On the equation $u_{_{\rm t}}-\Delta\,u\,+\,u^{_{\rm 3}}=\,{\rm f}$

Kazuo Okamoto

(昭和52年9月17日受理)

Introduction

Let Ω be a bounded domain of R³ with sufficiently smooth boundary Γ . This note is concerned with the boundary value problem for the equation

$$(1) -\Delta b + b^3 = i (x \in \Omega)$$

under the boundary condition.

$$(2) \qquad b \mid_{\Gamma} = b_{o}(x)$$

and also with the initial-boundary value problem for the equation

(3)
$$u_t - \Delta u + u^3 = f$$
 $(x \in \Omega, t \ge 0)$

under the initial condition

$$(4) \qquad u \mid_{t=0} = u_0(x)$$

and the boundary condition

$$(5) \qquad u \mid_{\Gamma} = b_{o}(x)$$

We study the equation (3) when u(x) is sufficiently closed to a solution b(x) of the equation (1) with the boundary condition (2), and prove that if b(x) satisfies certain conditions, a solution u converges to b as $t \to \infty$. The problem for the Navier-Stokes equations has been treated by Heywood in [1], [2].

Preliminaries

We denote by $L^p(\Omega)$, $1 \le p < \infty$, the Banach space of all real functions on Ω ,

$$\begin{array}{ll} |u| & = \; \{ \; \int_{\Omega} |u(x)|^p dx \}^{\; 1 \; / \; p} \\ \text{For $p=2$, the space $L^2(\Omega)$ is a Hilbert space for the scalar product} \end{array}$$

$$(u, v) = \int_{\Omega} u(x)v(x)dx$$
,

and we set

$$|u| = (u, u)^{-1/2}$$

 $H^{1}\left(\Omega\right)$ is the space of functions of $L^{2}\left(\Omega\right)$ whose first derivatives (in the sense of distributions) are in $L^2(\Omega)$. $H^1(\Omega)$ is a Hilbert space with the scalar product

$$((u, v)) = (u, v) + \sum_{i=1}^{3} (D_{i}u, D_{i}v), D_{i} = \frac{\partial}{\partial x_{i}}$$

38 Kazuo Okamoto

 $H_0^1(\Omega)$ is the closure in $H^1(\Omega)$ of $C_0^1(\Omega)$, the space of infinitely differentiable functions with compact support contained in Ω . We write

$$(\nabla \mathbf{u}, \nabla \mathbf{v}) = \sum_{i=1}^{3} (D_{i}\mathbf{u}, D_{i}\mathbf{v}), (\nabla \mathbf{u}, \nabla \mathbf{u}) = |\nabla \mathbf{u}|^{2}.$$

Lemma (Sobolev) If $u \in H'_{\sigma}(\Omega)$, then

$$|u| \le C |\nabla u|$$
, $1 \le p \le 6$

Generalized solution

We assume the functions f, b are time independent and b has an extension b(x) into Ω satisfying

$$l p \in \Gamma_{4}(\Omega)$$

(6)
$$\{ -\Delta b + b^{3} - f \in L^{2}(\Omega) \}$$

$$\{ v_{0} = u_{0} - b \in H_{0}^{1}(\Omega) \}$$

We call u(x, t) = v(x, t) + b(x) a generalized solution of (3), (4),

- (5) in Ω \times (0, $\infty)$ if b satisfies (6) and if for all T > 0 :
- $(i) \ v \ \in \ L^2(\ 0\ ,\ T;\ H^1_0(\Omega) \cap \ L^4(\Omega)),\ v_t^{\ } \ \in \ L^2(\ 0\ ,\ T;\ L^2(\Omega))$

(ii)
$$|v(x, t) - v(x)| \rightarrow 0$$
 as $t \rightarrow \infty$
(iii) $\int_{0}^{T} \{(v_{t}, \not \phi) + (\nabla v, \nabla \phi) + (v^{3} + 3bv^{2} + 3b^{2}v, \not \phi) + (b^{3} - \Delta b - f, \not \phi)\} dt = 0$ for all $\phi \in C_{0}^{\infty}(\Omega \times (0, T))$.

Let f, u, b be given. Suppose a solution b of equations (1), (2) satisfies the condition (6), and

(i)
$$1 - \frac{3}{2}C_0|b| = \mu > 0$$

$$(ii) \quad |v_0| \cdot |\Delta u_0 + f - u_0^3| \leq \frac{\mu}{36 C_0^6 |b|_4^2}$$

Then the initial-boundary problem (3), (4), (5) has a generalized solution u in $Q \times (0, \infty)$, and

$$|u(t) - b| \le |v| exp (-\mu C^{-2}t).$$
A Priori estimates

We shall employ Galerkin's method to prove the existence of generalized solutions.

Let $\{w_{\underline{\,}}(x)\}$ be a complete system of functions in $H^{1}_{\mathfrak{o}}(\Omega).$

We suppose that $u_0 = |v_0| w_1 + b$ Let

$$v^{m}(x, t) = \sum_{j=1}^{m} g_{jm}(t) w_{j}(x)$$
, $m=1, 2,$

be the solution of the system (j=1,...m) of ordinary differential equations,

$$(7) \qquad (v_{t}^{m}, w_{j}) + (\nabla v_{t}^{m}, \nabla w_{j}) + ((v_{t}^{m})^{3} + 3b(v_{t}^{m})^{2} + 3b^{2}v_{t}^{m}, w_{j}) = 0$$

which satisfy the initial conditions $g_{im}(0) = v_{im}$ and $g_{im}(0) = 0$

for j=1,..., m. There exists v^m in $[0, t_m], t_m > 0$.

By multiplying each equation (7) by g_{jm} , summing $\sum_{j=1}^{m}$, noting the Sobolev's

lemma, inequality (8) is obtained.

$$(8) \quad \frac{1}{2} \frac{d}{dt} |v^{m}|^{2} + \mu(|\nabla v^{m}|^{2} + |v^{m}|^{4}) \leq 0.$$

This shows that $t_m = T$. According to the Sobolev's lemma, we have

$$(9)$$
 $v^{m}(t) + \leq |v_{0}| \exp(-\frac{\mu t}{C_{0}^{2}})$

An applications of the Schwarz inequality to (8) yields

$$(10) \qquad \mu |\nabla \mathbf{v}^{\mathsf{m}}|^2 \leq |\mathbf{v}_{\mathsf{o}}| \cdot |\mathbf{v}_{\mathsf{t}}|$$

By differentiating each equation (7) with respect to t, multiplying by $\frac{d}{dt}g_{im}$

(t), summing $\sum_{j=1}^{m}$, and using (10), we obtain

$$\frac{1}{2}\frac{d}{dt}|v_t^{\mathsf{m}}|^2 + (1 - 6\mu^{1/2}C_{\Omega}^3|b|_4||v_0||^{1/2}||v_t||^{1/2})||v_t^{\mathsf{m}}||^2 \leq 0.$$

From the assumption of the theorem, it follows that $\|\mathbf{v}_t^m\|$ and hence $\|\nabla\,\mathbf{v}^m\|$ are bounded :

(11)
$$|v_t^{\mathsf{m}}| \le |\Delta u_0 + f - u_0^3|$$

(12)
$$|\nabla \mathbf{v}^{\mathbf{m}}| \leq \mu^{1/2} |\mathbf{v}_{0}|^{1/2} |\Delta \mathbf{u}_{0} + \mathbf{f} - \mathbf{u}_{0}^{3}|^{1/2}.$$

(the proof of the theorem)

By the estimates (8), (11), (12) and the Rellich theorem, a subsequence $\{v^k\}$ can be selected from $\{v^m\}$ such that

$$\begin{array}{l} v^k \to v \text{ weakly in } L^2(0,\,T;\,H^1_0(\Omega)) \\ \\ v^k_t \to v_t \text{ weakly in } L^2(0,\,T;\,L^2(\Omega)) \\ \\ v^k \to v \text{ strongly and a.e. in } L^2(0,\,T;\,L^2(\Omega)), \end{array}$$

 $v'' \rightarrow v$ strongly and a.e. in $L^{*}(0, T; L^{*}(\Omega))$ $(v^{k})^{3} \rightarrow v'$ weakly in $L^{4/3}(0, T; L^{4/3}(\Omega))$.

According to well known results, it follows that $v'=v^3$ and v is a generalized

40 Kazuo Okamoto

solutions of the equations (3), (4), (5).

By (9), each $+v^{m}(t) + decays$ exponentially, uniformly in m.

Thus this estimate must hold for |v(t)| also.

Refferences

[1] J. Heywood, On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions,

Arch. Rational Mech. Anal., 37 (1970), 48-60.

[2] J. Heywood, On nonstationary problems for the Navier-Stokes equations, and the stability of stationary flows.

Stanford University, December 1967.