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An approximate method is extended for analyzing the free vibration problem of simply
supported orthotropic square plate with a square hole. In this paper, a square plate with
a square hole is transformed into an equivalent square plate with non-uniform thickness
by considering the hole as an extremely thin part of the equivalent plate. Therefore,
the dynamic characteristics of a plate with a hole can be obtained by analyzing the
equivalent plate. The Green function, which is the discrete solution for the deflection of
the equivalent plate, is used to obtain the characteristic equation of the free vibration.
The effects of the side to thickness ratio, hole side to plate side ratio and the variation
of the thickness on the frequencies are considered. Some numerical analyses are carried
out for the simply supported orthotropic square plate with a square hole. The efficiency
and accuracy of the numerical solutions by the present method are investigated.
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plate, Green function, vibration

1. Introduction

Plates with holes are extensively used in aeronau-
tical, mechanical and civil structures to lighten the
structure and to obtain the convenient connection of
structural members. Their dynamic characteristics
have been studied for many years. Most previous
investigations have been confined to isotropic plates
with holes [1–5]. The study of composite plates with
holes are rather limited. Reddy [6] studied the large
amplitude free vibration of layered composite plates
with rectangular cutouts by finite element method.
Frequencies corresponding to linear and nonlinear sit-
uations were presented for thin and thick orthotropic
and laminated composite plates. Avalos, Larrondo
and Laura [7] obtained the frequency parameters for
anisotropic rectangular plates with free-edge holes by
using the Rayleigh-Ritz method. The effects of aspect
ratio, hole side to plate side ratio and the position of
the hole on the frequencies were investigated. How-

ever, in these studies the effect of the variation of the
thickness on frequencies was not considered.

This paper extends the early work [8] to analyze the
free vibration of orthotropic square plates with a hole.
By considering the hole as an extremely thin part of a
plate, the free vibration problem of a plate with a hole
can be transformed into the free vibration problem of
its equivalent square plates with non-uniform thick-
ness. Green function， which is the discrete solution
for the deflection of the equivalent plate, is used to
obtain the characteristic equation of the free vibra-
tion. The effects of side to thickness ratio, hole side
to plate side ratio and the variation of the thickness
in one direction or two directions on the frequencies
are presented. The lowest 5 frequency parameters and
their mode shapes are given for simply supported or-
thotropic square plates with a square hole. By com-
paring the present results with those previously re-
ported, the convergence and accuracy of the present
method are investigated.
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2. Discrete Green Function

An xyz coordinate system is used in the present
study with its x− y plane contained in middle plane
of an orthotropic square plate and the z−axis perpen-
dicular to the middle plane of the plate. The thickness
and the length of the orthotropic square plate are h

and a, respectively. The principle material axes of the
plate in the direction of longitudinal, transverse and
normal directions are designated as 1, 2 and 3. The
differential equations of the plate with a concentrated
load P at point (xq , yr) are as follows:

∂Qx
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+
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where Qx and Qy are the transverse shear forces, Mx

andMy are the bending moments, Mxy is the twisting
moment, k = 5/6 is the shear correction factor, δ(x−
xq) and δ(y − yr) are Dirac’s delta functions, Aij are
the extensional stiffnesses (i, j = 4, 5), Dij are the
bending stiffnesses (i, j = 1, 2, 6).
Aij , Dij can be obtained by the following expres-

sions:

Aij = Qijh, Dij =
1
12

Qijh
3,

Q11 =
E1

1− ν12ν21
, Q22 =

E2

1− ν12ν21
,

Q12 =
ν12E2

1− ν12ν21
, Q44 = G23, Q55 = G31,

Q66 = G12, others Qij = 0,

where E1 is the axial modulus in the 1-direction, E2

is the axial modulus in the 2-direction, ν12 is the Pois-
son’s ratio associated with loading in the 1-direction
and strain in the 2-direction, ν21 is the Poisson’s ratio
associated with loading in the 2-direction and strain in
the 1-direction, G23, G31 and G12 are the shear mod-
uli in 2-3, 3-1 and 1-2 planes.
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Fig. 1 Discrete points on a rectangular plate

By using the non-dimensional expressions

[X1, X2] =
a2

D0(1− ν12ν21)
[Qy, Qx] ,

[X3, X4, X5] =
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D0(1− ν12ν21)
[Mxy,My,Mx] ,
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[
θy, θx,

w

a

]
, [η, ζ, ξ] =

[x
a
,
y

a
,
z

h

]
,

the equation (1) can be rewritten as

8∑
s=1

{F1ts
∂Xs

∂ζ
+ F2ts

∂Xs

∂η
+ F3tsXs}

+Pδ(η − ηq)δ(ζ − ζr)δ1t = 0, (2)

where t = 1 ∼ 8, P = Pa/(D0(1 − ν12ν21)), D0 =
Eh3

0/(12(1 − ν12ν21)) is the standard bending rigid-
ity, h0 is the standard thickness of the plate, δij is
Kronecker’s delta, F1ts, F2ts and F3ts are given in
Appendix A.
By dividing a rectangular plate vertically into m

equal-length parts and horizontally into n equal-
length parts as shown in Figure 1, the plate can be
considered as a group of discrete points which are
the intersections of the (m+1)-vertical and (n+1)-
horizontal dividing lines. In this paper, the rectangu-
lar area, 0 ≤ η ≤ ηi, 0 ≤ ζ ≤ ζj , corresponding to the
arbitrary intersection (i, j) as shown in Figure 1 is de-
noted as the area [i, j], the intersection (i, j) denoted
by © is called the main point of the area [i, j], the
intersections denoted by ◦ are called the inner depen-
dent points of the area, and the intersections denoted
by • are called the boundary dependent points of the
area.
By integrating the equation (2) over the area [i, j],

the following integral equation is obtained:

8∑
s=1

{
F1ts

∫ ηi

0

[Xs(η, ζj)−Xs(η, 0)]dη
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+F2ts

∫ ζj

0

[Xs(ηi, ζ)−Xs(0, ζ)]dζ

+F3ts

∫ ηi

0

∫ ζj

0

Xs(η, ζ)dηdζ
}

+Pu(η − ηq)u(ζ − ζr)δ1t = 0, (3)

where u(η − ηq) and u(ζ − ζr) are the unit step func-
tions.
Next, by applying the numerical integration

method, the simultaneous equation for the unknown
quantities Xsij = Xs(ηi, ζj) at the main point (i, j)
of the area [i, j] is obtained as follows:

8∑
s=1

{
F1ts

i∑
k=0

βik(Xskj −Xsk0)

+F2ts

j∑
l=0

βjl(Xsil −Xs0l)

+F3ts

i∑
k=0

j∑
l=0

βikβjlXskl

}

+Puiqujrδ1t = 0, (4)

where βik = αik/m, βjl = αjl/n, αik = 1 − (δ0k +
δik)/2, αjl = 1 − (δ0l + δjl)/2, t = 1 ∼ 8, i = 1 ∼ m,
j = 1 ∼ n, uiq = u(ηi − ηq), ujr = u(ζj − ζr).
The solution Xpij of the simultaneous equation (4)

is obtained as follows:

Xpij =
8∑

t=1

{ i∑
k=0

βikApt[Xtk0 −Xtkj(1− δik)]

+
j∑

l=0

βjlBpt[Xt0l −Xtil(1− δjl)]

+
i∑

k=0

j∑
l=0

βikβjlCptklXtkl(1− δikδjl)
}

−Ap1Puiqujr, (5)

where p = 1 ∼ 8, Apt, Bpt and Cptkl are given in
Appendix B.
In the equation (5), the quantity Xpij at the main

point (i, j) of the area [i, j] is related to the quanti-
ties Xtk0 and Xt0l at the boundary dependent points
of the area and the quantities Xtkj , Xtil and Xtkl

at the inner dependent points of the area. With the
spreading of the area [i, j] according to the regular
order as [1, 1], [1, 2], · · ·, [1, n], [2, 1], [2, 2], · · ·, [2, n],
· · ·, [m, 1], [m, 2], · · ·, [m,n], a main point of a smaller
area becomes one of the inner dependent points of the
following larger areas. Whenever the quantity Xpij at
the main point (i, j) is obtained by using the equation
(5) in the above mentioned order, the quantities Xtkj ,
Xtil and Xtkl at the inner dependent points of the fol-
lowing larger areas can be eliminated by substituting

the obtained results into the corresponding terms of
the right side of equation (5).
By repeating this process, the equation Xpij at

the main point is only related to the quantities Xrk0

(r=1,3,4,6,7,8) and Xs0l (s=2,3,5,6,7,8) which are six
independent quantities at the each boundary depen-
dent point along the horizontal axis and the vertical
axis in Figure 1, respectively. The result is as

Xpij =
6∑

d=1

{ i∑
f=0

apijfdXrf0 +
j∑

g=0

bpijgdXs0g

}

+qpijP, (6)

where apijfd, bpijgd and qpij are given in Appendix C.
The equation (6) gives the discrete solution of the

fundamental differential equation (2) of the bending
problem of a plate under a concentrated load, and the
discrete Green function is chosen as X8ij/[Pa/D0(1−
ν12ν21)].

3. Integral Constant and Boundary

Condition of a Square Plate

The integral constants Xrfo and Xsog involved in
the discrete solution (6) are all quantities at the dis-
crete points along the edges ζ = 0 (y = 0) and η = 0
(x = 0) of the square plate. There are six integral con-
stants at each discrete point. Half of them are self-
evident according to the boundary conditions along
the edges ζ = 0 and η = 0 and half of them are needed
to determine by the boundary conditions along the
edges ζ = 1 and η = 1.
The integral constants and the boundary conditions

for a simply supported square plate are shown in Fig-
ure 2, and those at the corners of plate are shown in
the boxes.

4. Equivalent Square Plate of a Square

Plate with a Square Hole

A square plate with a hole can be transformed into
an equivalent square plate with non-uniform thickness
(shown in Figure 3) by considering the hole as an
extremely thin part of the plate theoretically. The
thickness of the actual part of original square plate
is expressed as h, and the thickness of the extremely
thin part of the equivalent square plate is expressed
as ht. The thickness of the plate along the border line
between the actual part and the extremely thin part is
chosen as (h+ ht)/2. In this paper, numerical results
are carried out for a simply supported square plate
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Fig. 3 Square plate with a square hole and its equiv-
alent square plate

with a central square hole. The simply supported
and free edges are denoted by the symbols S and F,
respectively, and shown by solid line and dotted line.

5. Characteristic Equation of Free Vi-

bration of Square Plate with Non-

uniform Thickness

By applying the Green function w(x0, y0, x, y)/P
which is the displacement at a point (x0, y0) of a plate
with a concentrated load P at a point (x, y) and point
support at each discrete point (xc, yd), the displace-
ment amplitude ŵ(x0, y0) at a point (x0, y0) of the
square plate during the free vibration is given as fol-
lows:

ŵ(x0, y0) =
∫ a

0

∫ a

0

ρhω2ŵ(x, y)[w(x0, y0, x, y)/P ]dxdy,

(7)

where ρ is the mass density of the plate material.
The non-dimensional expressions are used as

λ4 =
ρ0h0ω

2a4

D0(1− ν12ν21)
, H(η, ζ) =

ρ(x, y)
ρ0

h(x, y)
h0

,

G(η0, ζ0, η, ζ) =
w(x0, y0, x, y)

a

D0(1− ν12ν21)
Pa

,

W (η, ζ) =
ŵ(x, y)

a
,

where ρ0 is the standard mass density.
By using the numerical integration method, equa-

tion (7) is discretely expressed as

kWkl =
m∑

i=0

n∑
j=0

βmiβnjHijGklijWij , k = 1/(µλ4).(8)

From equation (8) homogeneous linear equations in
(m+1)×(n+1) unknownsW00,W01,· · ·,W0n,W10,W11

· · ·,W1n,· · · Wm0,Wm1,· · ·,Wmn are obtained as fol-
lows:

m∑
i=0

n∑
j=0

(βmiβnjHijGklij − kδikδjl)Wij = 0,

(k = 0, 1, · · · ,m, l = 0, 1, · · · , n). (9)

The characteristic equation of the free vibration of
a square plate with variable thickness is obtained from
the equation (9) as follows:

∣∣∣∣∣∣∣∣∣∣∣∣

K00 K01 K02 . . . K0m

K10 K11 K12 . . . K1m

K20 K21 K22 . . . K2m

...
...

...
. . .

...
Km0 Km1 Km2 . . . Kmm

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (10)

where

Kij = βmj




βn0Hj0Gi0j0 − kδij · · · βnnHjnGi0jn

βn0Hj0Gi1j0 · · · βnnHjnGi1jn

βn0Hj0Gi2j0 · · · βnnHjnGi2jn

...
...

...
βn0Hj0Ginj0 · · · βnnHjnGinjn − kδij



.

6. Numerical Results

The convergence and accuracy of numerical solu-
tions are investigated for simply supported isotropic
and orthotropic plates with holes for the cases of
uniform thickness and variable thickness in one or
two directions. The orthotropic plate is made from
graphite/epoxy. The material properties of isotropic
and orthotropic plates are shown in Table 1. The
convergent results of frequency parameter can be ob-
tained by using Richardson’s extrapolation formula
for two cases of divisional numbers m (=n).

6.1 Convergence of the Solution
In order to examine the convergence, numerical cal-

culation is carried out by varying the number of divi-
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Table 1 Material properties of isotropic and or-
thotropic plates

Material E1
E2

G12
E2

G13
E2

G23
E2

ν

isotropic 1 0.385 0.385 0.385 0.3
orthotropic 40 0.5 0.5 0.5 0.25

sionsm and n. The lowest 5 natural frequency param-
eters of an isotropic square plate with a square hole
are shown in Table 2. It can be noticed that conver-
gent results of frequency parameter can be obtained
by using Richardson’s extrapolation formula for two
cases of divisional numbers m (=n) of 12 and 16. Ta-
ble 3 is used to determine the suitable thickness ratio
h/ht of the original and extremely thin parts. It is
sufficient to set the thickness ratio h/ht = 12.
By the same method, the number of divisions m(=

n) and the thickness ratio h/ht can be determined for
the other plates.

6.2 Accuracy of the Solution
The frequencies of the free vibration of square

plates with square holes are given to show the accu-
racy of the numerical solution obtained by the present
method. The lowest 5 natural frequencies and mode
shapes of these plates are presented for the cases of
uniform thickness and variable thickness.
(1) Plate with Uniform Thickness
Numerical values for the lowest 5 natural frequency

parameter λ of SSSS isotropic thin square plates with
a square hole are given in Table 4 with the FEM val-
ues obtained by Ali and Atwal [4] and Kaushal and
Bhat [9]. These results agree closely. From Table 4,
the effects of the hole size on the first 5 frequencies
for the SSSS isotropic thin square plate can be found.
It might be noted that the variations of the funda-
mental and higher frequencies with hole size are quite
different. As the ratio c/a increases, the fundamental
frequency first decreases a little , then increases. For
c/a = 0.5, the fundamental frequency of the plate is
higher than the corresponding frequency for the plate
without a hole. But as the ratio c/a increases, the sec-
ond, third and fourth frequencies first increase a little,
then decrease. For c/a = 0.5, these frequencies are
lower than the corresponding frequencies for the plate
without a hole. The fifth frequency monotonously de-
creases with the increase of c/a.
Table 5 presents the numerical results for the low-

est 5 natural frequency parameter λ of the SSSS or-
thotropic thin and moderately thick square plates

Table 2 The natural frequency parameter λ of SSSS
isotropic square plate with a square hole
and uniform thickness for various divisional
number m(= n) (h/ht = 12)

Mode sequence number
m Source 1st 2nd 3rd 4th 5th
8 Present 4.673 6.782 6.782 9.675 10.342
12 Present 4.726 6.585 6.585 8.619 9.483
16 Present 4.768 6.528 6.528 8.544 9.204

Table 3 The natural frequency parameter λ of SSSS
isotropic square plate with a square hole
and uniform thickness for various thickness
ratio h/ht (m = n = 16)

Mode sequence number
h/ht Source 1st 2nd 3rd 4th 5th
2 Present 4.965 7.105 7.105 8.912 10.028
6 Present 4.776 6.564 6.564 8.815 9.270
12 Present 4.768 6.528 6.528 8.544 9.204
14 Present 4.767 6.526 6.526 8.415 9.199

Table 4 The first five frequencies versus the ratio
c/a for SSSS isotropic square plate with a
square hole and uniform thickness (a/h =
100, h/ht = 12)

Mode sequence number
c/a Source 1st 2nd 3rd 4th 5th
0 Present 4.548 7.188 7.188 9.011 10.146

Ref. [4] 4.558 7.246 7.264 9.365 10.163
Ref. [9] 4.529 7.110 7.110 9.001 10.034

0.1 Present 4.544 7.193 7.193 9.002 10.143
Ref. [4] 4.403 7.174 7.194 9.235 9.891

0.2 Present 4.485 7.276 7.276 9.109 10.135
Ref. [4] 4.397 7.017 7.017 8.968 9.662
Ref. [9] 4.482 7.022 7.022 8.867 9.882

0.3 Present 4.507 6.785 6.785 9.133 9.776
Ref. [4] 4.478 6.797 6.797 8.739 9.768

0.4 Present 4.588 6.612 6.612 8.899 9.483
Ref. [4] 4.653 6.569 6.569 8.611 9.386

0.5 Present 4.822 6.455 6.455 8.448 8.845
Ref. [4] 4.936 6.502 6.502 8.525 8.881
Ref. [9] 4.979 6.542 6.542 8.667 8.875

with a square hole of side ratio c/a = 0.5. By com-
paring with the results of Reddy [6], the accuracy of
the present results is investigated. Table 5 shows the
side-to-thickness ratio a/h affects the frequency con-
siderately. The nodal patterns of the 5 modes of the
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Table 5 Natural frequency parameter λ for SSSS or-
thotropic square plate with a square hole
and uniform thickness (c/a = 0.5, h/ht =
12)

Mode sequence number
a/h Source 1st 2nd 3rd 4th 5th
100 Present 7.098 8.539 9.070 10.528 13.979

Ref. [6] 7.160 − − 10.598−
10 Present 6.473 7.634 7.841 9.240 11.273

Ref. [6] 6.537 − − 9.139 −

1st 2nd 3rd 4th 5th

1st 2nd 3rd 4th 5th

a/h = 100

a/h = 10

Fig. 4 Nodal patterns for SSSS orthotropic square
plate with a square hole and uniform
thickness(c/a = 0.5, h/ht = 12).

plates are shown in Figure 4. It can be noted when
a/h changes from 100 to 10, the 1st, 2nd, 4th and 5th
mode shapes don’t change but the 3rd mode shape
changes a lot.

To better illustrate the effect of the hole size on the
frequency of SSSS orthotropic thin and moderately
thick plate, the variation of fundamental frequency
with c/a is shown in Figure 5. It can be seen that the
frequencies decrease with the increase of c/a for both
the thin and moderately thick plates. The effect of the
transverse shear deformation on frequencies decreases
with the increase of c/a. The present results agree
closely with the results obtained by Lam, Hung and
Chow [10] and Reddy [6] shown in Figure 5. Com-
paring the results of the fundamental frequencies of
isotropic and orthotropic plates with c/a = 0.5 shown
in Table 4 and Figure 5, respectively, it can be noted
that the fundamental frequency decreases a little first
and then increases with c/a for isotropic plate, while
it decreases with c/a for orthotropic plate. To explain
the phenomenon, two effects introduced by a hole are
considered. The first one is a reduction in the strain
energy of the plate which will decrease the frequency
of the plate. The second one is a reduction in the mass
which will increase the frequency. For the isotropic

4
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8

9

0 0.1 0.2 0.3 0.4 0.5

a/h=100

a/h=10

Present
Ref.[6]

Ref.[11]

λ

c/a

Fig. 5 The fundamental frequency versus the ratio
c/a for SSSS orthotropic square plate with a
square hole and uniform thickness.

plate with a small hole, the first effect might be the
dominant effect, and the frequency would decrease.
But for a larger hole, the second effect might become
the primary effect, and the frequency would begin to
increase. Further explain can be found in [4]. In this
paper, no apparent decrease of the first frequency can
be shown for isotropic plate. The first frequency de-
creases just a little first and then increases in Table 4.
For the orthotropic plate with a larger hole, the first
effect might be still the dominant effect due to its high
ratio of E1/E2, and the frequency would continue to
decrease with c/a ≤ 0.5.

Figure 6 shows the variation of the fundamental
frequency parameter with the side-to-thickness ratio
a/h for the plates with c/a=0, 0.2 and 0.5. Isotropic
and orthotropic cases are considered. The results of
Reddy [6] are included in this Figure. It can be no-
ticed that the effect of transverse shear deformation
is much more pronounced in orthotropic plate than
in isotropic plate. Also, the effect increases with the
decrease of the ratio a/h. So as the ratio a/h in-
creases, the fundamental frequencies show non-linear
increase for values of a/h smaller than 30 but show lin-
ear increase for larger values of a/h and keep constant
for large values of a/h. The fundamental frequency
parameter for the plate with side ratio c/a = 0.2 is
lower than that of plate without a hole for both the
isotropic and orthotropic cases. Compared with the
frequencies of the plates with c/a = 0 and c/a = 0.2,
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Fig. 6 The fundamental frequency versus the thick-
ness ratio a/h for SSSS square plate with a
square hole and uniform thickness (h/ht =
12).

the frequency of the plate with c/a = 0.5 is higher for
the isotropic case but it is lower for the orthotropic
case.

(2) Plate with Variable Thickness in One Di-
rection

In order to investigate the accuracy of the present
method for the plate with variable thickness, numer-
ical values for the lowest 5 natural frequency param-
eter λ of SSSS isotropic thin square plate with vari-
able thickness in one direction are given in Table 6
with the results of Appl and Byers [11]. In this
paper, variable thickness in one direction varies lin-
early along the y-direction according to the equation
h(x, y) = h0(1 + αy/a). From Table 6, it can be seen
the method described can be also used to solve the vi-
bration problem of the plate with variable thickness.

As application of the present method, the numerical
results for the lowest 5 natural frequency parameter λ
of SSSS orthotropic thin and moderately thick square
plates with a square hole of side ratio c/a = 0.5 and
variable thickness in one direction are presented in
Tables 7 and 8. From these Tables, it can be noticed
that the frequency parameters will increase with the
increase of α. The nodal patterns of the 5 modes of
the plates are shown in Figures 7 and 8. With the
increase of α, the horizontal nodal lines move down
in both Figures.

Table 6 Natural frequency parameter λ for SSSS
isotropic square plate with variable thick-
ness in one direction (a/h0 = 100, h0/ht =
12)

Mode sequence number
α Source 1st 2nd 3rd 4th 5th
0.1 Present 4.660 7.363 7.363 9.312 10.390

Ref. [11] 4.661 − − − −
0.8 Present 5.354 8.406 8.439 10.685 11.747

Ref. [11] 5.335 − − − −

Table 7 Natural frequency parameter λ for SSSS or-
thotropic square plate with a square hole
and variable thickness in one direction
(c/a = 0.5, a/h0 = 100, h0/ht = 12)

Mode sequence number
α Source 1st 2nd 3rd 4th 5th

0.0 Present 7.098 8.539 9.070 10.528 13.979
Ref. [6] 7.160 − − 10.598 −

0.1 Present 7.267 8.749 9.299 10.782 14.045
0.8 Present 8.217 10.110 10.571 12.388 15.710

Table 8 Natural frequency parameter λ for SSSS or-
thotropic square plate with a square hole
and variable thickness in one direction
(c/a = 0.5, a/h0 = 10, h0/ht = 14)

Mode sequence number
α Source 1st 2nd 3rd 4th 5th
0.0 Present 6.473 7.634 7.841 9.240 11.273

Ref. [6] 6.537 − − 9.139 −
0.1 Present 6.584 7.755 7.917 9.368 10.431
0.8 Present 7.206 8.456 8.565 10.151 10.784

(3) Plate with Variable Thickness in Two Di-
rections

The numerical results for the lowest 5 natural fre-
quency parameter λ of the SSSS orthotropic thin and
moderately thick square plates with a square hole of
side ratio c/a = 0.5 and variable thickness in two di-
rections are presented in Tables 9 and 10. The thick-
ness of the plate varies in the x, y-directions according
to the sinusoidal function given by h(x, y) = h0(1 −
α sinπx/a)(1−α sinπy/a). Two cases of α = 0.3 and
α = 0.5 are considered. It shows that the frequency
parameters will decrease with the increase of α. The
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1st 2nd 3rd 4th 5th

1st 2nd 3rd 4th 5th

1st 2nd 3rd 4th 5th

α = 0.0

α = 0.1

α = 0.8

Fig. 7 Nodal patterns for SSSS orthotropic square
plate with a square hole and variable thick-
ness in one direction (c/a = 0.5, a/h =
100, h0/ht = 12).

1st 2nd 3rd 4th 5th

1st 2nd 3rd 4th 5th

1st 2nd 3rd 4th 5th

α = 0.0

α = 0.1

α = 0.8

Fig. 8 Nodal patterns for SSSS orthotropic square
plate with a square hole and variable thick-
ness in one direction (c/a = 0.5, a/h =
10, h0/ht = 14).

nodal patterns of the 5 modes of the plates are shown
in Figures 9 and 10.

7. Conclusions

An approximate method is extended for analyzing
the free vibration problem of simply supported or-
thotropic square plate with a square hole. An equiva-
lent square plate is used to obtain the dynamic char-
acteristics of a plate with a hole. The characteristic
equation of the free vibration is gotten by using the
Green function. The frequency parameters and their
mode shapes are shown for simply supported thin and
moderately thick plates with a hole for isotropic and

Table 9 Natural frequency parameter λ for SSSS or-
thotropic square plate with a square hole
and variable thickness in two directions
(c/a = 0.5, a/h0 = 100, h0/ht = 14)

Mode sequence number
α Source 1st 2nd 3rd 4th 5th
0.3 Present 6.289 7.634 8.286 9.578 12.520
0.5 Present 5.691 6.994 7.759 8.927 11.454

Table 10 Natural frequency parameter λ for SSSS
orthotropic square plate with a square
hole and variable thickness in two direc-
tions (c/a = 0.5, a/h0 = 10, h0/ht = 16)

Mode sequence number
α Source 1st 2nd 3rd 4th 5th
0.3 Present 5.995 7.147 7.504 8.788 10.021
0.5 Present 5.543 6.705 7.124 8.395 9.755

1st 2nd 3rd 4th 5th

1st 2nd 3rd 4th 5th

1st 2nd 3rd 4th 5th

alpha=0.1

α = 0.3

α = 0.5

Fig. 9 Nodal patterns for SSSS orthotropic square
plate with a square hole and variable thick-
ness in two directions (c/a = 0.5, a/h =
100, h0/ht = 14).

orthotropic cases. It can be known that the transverse
shear deformation effect is much more pronounced in
orthotropic plate than in isotropic plate. The effects
of the variation of the thickness in one and two direc-
tions on the frequencies are considered. The results by
the present method have been compared with those
previously reported. It shows that the present results
have a good convergence and satisfactory accuracy.
Although numerical results are given for only sim-
ply supported plates, the present method is a general
method and can be used to solve the vibration prob-
lem of plates with different boundary conditions.

8



1st 2nd 3rd 4th 5th

1st 2nd 3rd 4th 5th

alpha=0.1

1st 2nd 3rd 4th 5th

α = 0.3

α = 0.5

Fig. 10 Nodal patterns for SSSS orthotropic square
plate with a square hole and variable thick-
ness in two directions (c/a = 0.5, a/h =
10, h0/ht = 16).
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Appendix A

F111 = F123 = F134 = 1,
F146 = D12, F147 = D16

F156 = D22, F157 = F166 = D26,

F167 = D66, F178 = kA44 F188 = kA45

F212 = F225 = F233 = µ, F246 = F267 = µD16,

F247 = µD11 F256 = µD26, F257 = µ,D12,
F266 = µD66 F278 = F30907 = F31006 = µkA45,

F288 = F387 = µkA55,

F322 = F331 = −µ, F345 = F354 = F363 = −µD

F371 = F382 = −µDT
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otherFkts = 0

Appendix B

Ap1 = γp1, Ap2 = 0, Ap3 = γp2,
Ap4 = γp3, Ap5 = 0,
Ap6 = D12γp4 +D22γp5 +D26γp6,
Ap7 = D16γp06 +D26γp07 +D66γp08,
Ap8 = k(A44γp7 +A45γp8)
Bp1 = 0, Bp2 = µγp1,Bp3 = µγp3,
Bp4 = 0, Bp5 = µγp2,
Bp6 = µ(D16γp4 +D26γp5 +D66γp6),
Bp7 = µ(D11γp4 +D12γp5 +D16γp6),
Bp8 = µk(A45γp7 +A55γp8),
Cp1kl = µγp3 + µDT klγp7,
Cp2kl = µγp2 + µDT klγp8,
Cp3kl = µDklγp6,
Cp4kl = µDklγp7,
Cp5kl = µDklγp4,
Cp6kl = −µk(A44γp7 +A45γp8,
Cp7kl = −µk(A45γp7 +A55γp8),
Cp8kl = 0 [γpt] = [ρtp]−1,
ρ11 = βii, ρ12 = µβjj , ρ22 = −µβij ,
ρ23 = βii, ρ25 = µβjj , ρ31 = −µβij ,
ρ33 = µβjj , ρ34 = βii, ρ45 = −µβijDij ,
ρ46 = D12βii + µD16βjj , ρ47 = D16βii + µD11βjj ,
ρ54 = −µβijDij , ρ56 = D22βii + µD26βjj ,
ρ57 = D26βii + µD12βjj , ρ63 = −µβijDij ,
ρ666 = D26βii + µD66βjj , ρ67 = D66βii + µD16βjj ,
ρ71 = −µβijDij , ρ76 = µkA44βij ,
ρ77 = µkA45βij , ρ78 = k(A44βii + µA45βjj),
ρ82 = −µβijDij , ρ86 = µkA45βij ,
ρ87 = µkA55βij , ρ88 = k(A45βii + µA55βjj),
other ρtp = 0

Appendix C

a1i0i01 = a3i0i02 = a4i0i03 = 1, a6i0i04 = a7i0i05 = a8i0i06 = 1

b20jj01 = b30jj02 = b50jj03 = 1, b60jj04 = b70jj05 = b80jj06 = 1, b300002 = 0

apijfd =
13∑

t=1

{ i∑
k=0

βikApt[atk0fd − atkjfd(1− δki)]

+
j∑

l=0

βjlBpt[at0lfd − atilfd(1− δlj)]

+
i∑

k=0

j∑
l=0

βikβjlCptklatklfd(1− δkiδlj)
}

bpijfd =
13∑

t=1

{ i∑
k=0

βikApt[btk0gd − btkjgd(1− δki)]

+
j∑

l=0

βjlBpt[bt0lgd − btilgd(1− δlj)]

+
i∑

k=0

j∑
l=0

βikβjlCptklbtklgd(1− δkiδlj)
}

qpij =
13∑

t=1

{ i∑
k=0

βikApt[qtk0 − qtkj(1− δki)]

+
j∑

l=0

βjlBpt[qt0l − qtil(1− δlj)]

+
i∑

k=0

j∑
l=0

βikβjlCptkl −Ap1uiqujr
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