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Abstract

In this note we shall consider the problem of finding the radius of convexity in some
univalent region for functions f(z)=z+a32z2+:---which are analytic and satisfy
Re {£/(2) /(M7 @)+ (1=)$"(2)}>  for 2] <1, 0=p<1, 0=0<1
where #(2) =z+byz24-...-is analytic, univalent and convex of order o, 0=<a<1.

Finally a distortion theorem for f(z) is shown,

1. Introduction
Let k(a) denote the class of functions analytic in [z{<{ 1 and of the form
P(2)=z+boz24 -+ ,
such that Re {zd)”(z)/qb’(z)-i—l} >a for |z|<1 and 0=Za < 1.
Then ¢(z) is said to be convex of order a.
we say that an analytie function f(z)=2+azz2+---- is in the class C(a,8) if there
exists a function ¢(z) Ek(a) such that
Re {£'(2) /6" (2)}>F, 0=B < 1.
Kaplan (2] proved that C(o, o), the class of close-to-convex functions, is univalent in
1z ]<1.
In this paper we shall consider the radius of convexity of f(z) under the conditions

which are pointed out in abstract. And finally we state on the distortion theorems for

f(z).

2. Proof of the theorems

In proving the theorems we will make use of the following lemmas.

* Some of these results had been reported in the Kyushu branch of Mathematical
Society of Japan. (September 22, 1973 in Saga university).
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Lemma 1. (5). If h(z)=1+dyz+----- is analytic for |z|<{1 and Re h(z)>a,
0<a<1,hen

1—(1—2a) |z]
14+ |z

< Re h(2)< |h(z) | =< -* f;l(IT'Z;tJ)Iz\

Lemma 2. (4). Let p(z) be analytic for |z[ <1, p(o)=1.
Then Re p(z) >R, 061, if and only if

p(sy =L+ (1= i@)«;(z) ’

where w(z) is analyitc, w(0)=0 and | @(2z) |<1 for |z|<1.
Lemma 3. Let p(z)=1+cqyz++--- is analytie and Re p(z)>g, then 0<<B8<1, for |z |<1,
(=2 [p@ 1= (1= 2D /(A-r=(1+1—-260)]2])

1—2
1+(1 —2B8)n

for [z] < < 1, where 02 < 1.

Proof. Using Lemma 1,

1 = 1 _ 1=z
1—-Alplz)] = 1— 1+(1 —2B)jz| — 1-A—(1+1—-28)) z|
— |z

for 2§ <- 1+11—2/3)>» <1t

Lemma 4. {3). With the same hypothesis as in Lemma 3, we have

()

p(2)

2r
(l—r){1+r+*1'§7;(1—r)}

for {z|=7y < 1.
Lemma 5. (1]). Let ¢p(z)ek(a). Then

lp’(z) 1 < - a= T)'z(l oy 1@ = (1+‘r)2(‘ 2
for [z|=r <1

Theorem 1. Let f(z)=z+apz2+::::: be analytic for |z |{<{ 1 and ¢(z)sk(a).
If Re{f'(2) / M/ (2)+ (=)’ (2))} 6,

06 <1, 0=A < 1 for |z| <1, then Re gf)((?) ~0

1-2

for |z | < R*=“(ﬂl———n—+(l—-2ﬂ)7\.) .

Proof. Let
(1) P@=F() [ (M (@) + A=’ (@) =L +erzt o+,
then p(z) is analytic and Re p(z)<B for |[z]| < 1.
Now from (1),
EAONENCERSON
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The expression (2) is valid for those z for which 1—Ap(z)2c0 for |z |<1.

Since |p(z) | £ _1+fl521%z; , 1—Ap(z)2c0 in particular if |z| <—f——%:—2%_)7"
From Lemma 2, by Schwarz’s lemma,
@) le@| = |z|.
Using Lemma 2 and (3),
f’'(z) o @-ny 1+(1—-2R)w(z)
e gy TR { 1+(1-28)0 L }
( 1+(1—28)n @ )
1-x 1-2=2(B+(1-26)M) |z| —(1-28) A+ (1 —28)M) |z
1—A

W =ara—emr |

2
B ERCE T |
Using the right-hand part of inequality in (4), we obtain that

Re —%'%)7— >0 for |z] <R*< 1.

This shows that f(z) is univalent and close-to-convex for z <{R*.

Theorem 2. With the same hypothesis as is Theorem 1, f(z) maps the disk|z|< R
onto a convex domain, where R is the smallest. positive root of the equation
a(y, @, B, A)=0, where
ar, @ 8, M=(1-a) [a-M+2{a-Ne-a+a-20M}r

—{(1-)»)(1—2a)+4a(.6’+(1—2/3)7x)+4(1—B)+(1—2[3)(1+(1~23)x)}72
+2(1—2a)(1—28) (1+(1-2/3)x)74]

Proof. Now from (1),

&) @ =(1-Mp @p@) ) /1-rp(2)),
for lz] <R* 1.

From equation (5), we have

z2f(z) 2z | wi(m 1
£/(z) ¢’ (z) p(z) 1-2p(z)
In (1), it is shown that
29" (z) _ 2(-aor (2] =

(6) Re {—qS’(z) }g ity for [z|=yr < 1.
From Lemma 4, we obtain

|, P(2) 21-B)r
™ |z 5 | = a=parazmn

Using (6), (7) and Lemma 3,
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for |z| <R* 1.
Simplifying the right-hand side of (8), we obtain
SR (¢ 30—
A+ A+A-28)r){1—2—-A+1Q-26)Mr} .
Since q(o, @, B, A)>0,
a(R%, «a, 8, M0,
and q(R, a, B, \)=0,
it follows that f(z) maps the disk |z | <<R(<<R*<1) onto a convex domain.

This completes the proof.

Remark. If a=8=0, »=0, we see that f(z)&C(o, o). The Koebe function
z(1—z)-2 is in C(o, o) relative for »i—i—z— and the least positive root of

q(y, 0, 0, 0) =74 —2y3—672—2r+1 is 2—+/3, the radius of convexity

for the class S. (S is the class of normalized univalent functions analytic in |z | <{1.)

Theorem 3. Let f(z)=z+agz2+ ... be analytic for {z| <1 and ¢(z) =k(a).
If Re {f’(z)/(?&f’(z)+(1—7\)¢’(z)) }>B, 0B <1, 0=A <1 for {z; < 1, then we

have for |z| <R*

vy | A= A+1—=28)7) 1

O [ F@ [ = qonara—28nr T a-pria
| ¢ 1-MNa-(=28r) 1
U0 JH@ | = o rara-—2mnr T aepi e

Equality holds in (9) for the function

z
£ [ aA=Ma+@a-28)t) .
O oy Tarazone | a-omea ®
o
and equality holds in (10) for the function

_{ a-ma-a-280 1
fa(2) f(l MNFAFA-28)M)t (14t)20-a) dt

Proof. Using Lemma 2, we put

f'(z)  _ 1+(1-28)G(2)
D @ Ta-ae' — 1-G@

where G(0)=0, |G(z)| <1 for |z| < 1.
Therefore by Schwarz’s lemma, (11) yields
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1-(1-28)r £/(z) A+1- 2/5')7' _
T = | Searacoser | = sy T (sl=r<y,
or
1+7 AM(2)+(1A—N)P'(2) 1—7r
R e £(2) =
Using (12) and Lemma 5, the result follows.
Now, let
_ [ A=Ma+a-28t 1
£z) f A—A)—(IF (1=2B)A)t CEDRE
and

(1
$(2) = f asp:w 9

For ¢(z), we can able to show that ¢(z)=k(a), and for £(z), $(z), it is shown that

£7(2) B 1+ (1-28)z
Re St ra-md'@ ~ R 1 T F

Therefore f;(z) satisfies the conditions of Theorem 3. The proof that f,(z) satisfies

the conditions of Theorem 3. is similar, with

p(z)=

1
[
(8}

Theorem 4. With the same hypothesis as in Theorem 3, we have for |z| < R¥

: (A=A (1+1—-28)t) 1

as) @i = f (1-A)—(A+A=28)N)t  (1-t)20-a dt.
| (=M= (1-28)0) 1

v @ = A—M+A+A=28)M)t ~ “(Q+-a’ de

o
Equality holds in (13) for f;(z) in Theorem 3. and in (14) for f3(z) in Theorem 3.
Proof. To prove (13), let z=yetd. Then

r
E(rei) | < [ [£(tei0) | de
[¢)

T
= f A—MA+a—28 1
= J - -Q+0-28NMt (1=t)20=a )
To prove (14), let z,, |zo! = 7, be chosen in such a way that ! f(z,) | <X [f(z)!,

for all z, |z| =

If L(z,) is the pre-image of the segment o, f(z,), then

) [z f(z) [ = [ £(2)] 1dz)
L(Zo
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- [ -na-0-280 . 1
- (1—=A)+a—(1-28)A) (1+t)20-a)
[o]
This completes the proof.
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