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ANALYSIS ON GEOMETRICAL NONLINEAR
BEHAVIOR OF RECTANGULAR PLATES

Chihiro MORITA*, Hiroshi MATSUDA**
and Takeshi SAKTYAM A**

In this paper, a dicsrete method for analyzing the geometrical nonlinear problems of
rectangular plates is proposed. The solutions of partial differential equations of
rectangular plates are obtained in discrete forms by applying the numerical
integration, and they give the transverse shear forces, twisting moment, bending
moments, rotations, deflection, in-plane displacements and membranc forces at all
discrete points. The nonlinear problems are solved by the iteration and the load

incremental procedure.

As the applications of the present method, geometrical nonlinear bending and post-
buckling problems of rectangular plates with some of boundary conditions are

calculated.
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1. INTRODUCTION

The fundamental equations for large deflec-
tion of the rectangular plates have been
derived by von Karmén”, and the extension
to the plate with small initial curvature has
been achieved by Marguerre ?.

Using these equations, the geometrical non-
linear problems of the rectangular plates have
been analyzed by many researchers. The
approximate solutions of the rectangular plate
subjected to lateral loads have been obtained
by the finite element method™®, the energy
method”, etc.9”. The post-buckling behavior
of the rectangular plate under edge compres-
sion has been investigated by using the
numerical methods such as the finite element
method?, the finite strip method”, ete.''",

However, it has been hardly carried out to
studies the geometrical nonlinear problems of
the plates having various boundary and load-
ing conditions.

In this paper, a discrete method is deve-
loped to study the geometrical nonlinear ana-
lysis of the rectangular plate. The discrete
solutions of partial differential equations gov-
erning the geometrical nonlinear behavior of
the rectangular plate are obtained in discrete
forms. By transforming the differential equa-
tions into integral equations and applying
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Fig.1 Rectangular plate and coordinate system.

numerical integrations, the discrete solutions
can be obtained. Thus, they give the trans-
verse shear forces, twisting moment, bending
moments, rotations, deflection, in-plane dis-
placements and membrane forces at all dis-
crete points of the plate.

As the applications of the proposed method,
numerical solutions for square plates with
three types of boundary conditions ; four
clamped edges, four simply supported edges,
and two opposite cdges simply supported and
the other two edges clamped, are presented.

2. FUNDAMENTAL DIFFERENTIAL
EQUATIONS

A rectangular Mindlin plate is referred to
an x-yz system of rectangular coordinates
with the position of the origin 0 of the
x-y= system at the corner of the middle
plane of the plate, as shown in Fig.l. The
fundamental differential equations governing
the geometrical nonlinear bending of the rec-
tangular plates which are subjected to the
distributed lateral load g(x,y) and the mem-
brane forces Nyy, Ny and N, are given as
Egs.(1l.a)~(1.h). These equations are based
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:

on Mindlin's theory which includes the effects
of shear deformations. Since an incremental
procedure js used in nonlinear calculation,
the fundamental differential equations are
presented in following incremental forms.

AQ, +aAQy _Nx-vNyAM Ny - vNx , AM.
o flv (1-v)D  (1- vz)D Y
- Y AMyy+ Ag + AN=0 ... (1.
(l-V)D xy+Aq e (1.2)
9AM .J,.% AQy =0 -~ (1b)
dx dy
DAMy  9AM.y
+ -AQ, = (1,
ay w9 (1)
A8, +V6A0f, _AM; - (Ld)
jx dy D
0AG, +1/‘M‘€Zt =AMJ’ ...............'(1_6)
ay adx D
9A8, , 046 _ 24My (L)
dy a (1-v)D
dAw AQy
—+ - (1.
ax A= KGh (Le)
94w + A6 = 40, e (L)
dy KGh

The relation between in-planc displacements
u, v and membrane forces Nyy N, and N

are expressed as follows:
34Ny

94Ny 20 ceereeeeen (L)
dx dy
9ANy My g (L)
dy e
_Q,AE + V% AWye = ANy (1 k)
dx 3 ¥
%‘i + 1/% AWyC=Aﬂ ......... (l,l)
dy i F
. A
98y | pppyes 2Ny (1.m)
&y 0 (1-V)F

where Qp,0Oy : transverse shear forces, Myy :
iwisting moment, My,My : bending mo-
ments, @&,6 : rotations, w: deflection,
vy :in-plane displacements, NyyNy.Ny :
membrane forces, D = EA3/[12(1-v3)] :
flexural rigidity of the plate, E ;
modujus of elasticity, G = E/[2(1+V)] :
shear modulus of elasticity, & : thick-
ness of the plate, v : Poisson's ratio,
Kk =5/6 : shear coefficient, F = Eh/(1-v2),
AQy,AQ, = increments of shear forces
@ Qr ;. AMxy, AM,,AM; = increments of
moments Myy,My,M, ; A8,Af = incre-
ments of rotations &6 ; Aw = incre-
ment of deflection w; Av,Au = incre-
ments of in-plane displacements vu ;
ANy, ANy ANy = increments of mem-

brane foreces NyyNy,N.; 4q = incre-
ment of load g, AN AW,yo, AWy, AWy,
= unbalanced force and nonlinear terms
(APPENDIX I).
By using the following non-dimensional
expression,
X1=a%Q)/IDo(1-vH], X 2 = a’Qu/Do(1v?)],
Xy= aMxy/[Du(I-Vz)] ,Xq= aMy/[Du(l-Vz)] s
X5 =aMx/[D0(1-V2')] ,Xﬁ = 6), ,X*] = @x s
Xg=wha,n=xla,l=yb
the differential Eqs.(l.a)~(1.h) are rewritten
as follows:
8 JAX;
E Fye—0= or

dAX

+ Fy, rs—n“"‘Fst 5| tfu=

N o (2.4)

(t=1:23 )
Similarly, by using the followmg non-
dimensional expression,

Xo = via,X10=ula ,X11 =a’Ney[Do(1-v3],
X1 = a®Ny/[Do(1-v2)], X 13 = a®Ny/[Do(1-v%)]
the differential Eqs.{1.i)~(1.m} are rewritten

as follows:

13 AAX

0AX ¢
EFr a

+F5:s"7+F6rsAXs +fu=0
e . (2.B)
‘ (t=9,10 13)
where @ and b are length and width of the
plate, p=bfa, ho is the standard plate
thickness, Dg is the standard flexural
rigidity of the plate, Dy = ER3/[12(1-v2)],
D=y,  T=u(1vP(ho), J=2u
(LvYhoh), K = ER3/(12xGa®h), Li=
HOVERS(126%), Lo = (1+WWhi/(Ga2h),
q = pga*[Do(1-v3), Np = iV 23/[Do(1-v%)],
Fus, fre are defined in APPENDIX II

3. DISCRETE SOLUTIONS OF
DIFFERENTIAL EQUATIONS

A reciangular plate can be divided in the
n-direction into m equal-length parts and in
the -direction into »# equal-length parts as
shown in Fig.2, and the plate comsiderd as
a group of discrete’ points which are the
intersections of the vertical and horizontal
dividing lines.

The rectangular area, O=z=zp and 0s{=§,
corresponding to an arbitrary intersection (iy)
shown in Fig.2, is expressed as the area [if]
in this paper, and the intersection (@) de-
noted by is called the main point of the
area [ij], and the intersections denoted by O
as the inner dependent points, the inter-
sections denoted Ly @ as the boundary de-

L
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Fig.2 Disciete poinis on rectangular plate.

pendent points.

By integrating Eqs.(2.A) and (2.B) over
the area [ij], the following integral equations
are obtained.

i
% (Flm'] [AXS(W:Q)-AXS(W)O)HH ‘

=1

0
]
+F2ts[ [AXS(WL';C) - AX(0,D)]dE
[¢]

&
+ Fays ] AXs(ﬂ,g)dedC
0

L
W el
+] [ FndmdE=0 ... (3.4)
0 0

i
1239 (F4rs [ [AXs(n,§) - AX(n0)Kn
= 0

G
+ Fsig [AXs(an - AXS(O,C)]dQ

i G
+F6rs] [ AX (1, E)dndE

§
+[ ]fﬂ(ﬂ:‘:)d?’idc 0 ... (3.B)
¢ Jo

By applying the numerical integration to
Egs.(3.A) and (3.,B), the simultaneous equa-
tion of unknown quantities X (s=1~8,9~13)
which are the dimensjonless shear forces,
twisting moment, bending moments, rotations,
deflection, in-plane displacements and mem-
brane forces at the main point (if) of the
area [i,f] are obtained as follows: '

E {FlfsE ﬂ!k{AXSkj AX.&'I(O]

g=1

J
+ Foyg E BillAX g1 - AX 01

k G7=0

+ Fags E > ﬁ;k@lﬂXskz}

+ E E Budifrunr =0 - (4.A)

={ =0
13 i
S A Fas Y BiklAX sty - AXsro)
5=0 klz-'U

i

+F SISIEO Bl A g1 - AX 1)
i

+ Fgg E E BulBusX S.’cl}

+ 2 2 BiiBjifackr= 0 .. (4.B)

The solunons Xpij of the simultaneous Eqgs.
(4.A) and (4. B) are expressed as follows:

AXpij = E 2 A piBitlAX tro - AX (1 - 6)]
+ IEDBPHGJ'I[AXWII - AX;“(l - 61])]
i J
+ kZﬂ IE CotkiBinBiAX (1 - &idyy)
=07=0

i _
-A p1k20 :Eu BieBi(Aqir + ANy -+ - (5.A)

@=1,2,",8)
13 (i
AXpij= 3. {«EUA piBikfAX ko - AX (1 - G
=9 Ve

j

+ 3 BplplAX e - AXi(1- )]
i/

+ 3 2 CpmPulpAX (L i)
=0/=0

i _
-kEO r% Bil518W cp i -~ (5.B)
{v=9,10,+,13)

where 6 is Kronecker's delta, i=1,2; . .m,

=2, 0 Bu=cighn, Bu=cgifn,

AptBpeCpur: APPENDIX IIT

The coefficients figf; are the weight coe-
fficients of the numerical integration. The
trapezoidal rule of approximate numerical
integration is applied in this paper, thercfore
the values of oo are given as follows:
g = - (Gok + G2, ogr=1-(or + G)/2

In Egs.(5.A) and (5.B), the quantities Xp; at
the main point () of the area [j] are
related to the quantities Xgo and Xy at the
boundary dependent points of the area [iJ]
and the quantities Xwj, Xrn and Xy at the
inner dependent points of the area [ij} With
the spreading of the area [{f] according to
regular order as [L1}{1,2],--,[1,#],[2,1],[2,2],

I
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w2, 8], [, 1), [,2]); - [ 0], the main point
of smaller area becomes one of the inner
dependent points of the following larger
areas. Whenever one obtains the quantities
Xpy at the main point (i) of the area [ij]
by using Egs.(5.A) and (5.B) in above men-
tioned order, one can eliminate the quantities
Xup Xt and Xy at the inner dependent
points of the following larger areas by sub-
stituting the obtained results into the corre-
sponding terms of the right hand side of
Eqs.(5.A) and (3.B). By repeating this pro-
cess, the quantities X, at the main point is
related to only the quantities X,o (r=1,3,4,6,7,
8) and Xy, (52,3,5,6,7,8) or Xym (u=9,10,11,
12) and Xyg (v=9,10,11,13) at the boundary
dependent points. The results are as follows:
p=1~8

6 i i
AXpij= 3, (’E ApigfdAX o+ 3, bpf)‘gdAXS%)
=1 \f=0 g0
+Agp e (6.4)
p=9~13
4 i J
AXpij= 3, | 2, apipaAup ¥ 3, DpijgaAXvog
d=11/=0 g=0 4
+4gpp o (6B)
where Gyt bpijea, Aqpyy are defined in AP-
PENDIX 111

The coefficients gy, bpijgd, Aqpi; in Bgs.(6.4)
and (6.B) can be independently calculated.
Eqs.(6.A} and (6.B) can be recognized as
the discrete solutions of the fundamental
partial differential Eqs.(2.A) and (2.B).

4. INTEGRAL CONSTANTS AND
"BOUNDARY CONDITIONS

Integral constants X,p and Xgge of Xyp
and Xygp express dimensionless quantities with
respect to Qy, Myy, My, 8, 6, w and Oy, My,
My, 6, G, w, o1 v, 4, Nyy, Ny and v, u, Nxy, N
on =0 and 7=0, respectively.

There are ten integral constants at each
discrete point, and five of them are seli-
evident according to the boundary condifions
along the edges =0 and #»=0. The remain-
ing five integral constants can be determined
by the boundary conditions along the edges
&=1.0 and 7n=1.0.

(1) The boundary conditions of rec-
tangular plate subjected to lateral
loads

For the boundary conditions of rectangular
plate subjected to lateral loads, the following
four cases: four clamped edges (CCCC); four

Qy=0,0x=0
Qy=0,Hxy=0 [Qy=0,0x=0 Qyr=0,Hzy=0 [HxyuD,8y-0
m By=0,v=0  [By=0,0x=0] {0x,0%| 6y=0,va0 |0x=0,v=0
Hay=0 v=0_,u=0 tix tixy=0 u=)
- -

0« [ oo o L] Que0
My Huy=D Hay | txy=0
Hx =0 Bx Ox=l
Hxy | u<0 tony, u=0
Hx | Rxy=0 B Hxy=0
Oy My My [Qy,Hy . Q¢ Hay By [G7,0
Heg My [ty Hug My
(1) ccee (2) $sSS5(pin)
Qy=t Qxal 0, 0%=0
Qy=0,Hxy=0 Muy=0,8y=0 Qy-0, ey 3:;0?3;@0
Qx,Bx| Oy=0,v=0  [0x=0,v=0 G, fix| Bye0,v=0 @m0, vl
u Nxy=0 el Hay =0 Bx Nay=0 0
Gx I G Qx ’_-r'-_'—lqy;o
Hxy Hxy=0 Hxy T Moy =0
0x 0x=0 M {By=0
u u=Q Hxy | u=0
Hiey Hay=0 Hx | Hay=0
Hxy] Qg Mxy,By w [Fy] Qv.Mxy,By [O7,07
v, Hxy . ny.Hy.
{3) §88%(roller) (4) SGsC

Fig.3 Integral constants and boundary conditions.

simply supported edges with pin supported

(SSSS-pin) ; four simply supported edges with

roller supported (888S-roller) ; two opposite

edges simply supported and the other edges
clamped (SCSC) are indicated. These integral
constants and the boundary conditions are
shown in Fig.3(1)~(4), respectively. These
figures represent one quarter of fhe rec-
tangular plate with two symmetrical axes.

The integral constants and the boundary

conditions at the corners of each plate are

shown in the boxes. For the detfails of deal-
ing with the integral constants and boundary
conditions, see Ref.12).

(2) The boundary conditions of rec-
tangular plate subjected to edge
compression

Concerning the loading conditions of the
plate subjected to edge compression, the fol-
lowing cases are considered:

[Uniformly displaced edges]

along x=0,a alongy=0, b
u = const Nyy=0
b
P= f Nxgy Ny=0
0 P
[Uniformly loaded edges]
along x=0,4a alongy=0, b
P =const Nyy=0
Nyy=0 Ny =0

As for the supporting conditions, we will
treat the foillowing three cases: a) - four
simply supported edges; b) - loaded edges
clamped, the other edges simply supported ;
c) - loaded edges simply supported, the other
edges clamped.,

L
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Fig.4 Load-deflection curves under uniform lateral koad
(CCCO).

5. COMPUTATIONAL PROCEDURE

In this paper, the geometrical nonlinear
problems are solved by iteration and the
load incremental procedure. The outline of
the computational procedure is described as
follows:

1). Calculating the unbalanced force AN,
in Eq.(1.a), and substituting membrane
forces Ny, Ny and Ny, the solutions
AstAQx,AMxy:AMysAMmA@,A@c and Aw
for out-plane bending deformation are
obtained. {Only first step, the unbalanced
force AN, is equal to zero.)

2). From Egs.(1.g) and (1.h), the values
aw/fdx and aw/dy are obtained.

3). Calculating the nonlinear terms AWy
AWy and AWy in Egs.(1.k), (1.1) and
(1.m), the solutions Av,du,ANyy,AN, and
AN, for in-plane deformation are ob-
tained.

4)., From the membrane forces AN;)AN,
and AN, the unbalanced force AN, in
Eq.(1.2) is again calculated.

The iteration processes 1)~4) must continue
until the unbalanced force approach to zero
and the new increment of the deformations
become sufficiently small

6. NUMERICAL RESULTS

- Numerical solutions for two specific pro-
blems are presented. The first problem in-
volves the square plates subjected to lateral
loads that are uniformly distributed through-
out the plate or concentrated at the center
of the plate. The other problem involves
the square plate subjected to edge compres-
sion and with small initial curvature.

(1) Rectangular plate subjected to

lateral loads

Membrane

Compression 4 Tension
opo - 2

= — — — Kawal
— — Way
—= = — Schimidt
Present

15 20

Fig.5 Load-stress curves under uniform lateral load
(ceeo).

First, in order to confirm the convergence
and accuracy of nunerical solutions obtained
by the discrete method, it is applied to the
geometrical nonlinear analysis of square plates
{(1ia=0.01,v=0.3) subjected to uniformly dis-
tributed lateral load. From the results of
four clamped edges plate which is divided
into #m=n=4,6,8,10, the numerical solutions of
the division m=n=8 agreed with those of
m=n=10. Thus, the numerical computation
for m=p=8 is carried oul

a) Plate with four clamped edges (CCCC)

Figs.4 and 5 present the computing re-
sults for a square plate with four clamped
edges. Fig.4 shows the load-deflection
curves with respect to maximum deflection.
Fig.5 shows the load-stress curves at the
center of the square plate with respect to
upper surface (compression), lower surface
(tension) and membrane stress. These figures
show the comparison between the discrete
solutions and the other solutions such as the
finite element solutions obtained by Kawai ef
al. ¥ and Schmidt®, and the solutions from
the cnergy method by Way™. It is found
from these figures that the numerical solu-
tions obtained by the discrete method agree
with those obtained by finite element and the
energy method.

b) Simply supported plate (S5SS)

Figs.6, 7 and 8 present the computing
results for a square plate with four simply
supported edges. Fig.6 shows the load-
deflection curves with respect to the max-
imum deflection when non-dimensional inere-
mental load intensity is Age¥/Dh=100. Figs.
7 and 8 shows the load-stress curves at the
center of the square plate, and the former is
the results of the plate with pin supporfed

]
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Fig.6 Load-deflection curves under uniform lateral load
(5SS8),
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Dh
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Fig.7 Load-stress curves under uniform lateral load (piw).
Compression Membrane Tension
3000, A8

bh

Fig.8 Load-stress eurves under uniform lateral load
(roller).

edges and the latter is the results of the
plate with roller supported edges. In Figs.6
and 7, the numerical solutions obtained from
the discrete method are compared with those
of the solutions by Berger® and Levy?”. It
is seen that the load-deflection curve obtained
by the discrete method agree with Levy's
solution better than Berger's.

¢) Plate with two edges clamped (SCSC)

The results similar to those described
above, for a square plate with two opposiie

4

apoo p 22
Dh
2500
~— = = Berger
2000 F Present
1500 |-

Linear

1000
500
0 0.5 1.0 15y 20
h
Fig.9 Load-deflection curves under uniform lateral load
(3C30).
Compression  ,  Membrane Tensfon
apoo 22
[ oh
2500
2000 |
1500 ©
toco |
500 [
-5 0 5 10 15 . 20
o ai1-v?
Eh?

Fig.10 Load-siress curves under uniform lateral load
(SCSC).
s

Dh /

3000

2500

2000

1500 F

1000

500

0

Fig.11 Load-deflection curves under a concentrated load.

edges simply supported and the other two
edges clamped are described in Figs,9 and
10. Fig.9 shows the load-deflection curves
with respect to the maximum de¢flection
when non-dimensional incremental load inten-
sity is Aga®/Dh=100. Fig.10 shows the
load-stress curves at the cenier of a square
plate. In Fig.9, the numerical solutions
obtained from the discrete method are com-
pared with those of the solutjions by Berger®.
The deflection by the discrete method is a
little greater than Berger's solution.

[
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Fig.12 Load-deflection curves under edge compression
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Fig.13 Load-deflection curves under edge compression

(CSCS).

d) Plate under a concentrated load

Second, the present method is applied to
the square plates under a concentrated load
F at the center, with four clamped edges
and with four simply supported edges. Fig.
11 shows the load-deflection curves with re-
spect to the maximum deflection when non-
dimensional incremental load intensity is
APa%Dh = 50.
(2) Rectangular plate subjected to edge

compression

In the previous section, the rectangular
plate subjected to lateral load has been
treated. Here, the rectapgular plate (i=0.01,
v=1/3) subjected to edge compression, with a
small initial curvature (wof=0.005,0.1) is
considered.

a) Plate with four simply supported edges
First, the present method is applied to the
simply supported square plates subjected to
edge compression, with uniformly displaced
edges and with uniformly loaded edges.
Fig.12 shows the load-deflection curves with
respect to the maximum deflection at the
center when the division m=n=8. In this
figure the discrete solutions are compared
with the double Fourier series solutions
obtained by Yamaki'®. It is found from
this figure that a good agreement exists
between these sets of results.

b) Plate with loaded edges clamped and

the other edges simply supported
Next, the present method is applied to the

. with uniformly displaced edges.

square plate with loaded edges clamped and
the other edges simply supported, and with
uniformly displaced edges. Fig.13 shows the
load-deflection curves with respect to the
maximum deflection at the center (n=n=10),
The solutions obtained by Yamaki'® are also
plotted for comparison in Fig.13, and a
good agreement is observed.

c) Plate with loaded edges simply supported

and the other edges clamped

Fig.14 presents the computing results for
a square plate with loaded edges simply
supported and the other edges clamped, and
Fig.14
shows the load-deflection curves with respect
to the maximum deflection at point 4
(m=n=8). It is here assumed that the small
initial deflection is two half-waves in the
x-direction, because of a square plate buck-
ling in two half-waves in the x-direction in
this case. This figure also shows a com-
parison between the discrete solutions and a
double Fourire series solutions obtained by
Yamaki '™, and a good agreement cxists
between these sets of results.

7. CONCLUSIONS

The main conclusions can be summarized as
follows.

(1) A general numerical method for the
geometrical nonlinear problems of rectangular
plates has been proposed, and the propesed
method has been applied to the square plates

]
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Fig.14 Load-deflection curves under edge compression (SCSC).

with three types of boundary conditions.

(2) The discrete solutions are obtained by
transforming the differential equations into
integral equations and applying numerical in-
tegrations, and they give the transverse shear
forces, twisting moment, bending moments,
rotations, deflection, in-plane displacements
and membrane forces at all discrete points of
the plate. Thus, the proposed method does
not require prior assumption of the shape of
the deflection of the plate.

(3) By utilizing the present method, the
geometrical nonlinear problems for the rec-
tangular plates having some of boundary and
loading conditions can be treated with ac-
ceptable accuracy.

(4) In the proposed method, the size of
the matrices of the simultaneous equation is
reduced as well as the boundary element
method. Furthermore, since the coefficients
in Bgs.(6.A) and (6.B) can be independently
calculated, CPU time can be reduced by
using the parallel computer.
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