundations, using approximate method applying the finite
difference method, Kitamura and Sakurai® analyzed rectangular plates with four edges free on elastic
foundations, using the method of eigenfunction expansion,

Cheung and Zienkiewicz? first analyzed the plate on elastic foundations, applying finite element method,
Henry? analyzed the large deflection problems of the rectangular plate on elastic foundations by FEM,
Svec? analyzed the thick plate on elastic foundations by FEM, s

Sonoda and Kobayashi”® analyzed the quasistatic bending of rectangular plates resting on linear
viscoelastic foundations obeying Winkler's hypothesis, and obtained double series solutions which are
derived by means of eigenfunction expansions,

There are many methods to analyze the bending of rectangular plate on elastic foundations, However, it
has been hardly carried out to study the bending of rectangular plates with variable thickness on
non-uniform elastic foundations, And since the fundamental differential equations are formed by the
simultaneous partial differential equations with variable coefficients which are composed of the flexural
rigidity of the plate [Xx, ), the thickness of the plate h{x, y) and foundation modulus k(x, o), it is
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therefore very difficult to find the exact solution.

In this paper, an approximate method for analyzing the bending problems of rectangular Mindlin plates
with variable thickness resting on elastic foundations which foundation moeduli are locally non-uniform has
been proposed, By translating the differential equations into integral equations and applying numerical
integration, the solutions of the differential equations are obtained in the discrete form, and give the
transverse shear forces, the twisting moments, the bending moments, the rotations and the deflections at
the all discrete points which are intersections of the vertical and horizontal equally dividing lines on the
plate.

In order to confirm the convergency and accuracy of the numerical solutions obtained by the present
method, comparisons with the exact solutions obtained by other investigators are made, As the application
of the present method, the bending behavior of the rectangular plate on nonlinear elastic foundations and on
non-uniform elastic foundations are calculated.

Furthermore, it is possible to analyze the rectangular plate with arbitrary boundary conditions, load
conditions and plate thickness resting on non-uniform elastic foundations, by using the present method.

2. FUNDAMENTAL DIFFERENTIAL EQUATIONS FOR ELASTIC FOUNDATIONS
PROBLEM

The fundamental differential equations for the bending of

rectangular plate with variable thickness on elastic founda- )
tions as shown in Fig. 1 are the simultaneous partial differen- [T 1]

tial equations (1+a) —~ (1+h) as follows, These equations aré N
based on Mindlin’s theory which include the effect of shear $ $ $ $ $ $
deformation. Here, the shear eoefficient x is taken equal to - X
Fig.1 Rectangular plate on elastic foundations,
5/6.
9Q:  9Q, B 86& by _ M
30 + e +g—kyw=0 -+ (1+a) —i—v EY T (i-e)
oM, My aﬁx 96, —L ................. .
et o S N, BT (1-b) Ty+ 5% " DA=7) My (1)
oMy Mey . Pw Q= .
8—y+ T Q0 (1-¢) o T~ 0h ‘ (1-g)
86, 9t Mg ow Qo e .
S g gy s (1+d) ay+¢9y i) (1-h)

Here, Q,, Q. are the shearing forces, M., is the torsional moment, M, and M, are the bending'moments

8, and 4, are the slopes, w is the deflection, ¢g=g(x, ¥) is the lateral load intensity, E is the modu]us of

elasticity, G is the shear modulus of elasticity, » is Poisson’s ratio, A=h{x, #) is the plate thlckness D

=FEh /12 (1— v is the flexural rigidity of the plate, k,=k,x, y)is the elastic modulus of the foundat;on.
By using the non-dimensional expression, Qu, Qs Myw, My, Mz, 6y, 8; and w are as follows !

(K X =5 Qo QU X = o Mo M, (e, X008, K=
the differential equations (1-a)~(l-h) are rewritten as follows; .
88)? +pu aaX“ — G KXy v (2-2) V%‘?_.}# %);’ SIX e (2-€)
DL - o DT S o
. %’é +u %);ﬂ 775 CRITTE PPN PIOI (2-¢) %JrX?:LXZ .......................... (g.g)
%)§°+W 88}7(7 S 5 CRITTITICTIVRIPRtoN (2-d) a}?ths ULXy e (2+h)
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Here, x=an, y=>b¢, a, b . side length of rectangular plate, h, is the standard plate thickness, ¢,
is the standard load intensity, u=0/a, ku is the standard elastic modulus of the foundation, D, is the
standard flexural rigidity of the plate, D,=Ehi/12(1—v%

qo’ ko kwa'

q=#Kla, KFW, ko =ula g, Kﬂ:ﬁ—(l_uz)
hoys : ho\® R
I:““_“g)(ﬁn')’ Jzz"u*")(f)’ L= 110}5;( )

The differential equations (2+a) ~(2-h} can be used to analyzed the bending of rectangular plate with
variable thickness on non-uniform elastic foundations with arbitrary boundary conditions and arbitrary

load conditions,

3. APPROXIMATE SOLUTION OF DIFFERENTIAL EQUATIONS

It is impossible to obiain the exact solutions of differential

eguations (2-a) ~ (2-h) under the arbitrary loading and boundary ¢

conditions, since these equations are formed by simultaneous - n I
partial differential equations with variable coefficients, There- . [ ]
fore, in this paper, we consider the rectangular plate as assembly 3 Iy { i.' 31
of intersections as shown in Fig.2. Approximate solutions of b T c .

differential equations are obtained for these discrete points. be s ?:, [

One divides the bounded area f0, ¢, {0, 8] into m, n ’ i :: 1] n
equal-interval, and numbers each divisional point, as shown in : G et e A
Fig.2. Now, let [, ] be any point in the rectangular region ang o
O=n=7q, 0=¢<{;, @ be the principal point, (O be the interior oo a_-__,J
subordinate points, and @ be the boundary subordinate points. Fig.2 Discrete points on rectangular plate,

First, by integrating the differential equations (2-a) ~ (2+h)
over the area [0, »] and [0, {], one obtains the integral equations, Next, by applying the numerical
integral, one can obtain the simultaneous equations for nondimension values X,,; of the principal point, By
solving these equations, one can obtain eq (3). The details to obtain eq. {3) see Ref. (9),

X.DU_ E ﬁlfA_DI{XLﬂJ XC.N(I 6!‘)]+ Z ﬂingt[Xloy thy(]-_ SHJ)] .

Lo
g: Z Bisbis Corra Xurd1— 81i80s) ]__,g', !;:] BisBigAp g ooorsmrsossmer e {3)

where p=], <8, =172, -, m Jj=1 2 -, n, Bir= ﬂrr/m Bie= ﬂjg/n Ap, By Corzg -
Appendix, é‘,j ! Kronecker’s delta '
The coefficients a,,, a,, are the weight coefficients of the numerical integration, The trapezeidal rule of
approximate numerical integration are applied in this paper, therefore the values of o, a,, are given as
follows ! a,=1—(80,t+ 81)/2, ay=1—(80st 810)/2

As one caleulates the values X, X, Xpu, -, innumbered order by using eq. (3), the values of the
all interior subordinate points are eliminated. Ultimately, the values X, of the principal point are
represented by the values X,, (r=13,4,6,7 8), Xeus (5=2,3,5 6,7 8 of the hounded

subordinate points as follows;

Xo= E (E @1 prssa® Xm+Z‘. Qapisga’ Xsﬂg)+qu ............................................................. (4)
where,
[ [’ J
Ohptiua™ E { ’gno ﬁthApt{ Cprkoud™ (’lh:kjud(l — &+ ?;1:1 ﬂjl-Bpt[ ntotua— Cnestud] — 5;;)]

i
+25 20 ﬁt.‘:ﬂucp:x:ahmmdﬂ - 5\xe§£J)]

k=01=0
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Eq. (4) is an approximate solution of the differential equations (2-a) ~(2-h). The values X,., Xqz of
the bounded subordinate points are integral constants, Then, the coefficients @,,,,. which relate the
values X,,; with the value X,,, Xuo correspond to the transfer matrix of the Transfer Matrix Method,

4. INTEGRAL CONSTANTS AND BOUNDARY CONDITIONS

Ea=(_1)i, Eu;: é\m'i“(""l)‘“ * Oy

Integral constants X, 5 and X, express dimensionless quantities with respect to @, My, My, 8, 6o, w
and Qp, Muy, My, 8, 8, w, on {=0 and »p=0, respectively,

There are six integral constants on each discrete point, According to the support type of the bounded
sides, three integral constants of six are known, and the remaining three unknown integral constants are
determined by the boundary conditions along »=1.0 and ¢=],0Q.

Integral constants and boundary conditions of rectangular plate with four edges free and with two
opposite edges simply supported and the other two edges free are shown in Fig, 3 and Fig. 4, respectively,
In these figures, fig. (a) express the whole of a rectangular plate, fig. (¢} and fig, (d) express one half of a
rectangular plate with one symmetrical axis (either right and left or up and down), and fig. (b) represent

=0 Qy=0,f5=0 a0 (80, Dy<0 :'&';?D oo ﬂf;?o o
00 Hey=0 0x=0.H=0 tsy=0  [ax=0, @20 - R b o
Hy=0]  Hyo Hxy=0 0x0 |tay=0 Hy=d ’“’jg Or.0x} 8¥=0 _[Hxrd
0y, 8x M| Fres E. LA i
w Free E. oy | xeD [ | Q=0
ax Hxy=0 ) w Hxy i Hxy=0
oy | o w0 w { fx=0 W | | Rl &x + fx=0
B IR e
w & E| weo  [Fwox 0y, 0x [Frw] ax( g B w0 [ESEN 6y, ox
w w v he w
=g (b) Free £. (b
Free E.
o ,
W gy, 0x.w Uy=0 fy 8x.w 0y=0
w dy=0]  He=0 0y=0,Hy=0 Hey=0 Ay=0,iy=0
€a) 0! A0 o, B ¢a) =0 0. 6320
Tr=0,1x=0 | [2y. & x———lty=0 %m-o [ox axf—— {ror0
o0, 0y=0 | w h v |
Q=0.Hxy=0, 0y=0 [ Hey=0 | Ay0uftey=0, 8y=0  |Hx=0 :
0y bl - w0 a | ox=0
ey T T ane ox b ray=o U Hxy i Hey=0
05 Fy=0 w b g x=0 Hxy Mx=0 ax fx=0
w Hy=0 | e nf)o i
ay i W '
By 0% &) Jou| bl [ —
w &y daw [0y, o] =0 wl 0w ovow ey Gx,w oy ox,w [8y.W
w (c) (d)
«d ) "
ted ! Fig.4 Integral constants and boundary conditions of plate
Fig.3 Integral constants and boundary conditions of plate with two opposite edges simply supported and the
with four free edges. other two free,
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one quater of a rectangular plate with two symmetrical axes. Integral constants and boundary conditions at

the corners of plate are shown in the boxes.
5. NUMERICAL RESULTS

(1) Rectangular plate on uniform linear elastic foundations
First, in order to investigate the convergency :

and accuracy of numerical solutions of the rec- y ‘
tangular plate on uniform linear elastic found- jﬁ: | bra=1.0

. . ! =1/5
ations, let the present method be applied to a * . -:"Eﬂc'! i»_—x,_ ;52:0{01_0 9
square plate with two opposite edges simply sup- k-: Py [ V:;/S

o apge- § — ' K=3.

ported and the other two free, which is subjected to v b2 ! oKy at
a uniform distributed load ¢ over the square area in — a — D
the center of plate as shown in Fig.5. Table 1 Fig.5 DPartially loaded square plate on elastic foundations,
shows the numerical results of the deflections and Table| Deflections and bending mements of the rectangular
the bending moments at the center and at the middle plate with two opposite edges simply supported and

the other two free subjected to uniform distributed

oint of free edge of the plate with different
pon re ge pla ! ! h,/(l, load ¢ {¥=1/6, b/a=1.0, c/a=1/5, K=3.0).

values, together with the series solutions obtained

. =a/2 , y=0 =a/2 , y=b/2

by Ref. (8). In this table, m=10 and 20 are pa| m ralt e ¥ * ¥

. M b

division number, and 10-20 represents the ¥ Hx Y i x
PR : - 10 | 6,506 | 0.707 | 0.448 | 0.345 | 0.368
Richardson’s extrapolated values of m=10, 20. It ootl | oo | 0%0s | aisas | o | 03
: : 16-2¢ | 0.53 ) 0.828 | 0.562 | 0.348 | ©.350
is found from this table that the extrapolated values heen | o2 | Gase | osen | oo | o
(10-20) agree with the series solutions, o | o508 1 0.708 1 0.887 | 0363 | 0.901
i 005 20 | 0.532 [ 0797 { 0.536 | 0.366 | 0.35
Second, let the present method be applle.d to a PG e ISP I G B ol S IS
square plate with four free edges, which is Ref.8 | 0,541 | 0.824 [ 0.562 | 0.346 | 0.355
subjected to a uniform distributed load ¢ over the 10 | 0.522 | 0.705 | C.447 | D.342 | 0.355
. . 010 20 | 0.549 | 0.796 | 0.536 | 0.344 | 0.360
square area in the center of plate as shown in 10-20 | 0,558 | 0,826 | 0.565 | 0.34 | 0.361
. Ref.8 | 0.558 | 0.820 | 0.362 | o0.344 | 0.359

Fig,5, and a concentrated load P at the center,

. . 10 | 0.565 | 0.699 | 0.447 | 0.360 | 0.336
respectively. The values of the deflections, the 0.15| 20 0.576 | 0.786 [ 0.535 | 0.342 | 0,360
. " 10-20 | 0.586 | 0.815 | 0.565 | 0.343 | 0.36)
bending moments and reactions at the center, at the Rer 8 | 0287 | 0813 | 0562 | o033 | 0.361
corner and at the middle point of free edge of the 0 | 0577 | 0.620 | 0.467 | 0,938 | 0.356
: 0.20| 20 | 0.613 | 0.777 | 0.535 | 0.340 | 0.359
plate are shown in Table 2 and Table 3. In these 020 | o6zs | o805 | 0562 | 0381 | 0361
tables, 10_20, 8_12 and 4_8_12 repesent the Ref .8 0,626 0.804 0.562 0.341 0,301
. ' -5 5 = - 2 -3 2042
Richardson's extrapolated values, It is found from Multiplier ]107%a®/D 107%a Wha'/D] 1074a

Table 3 that the numerical solutions obtained by
the present method converged monotonically according to an increase of division number,

(2) Vvariable thickness plate on nonlinear elastic foundations

Let the present method be applied to a square plate of variable thickness with four free edges on
nonlinear tensionless elastic foundations, which is subjected to a concentrated load P at the center,

Nonlinear tensionless elastic foundations are assumed to be active only when the plate has pressed
against the foundations, and to be inactive in the regions where the plate has lifted off of the foundations,
In other words, the foundations can be modelled as the springs of the stiffness § when in compression and
zero when in tension, In this paper, the load-deflection relationship of the nonlinear elastic foundation is

assumed as shown in Fig, 6, and it is expressed as follows,

D= KB, (T ) -+ eevreseeeesesmm e eaet e et e et e s (5)
The modified spring reaction p’ at w=1 is ‘
"p': kTUE w/(ﬁ]~|— w’)2+ kTUw’z/(TU+ /u;’)2 .......................................................................... ( 6 )

Fig. 7 shows the flow-chart of computational procedures. Now, if the {s—1)th deflection at the point
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82 H. Marsupa and T, SAKIYAMA

Table2 Deflections and bending moments of the rectangular plate p
with four free edges subjected to uniform distributed load p’
g (v=1/8, b/a=L.0, cfa=1/5, K==3.0) kw [="" """ g
(al/2,0) (0,b/2) (a2 , b/2) i
hfa m i
w Mx P p W w Mx . H H
0.5k Foouits "
10 0.687 |[0.504|5.56( 2.13 0,263 |0.428! 0.170 5 !
0,01 20 0.708 (0,596 ]5.73] 2,01 [0.248 | 0.424 | 0,187 i '
10-20| 0.714 0.627 - - 0.24310.422} 0.193 1,
G=tan"k
10] 0.702 |0.501|5.69| 2.1z |0.262 | 0,425; 0.182 0.0 R v
0.10 20 0.726 10.597 | 5.88] 2.00|C.247 [ 0.420{ 0.354
10-20| 0.734 10.630 | - - | 0.242 10419/ 0.355 Fig,6 The reaction-deftection relationship of
10 0.746 | 0.496]6.03} 2,07 |0.25510,418] 0.186 hyperbolic spring,
0.20 20 0.779 0,589 6.31311,94|0,240]0,413| 0,197
10-20; 0.790 | 0.620| - - 0.236 | 0.411 | 0.200
Multiplier |107%qa*/D 107%ga" 107% 107%a* /D 107qa’

Table3 Deflections and bending moments of the rectangular plate
with four free edges subjected to a concentrated load P

at the center (y=1/6, &/e¢=1.0, K=3.0}.

IAnalysis of Winkler foundation]

Modified spring
k+0 reaction eq.(6}
modifying .
END
s

(af2,0) { 0,0/2 ) |af2,b/2
h/a m
w Mx "} p W p W
4 0.0158 | 0,085 1.28 | 0.00817 ] 0.66] 0.0112

8 0.0175 | 0,148 1,42 0,00641 j 0,52 0.0106
12 0.0179 | 0.185| 1.45[ 0.00608 [ 0.49] 0.0105
0.01 16 0.0182 | 0,211} 1.47] 0.00596 | 0,48 0.0105

8-12 0.0183 ) 0.214) - 0.00581 | - 0.0104 Ho
4-8-12 | 0.0184 } 0,220 - 0.,00581 | - 0.0104 o
4 0.0160 | ©.085| 1.30} £.00812; 0.66( 0.0111 lAnalysis using medified spring

8 0.0179 | 0.147] 1.45( 0,00638 | 0.52 | 0.0105
12 0.0185 ¢ 0.185) 1.50| 0.00608 | 0,49 ] 0,010
Q.10 16 0.0189 | ©.211{ 1.53 ] 0.00596 | 8.48] 0.0105

8-12 0.0190 | ©.213 - 0.00580 - C.0104
4-8-12 f 0,0191 | 0.219( - 0.00580 | - 0.0104

4 0.0166 | 0.084] 1.34 [ 0,00797 | 0.65| 0.010%
8 0.0192 { 0.145| 1,56 [ ¢.00622 | 0.50 | 0.0103

12 0.0203 0.182| 1.64 )| 0,00589 | 0.48| ¢.0102

0.20 16 0.020% | ©.209( 1,69 | 0.,00578 0,47 0.0102

8-12 0.0211 0,212 - 0.00562 - 0.0102

4-8-12 0.0213 0.218 - 0.00562 - 0,0102
Multiplier Pa?/D P p/a? ] Pa?/D | Pfa?| Pa?/D Fig.7 Flow chart of computational procedures.

(i, j) is expressed i, ,,.,, the(s)th analysis is made as follows,

Wi, e-1>0 © use the eq, (6) :

w“jls-—l<0: k=0 TS PSS (7)
The process is repeated until convergency condition

(Wi Wi gsr)f Wos IO ™2 - B L R T TP P PP PRP PR PP T XRRSIIIRRIAPYEE (. B
is satisfied. Here, 1y, is the (s)th deflection at the center of the plate,

Rectangular plates of variable thickness which changes linearly in x direction are treated as shown in
Fig.8. The taper ratio is Case (1) «=0.8, g=1.2, Case (2) a={.4, f#==1.6, respectively,

The numerical results of rectangular plate of variable thickness on nonlinear elastic foundations are
shown together with the numerical results of rectangular plate of uniform thickness on linear (Winkler)
and nonlinear elastic foundations in Fig.9. Fig.9 shows the values of the bending moments.and the
deflections at y=(. The numerical computation for =12 is carried out, It is found from Fig, 9 that the
effects of variable thickness are a little on M,, and little on M, and . It is also found that the numerieal
solutions of uniform thick plate on nonlinear elastic foundations used for the present calculation are about
1.5 and 1, 2 times on the deflection and the bending moments at center, respectively, as compared with the

solutions on Winkler's foundations,
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F_"—‘LL_—'C_

¥=3.0 I "g=2.5, 3.0, 4.0
0.0 ——

¥y /P {y=0)

— = —
==t |
Case{1)4-0,.8,B=1,2, Case{2)la=0.4,Ba1.6

Fig.8 Rectangular plate with varying thickness,

0.0

0.05

0.0

0,05

0.01( - '\‘\‘_\._,.
0.021 wD/Pa?  (y=b/2) ‘\'\"wi

0.0

wD/Pa?

0.01 (y=0)
------- Winkler 0.02 Temeeet

b/a=1.0 , v=1/6 Hyperbolic 5 ]

h/a=0.004~0.016 ~—e&— Case(l) wD/Pa?  {y=0}

K=a‘ikv/D=3.54 ——h—— Case(2) Wa=0.2 v=l/6 p=1.0 77 'é:gg
Flg,9 Numerical solutions of rectangular plate with variable K=aky/D . K=4.D

thickness on nonlinear elastic foundations (four free Fig.10 Numerical solutions of rectangular plate with all

edges) . free edges on non-uniform elastic foundations,

(3) Rectangular thick plate on non-uniform elastic foundations

In the previous section, the foundation moduli are uniform in the whole foundations, However, it is
considered that the foundation moduli are locally non-uniform,

Accordingly, first let the present method be applied to rectangular plate of uniform thickness with four
free edges under a concentrated load P at the center on non-uniform elastic foundations which the values of
non-dimensional foundation modulus are {==3. ( in left half, K=2.5, 3.0 or 4.0 in right half as shown in
Fig. 10 above, The numerical solutions of the bending moments and the deflections at y=(, and y=5/2
are shown in Fig, 10. It is found from this figure that the effects of non-uniformity of dimensionless
foundation modulus are very small in regard to the bending moments M,, My, but large in regard to the
deflections, :

Next, let the present method be applied to rectangular plate of uniform thickness with four free edges,
which is subjected to the uniform distributed load g over the square area in the center of plate, on
non-uniform elastic foundations as shown in Fig, 11.

Fig. 12 and Fig.13 show the values of the deflections and the bending moments at y=0 and y=5/2.
From these figures, it is found that the bending moments are little affected by non-uniformity of foundation

moduli, but the deflections are so much.
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Ko xqa?
K1 «/8=1/5
. 0.0

I
Ko
¥o ' 0.005
|
& 4
Xo 7 0.0
k]
Flg. 11 Rectangular plate an nonuniform foundation.
x10%a“/D ¢.005
0,0 fret—t—+——+—+——+——+——+——+—|
F . Ko=3
0.2} ““--._{(_[‘-:-100 xqaZ
i 0.0
0.4
0.002
Mx (y=b/2)
06 0 07 s e, Y—e—e K1=3 Ko=3
h/a=0.2 ~ ——K1=10
0.8 —m— K1=100
Fig, 12 Deflection curves {(y=0) versus K, and h/q values, Fig, 13 Bending moments M, and M, versus K, values.

The numerical results for the thin plate (h/a==0.01) are plotted by the dotted lines for comparison in
Fig. 12. When dimensionless foundation moduli as shown in Fig, 11 are K,=3, 10 and 10, the ratios of
maximum deflection are wmax (h/a=0.2)}/ Wmax (h/a=0.01}=1.10, 1.15 and 1.41, respectively. It is
found that the more non-uniformity of foundation modulus increases, the more influence of plate thickness

ratio 4 /a increases,

CONCLUSIONS

The main conclusicns of the work described in this paper can be summarized as follows,

{1) A general numerical method for analyzing the bending behavior of rectangular Mindlin plates on
elastic foundations has been proposed. This methed is an application of numerical integration and the
numerical solution of integral equations.

{(2) The approximate solutions of the partial differential equations of the rectangular Mindlin plate
give the transverse shear forces, the twisting moments, the bending moments, the rotations and the
deflections at the all discrete points which are intersections of the vertical and horizontal equally dividing
lines on the plate, Thus, the method does not require prior assumption of the shape of the deflection of the
plate,

(3) The method can treat the bending problems of the rectangular plate on nonlinear elastic
foundations and on non-uniform elastic foundations with acceptable accuracy and efficiency,

Appendix

Apt="Ya, Bu=0, Corrr={Yost Lna o) [ =[Te) ™

Ap=1), Bor= Y, Co=p¥ort Lt Yos Fu=Bu Tu=thi Tu=—ubus Fu=FKu.
Aps= Yoz, Bos= ¥, C pant = Jyt Yos Tous=8u Tu=ubi Ta=—pbuy. Tis=tlm
Am= Yor Bu=0 Coa=IaYon Tou=PFu. Y™ 1Py, Tu=8uw Fu=uvn
Aps=0, Bos= u1¥ps, Cosnt= I ¥ns Y=Ly, V=B Tu=pby  Ta=™
A= Yot V005 Bos™ 12¥ss, Cpox= — Y01, — By Fes=tBis Fsr=Lu Tr=— LB
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Apr=Tps Bx =,u(u‘)’p. + %) Com™— Yonr Truw=ufu, Ti=Pu Foe=""Lufu, Ta=fu
Aps="Yor Bos=¥m Cosn= Yo Eum Tas=L1s, Bu=Pu B
REFERENCES
1} Nehmachi, S. : On the bending of plates on elastic foundation whose four sides and corners are completely free from any stress,
Trans, of JSCE, No, 32, pp.26—32, 1956 (in Japanese),
2)  Kurata, M,, Takahashi, H, and Tanihira, T, : On numerical analysis of rectangular [.Jlates with all free boundaries on nenlinear
foundations, Trans, of JSCE, No.208, pp.13—~21, 1972 (in Japanese),
3} Kitamura, Y. and Sakurai, S. ! The solutions of rectangular plate with four free edges on elastic foundations, Journal of the
Japan Society of Civil Engineers, Vol 64-3, pp.61-~66, 1979 {in Japanese),
4) Cheung, Y. K. and Zienkiewicz, O, C. : Plates and tanks on elastic foundation-an application of finite element method, Int, Jour.
Solids and Structures, Vol.1, pp. 451461, 1965.
5y Henry, T., Y. ! Flexible plate finite element on elastic foundation, Jour, Structural Division, Proc. ASCE, Vol 96, ST10,
pp. 2083~2101, 1570.
6) Svec, O_J. ! Thick plates on elastic foundations by finite element method, Jour, Engineering Mechanics Division, Proe, ASCE,
Vol, 102, EM3, pp. 461477, 1976.
7) Sonoda, K. and Kobayashi, H. ! Rectangular plates on linear viscoelastic foundation, Jour. Engineering Mechanies Division,
Proe, ASCE, Vol 106, EM2, pp, 323~338, 1980.
8) Kobayashi, H, and Soncda, X, : Rectangular thick plates on linear viscoelastic foundations, Prec, of JSCE, No, 341, pp. 33~
39, 1984,
9)  Sakiyama, T, and Matsuda, H, . Bending Analysis of rectangular plates with variable thickness, Proc, of JSCE, No, 338, pp. 21
~28, 1983 (in Japanese),
10) Matsuda, H, and Sakiyama, T, : Bending analysis of rectangular plates with variable thickness on nonlinear elastic foundations,
Proc. of 9th Symp, on Computational Methed in Structural Engineering and related fields, pp, 221226, 1985 {in Japanese},
11} Salvadri, M, . Numerical computation of buckling loads by finite differences, Transactions of ASCE, Vol, 116, pp. 590636,

1951,
(Recelved May 30 1986)






