
A Source Code Generation Support System
Using Design Pattern Documents Based on SGML

Mika Ohtsuki
Research Center for Higher Education

Kyushu University
Fukuoka 812-8560, JAPAN

mika@rc.kyushu-u.ac.jp

Norihiko Yoshida
Department of Computer and Information Sciences

Nagasaki University
Nagasaki 852-8521, JAPAN

yoshida@cis.nagasaki-u.ac.jp

Akifumi Makinouchi
Graduate School of Information Science

Kyushu University
Fukuoka 812-8581, JAPAN
akifumi@is.kyushu-u.ac.jp

Abstract

Applying design patterns to design of an application
makes it robust against issues related to extensibility and
maintainability. However, currently, a designer must ap-
ply structures and constraints of design patterns to an ap-
plication by hand, therefore mistakes can occur often. We
have proposed a notation using SGML for describing de-
sign patterns and a support system for design patterns. We
aim at providing a source code generation support system
based on the notation and system. There have been many
researches on semi-automatic application generators using
existing knowledge such as libraries based on algorithms
and data structure, and classes packaged based on the
object-oriented technology. When using design patterns for
source code generation support, the same requirements for
such semi-automatic application generators must be con-
sidered. The requirements are lessening codes to be written
by users, and satisfying constraints without directing users’
attention to them.

In this paper, we consider the requirements and describe
a design and implementation of the source code generation
support system and results.

1. Introduction

Design patterns are design knowledge for solving issues
related to extensibility and maintainability which are inde-
pendent from problems concerned by an application. A de-
sign pattern is described in explanation texts and charts ex-

pressing its structure and behavior. Applying design pat-
terns to design of an application makes it robust against the
issues. However, currently, a designer must apply structures
and constraints of design patterns to an application by hand,
therefore mistakes can occur often.

We aim at promoting use of design patterns and have
proposed a notation using SGML[1] for describing design
patterns and a support system for using design patterns[2].
For promoting use of design patterns further, we aim at pro-
viding a source code generation support system from design
patterns. The system not only supports integrating design
patterns as design knowledge, but also aims at cooperating
with application components in the distributed components
repository which we have developed[3].

There have been many researches on semi-automatic
application generators using existing knowledge. Several
commercial development environments support integrat-
ing algorithm libraries and classes packaged based on the
object-oriented technology, so as to lessen codes to be writ-
ten by users. There are researches such as Draco[4] and
GenVoca generators[5] which generates codes from abstract
notations.

When using design patterns for source code generation
support, the same issues as such semi-automatic application
generators must be considered. The issues are, by using
existing knowledge, how to lessen codes to be written by
users, and how to satisfy constraints without directing users’
attention to them.

In this paper, in Section 2, we explain design patterns and
PIML (Pattern Information Markup Language), which is a
language we have proposed for describing a design pattern.

In Section 3, We consider which information can be gen-
erated from design patterns automatically, and which con-
strains in design patterns must be satisfied. Then, in Section
4, we design the source code generation support system. In
Section 5, we present implementation of a prototype system
and results. In Section 6, we mention related works, and in
Section 7, we mention conclusions.

2. Design Patterns and PIML

Design patterns are descriptions about structures ap-
peared in applications frequently for solving issues which
are independent from application-dependent problems. A
design pattern is expressed as a structure including sev-
eral classes. Most of design patterns aim at constructing
reusable structures in an application by decreasing depen-
dency of parts of the application and increasing extensibility
in future[6].

For example, Figure 1 is theIterator pattern expressed
in the same notation as [7]’s. The five boxes except the left
bottom box express classes. If a class box is separated by a
line, a bold word above the line is a class name and words
below the line are method names. The left bottom box is a
pseudo-code expressing a behavior of the method connected
with it by a dotted line with a circle. Lines connecting the
class boxes represent relationships. An arrow means refer-
ence and a dotted arrow means creation. A word above an
arrow is a name of it. A line with a triangle in the middle
of it is an inheritance relationship, and the class on the top
of the line is a parent class and the class on the bottom of
the line is a child class. If a name word is italic, the class or
method is abstract.

The Iterator pattern generalizes aggregate objects as an
abstract classAggregate , and provides another abstract
class for iteration asIterator which is independent from
Aggregate . Therefore, it is unnecessary to show an inter-
nal structure of each aggregate object to its client objects,
and it becomes easier to update and exchange the aggregate
object in future.

[7] is a catalogue book of design patterns. It includes 23
patterns such as theIterator pattern andCompositepattern.
In this book, a design pattern includes items as follows:
“name,” “also known as,” “intent,” “motivation,” “applica-
bility,” “structure,” “participants,” “collaborations,” “conse-
quences,” “known uses,” “related pattern.”

Using design patterns for supporting design and under-
standing source codes is effective in software development.
They must be described in an electric format providing
functions for the use. We have proposed a language for de-
scribing design patterns using SGML[1] framework in [2].
We call the languagePIML (Pattern Information Markup
Language).

A PIML description of a design pattern consists of

*//2./-3.
7E><G>:G>E<GDE56

KWVTX]

KYXR[T]TJUU[TUP]T

duljwlgwlujwsubc
hlzwbc
fpuvwbc

KYXR[T]TN]T[P]Y[

dxuulrwgwlqbc
pvesrlbc

,3.2-302
9AEFG56
;>IG56
AF8DC>56
7HEE>CG:G>B56

jnnulnjwl pwlujwsu

wjunlw

ulwxur rly dsrkulwlgwlujwsubwopvc

Figure 1. Iterator pattern

three parts. They are explanation texts such as motivation
and availability, structure information such as constituent
classes and relationships among them, and pseudo-codes
expressing behaviors of classes. The explanation texts and
structure information are described using SGML elements,
and the pseudo-codes are described in a simple program-
ming language designed by us originally. The reason of de-
signing a simple programming language for describing the
pseudo-codes is for using them for display as is, and using
the pseudo-codes at source code generation.

The SGML elements are based on item names in [7].
Figure 2 indicates the correspondence of PIML descrip-
tion elements to items of a design pattern. The name of
a design pattern is contained in thepattern element as
an attribute. The items “intent” and “motivation” are en-
closed by pairs of tags, (<intent> , </intent>) and
(<motivation> , </motivation>). The class dia-
gram expressing structure is converted into nested descrip-
tion in a pair of tags (<structure> , </structure>).
Pseudo-codes also are contained in thestructure ele-
ment, but the details are omitted in the figure.

3. Source Code Generation from Design Pat-
terns

We provide a source code generation support system
for supporting design and supporting understanding source
codes. It aims at using design patterns as components ef-
ficiently by automating to integrate design patterns into an
application design as much as possible. It also aims at en-
abling users understand meanings of structures in source
codes by relating them to design patterns which they are
based on.

The source code generation support system must gener-
ate all source codes that can be generated automatically. Let
us consider what is the information that can be generated
automatically.

A constituent class and method of a design pattern can

PIML Document

<pattern name="Iterator" ...>

</pattern>

<intent>
...
</intent>
<motivation>
...
</motivation>
...
<structure>
...
...
</structure>return new ...

Structure

Pseudo Code

...
Motivation

Intent

Items

Figure 2. Correspondence of PIML descrip-
tion elements to items of design pattern

correspond to several classes and methods in an application.
In this research, we call the class and method respectively
a role andoperation, to distinguish them from a class and
method in an application. We call generating more than one
class or method from one role or one operationcloning.

The information which a design pattern provides is as
follows.

1. Roles as constituent elements.

2. Operations belonging to each role.

3. Relationships among the roles.

4. Behaviors of the roles for performing functions as a
design pattern.

The former three are structural information and are de-
scribed as nested elements in a PIML document. The last
one is behavioral information and is described as pseudo-
codes in a PIML document.

A PIML document has the structural information and
the behavioral information in astructure element.
A structure element contains arelations ele-
ment consisting of elements expressing relationships and a
roles element consisting ofrole elements. Arole el-
ement expressing a role contains anoperation element
consisting ofoperation elements. Anoperation el-
ement expressing an operation contains anargs element
consistingarg elements and apseudocode element ex-
pressing a pseudo-code. Anarg element expresses an op-
eration argument.

The code in Figure 3 is an extract from a PIML descrip-
tion of the Iterator pattern in Figure 1. The letters “... ”
in the code express omission. TheIterator pattern con-
tains five roles (Aggregate , ConcreteAggregate ,

<structure>
...

<relations>
<inheritance origin="ConcreteIterator"

target="Iterator">
<inheritance origin="ConcreteAggregate"

target="Aggregate">
<reference origin="Client" target="Iterator"

syslabel="iterator">
<reference origin="Client" target="Aggregate"

syslabel="aggregate">
<reference origin="ConcreteIterator"

target="ConcreteAggregate"
syslabel="target">

<creation origin="ConcreteAggregate"
target="ConcreteIterator">

</relations>

<roles>

...

<role syslabel="Aggregate" abstract="abstract">

...

</role>
...

<role syslabel="ConcreteAggregate"
abstract="concrete">

...

<operations>
<operation constructor="noconstructor" override="do"

access="public" return="Iterator"
syslabel="CreateIterator">

...

<pseudocode>
return new "ConcreteIterator" ("this")

</pseudocode>
</operation>

</operations>
</role>

...

</roles>

<cloneables>

... (Information for Cloning) ...

</cloneables>

<layout rows="2" columns="3">

... (Layout Information) ...

</layout>

</structure>

Figure 3. Structure description example of It-
erator pattern

Iterator , ConcreteIterator andClient), how-
ever, Iterator , ConcreteIterator and Client
are omitted because of limitation of space. As for the role
Aggregate , its detail is omitted for the same reason.

A syslabel attribute of arole element is an iden-
tifier of the role, and anabstract attribute expresses
whether the role becomes an abstract class. In the code,
the two roles have identifiers “Aggregate ” and “Con-
creteAggregate ” respectively, theAggregate role is
abstract and theConcreteAggregate role is concrete.

The relations element in the code contains six re-
lationships among the roles. There are four kinds of rela-
tionships in PIML,aggregate , reference , inher-
itance andcreation , and they are expressed as ele-
ments. Anaggregate element and areference ele-
ment contain an identifier as asyslabel attribute. All the
kinds of relationship has a direction, that is, a start point

and an end point. The start point is described in anori-
gin attribute, and the end point is described in atarget
attribute. For example, in the code, a reference relationship
named “target ” has a start point roleConcreteIter-
ator and an end point roleConcreteAggregate .

The ConcreteAggregate role has an operation
namedCreateIterator() containing a pseudo-code.
There are five attributes in anoperation element, in
addition to asyslabel attribute for an identifier, an
override attribute for an overriding relationship origi-
nated from inheritance, aconstructor attribute as a flag
whether the operation is a constructor, anaccess attribute
for indicating an access level of the operation, and are-
turn attribute for indicating a type of return value. For ex-
ample, theCreateIterator() operation overrides on
the same name operation in the parent roleAggregate , is
not a constructor, is public and returnsIterator . The ex-
ample pseudo-code in thepseudocode element expresses
a behavior to generate an object ofConcreteIterator
and return it asIterator .

In addition to elements mentioned above, each of arole
and anoperation element contains anotes element for
describing explanations of them. Astructure element
also contains alayout element for describing the layout
information of roles used at displaying them. However, be-
cause these elements are not used for code generation, their
details are omitted in this paper. Thecloneables ele-
ment and constituent elements of it are explained later.

Because functions of a design pattern do not provide so-
lutions for application-dependent problems, the solutions
must be provided by users. The structure information and
behavioral information which a design pattern provides for
adding extendibility and maintainability to an application
can be converted into codes. However, the structure and al-
gorithms for solving application-dependent problems must
be described by users.

For example, in theIterator pattern, classes can be gen-
erated from the five roles by replacing names of them,
and codes in operations corresponding toCreateItera-
tor() in the ConcreteAggregate role can be gener-
ated from its pseudo-code. However, other implementation
codes must be provided by users, because theIterator pat-
tern does not provides it. For example, internal structure of
classes generated formConcreteAggregate and con-
crete operations, internal structure of classes corresponding
to them and generated formConcreteIterator , and
implementation of operations such asfirst() in them.

The codes generated from pseudo-codes are not com-
pletely suitable to the target application. In other words, the
behavior performed by the codes may have to be replaced
by other functions or delegated to other objects. However, it
is necessary to generate them, because they can be help for
implementation by indicating behaviors in a design pattern

as examples in the target programming language.

4. Design of the System

The structural and behavioral information described in a
PIML document are parsed into a tree data structure called
a Pattern Structure (PS). The tree data structure is used
in a system which we have developed for authorizing and
browsing design patterns[2]. The structure is designed us-
ing the Visitor pattern[7] to be traced by a converter sep-
arated from it. The separated converter is called aCon-
creteVisitor in theVisitor pattern. A converter for in-
stantiating a design pattern in the source code generation
system is also designed as aConcreteVisitor which
can be replaced by the converter in the authoring and brows-
ing system. It prompts users to input necessary information
for conversion by tracing a tree of the target PS all along.

We design the generation process as follows. The details
of data structuresIPS (Instantiated Pattern Structure) and
AC (Application Component) in the following process are
explained in the following subsections.

1. Instantiating design patterns

By giving names which are language-independent in-
formation, an IPS is generated from a PS.

2. Relating design patterns to an application

An AC is generated from an IPS automatically. If
necessary, concrete types and concrete implementation
codes are added and changed.

3. Generating source codes

Source codes are generated in the target programming
language from an AC.

Figure 4 expresses the input and transformation of struc-
tures.

The design is based on the requirements described in the
following subsections.

4.1. Satisfying Constraints

The followings are the constraints which should be sat-
isfied by classes generated from a design pattern.

1. Relationships described in a design pattern

The relationships among generated classes must corre-
spond to the relationships among roles. Furthermore,
if an operation is overridden because of an inheritance
relationship, the corresponding methods must be over-
ridden also.

ConcreteAggregate

Aggregate Client Iterator

ConcreteIterator

FixedGroup

GrowableGroup

Group GIteratorTest GroupIterator

FixedGroupIterator

GrowableGroupIterator

FixedGroup

GrowableGroup

Group GIteratorTest GroupIterator

FixedGroupIterator

GrowableGroupIterator

Input names

Clone roles
and operations

Input language-
dependent
information

Pattern
structure

(PS)

Instantiated
pattern

structure
(IPS)

Source code
 files

Application
component

(AC)

Figure 4. Code generation process

The relationship constraint can be satisfied, by convert-
ing relationship information held in a PS into the gen-
erated structure correctly. A PS has overriding rela-
tionships for overridden operations, and the generated
methods to be overridden is attached the same overrid-
ing relationships as operations.

2. Correspondence of identifiers

Identifiers of roles, operations and relationships in
pseudo-codes and operation arguments must be re-
placed by names of classes, methods and variables cor-
responding to them. At the time, it is necessary to pre-
vent confusing names of classes generated from a role.

For example, the confusion can occur when pseudo-
codes have a method call to a role which is not re-
lated directly to the role containing the codes. When
there are relationships among roles for identifiers in-
cluded in pseudo-codes and operation arguments, they
can be distinguished by referring to the generated re-
lationships. However, when there are not relationships
for identifiers, the confusion among identifiers gener-
ated them can occur.

To prevent the confusion of identifiers provided by un-
related roles, we provide aname space. A name space
is a table to relate the unique names in a design pat-
tern to the names of generated classes and methods. A
name space is generated at cloning, and is added pairs
of a name in a PS and a name in an IPS. A converter
for code generation can obtain appropriate identifiers
from the name space which the target belongs to.

For example, when cloning based on theIterator
pattern as Figure 5, two name spaces are generated as
follows. (Iterator → Iterator , Aggregate

+2041
=E><G>:G>E<GDE56

LV`TSM[Y^Z

kuljwlgwlujwsubc
rlzwbc
mpuvwbc

LV`TSM[Y^ZN]T[P]Y[

nlwdxuulrwgwlqbc
pvesrlbc

+2041,3.2-302
?AEFG56
C>IG56
AF8DC>56
@>G7HEE>CG:G>B56

inusxt ipwlujwsu

iwjunlwinusxt

MN]T[P]Y[OT\]

+2041
=E><G>:G>E<GDE56

LV`TSM[Y^Z

kuljwlgwlujwsubc
rlzwbc
mpuvwbc

LV`TSM[Y^ZN]T[P]Y[

nlwdxuulrwgwlqbc
pvesrlbc

+2041,3.2-302
?AEFG56
C>IG56
AF8DC>56
@>G7HEE>CG:G>B56

M[Y_PQWTM[Y^Z

kuljwlgwlujwsubc
rlzwbc
mpuvwbc

M[Y_PQWTM[Y^ZN]T[P]Y[

nlwdxuulrwgwlqbc
pvesrlbc

MN]T[P]Y[OT\]

inusxt ipwlujwsu

iwjunlwinusxt

iwjunlwinusxt

Figure 5. Instantiation and cloning of Iterator
pattern

→ Group , ConcreteIterator → Fixed-
GroupIterator , ConcreteAggregate →
FixedGroup) and (Iterator → Iterator ,
Aggregate → Group , ConcreteIterator
→ GrowableGroupIterator , Concrete-
Aggregate → GrowableGroup).

3. Cloning constraints

When instantiating a role or an operation as a class
or a method, sometimes other roles and operations
must be instantiated at the same time. For example, in
the Iterator pattern, because there is a constraint that
CreateIterator() operation in Concrete-
Aggregate must generateConcreteIterator
(Figure 5), when instantiating one ofConcrete-
Aggregate andConcreteIterator , it is neces-
sary to instantiate the other.

This problem does not occur when a role or operation
corresponds to only one class or method, but occur
when a role or operation corresponds to several classes
or methods. Therefore, in this research, the constraint
is called acloning constraint.

Because theIterator pattern has one cloning constraint

<cloneables>
<cloneable>

<celem type="role" id="ConcreteAggregate">
<celem type="role" id="ConcreteIterator">

</cloneable>
</cloneables>

Figure 6. Cloneable element

and the cloning process itself is simple, effort and cau-
tion for maintaining consistency is not necessary so
much. However, when there are several cloning con-
straints and cloning results based on a constraint af-
fect the later cloning (for example, theAbstractFac-
tory pattern[7]), much effort and caution for maintain-
ing consistency among them is necessary. Therefore,
it is important for the system to guarantee the consis-
tency.

For solving this problem, first, we extend PIML to de-
scribe a cloning constraint. A cloning constraint can be
inferred from relationships and extra constraints(they
must be defined by a design pattern author). In this re-
search, we introduce an elementcloneable to de-
scribe a set of roles and operations which must be
cloned at the same time. For example, the example
constraint of theIterator pattern mentioned above is
described as Figure 6.

A cloneable element contains roles and operations
to be cloned at the same time. Each role or opera-
tion is described in acelem element with its kind and
its name (for example, “role ” and “ConcreteAg-
gregate ”). A cloneables element can contain
severalcloneable elements, because there can be
several constraints in a design pattern.

The system has several tables containing references to
classes and operations, for keeping results of cloning
as the candidates for the next cloning. By using the
tables, the system can manage the consistency among
results of cloning, when there are several cloning con-
straints and they affect one another.

4.2. Preventing Confusion among Design Patterns
in an Application

An application can include several design patterns.
Then, a class can include several roles for different func-
tions as sets of methods. For modification later, it is neces-
sary to distinguish them to prevent confusion.

To distinguish them, we provide an intermediate struc-
ture called anInstantiated Design Pattern(IPS). We call
a structure containing an application information anAppli-
cation Component(AC).

Strictly speaking, an AC is an abstract object and an
interface of a concrete data structure for each program-
ming language. The concrete data structure (for example,
JavaAC) is a tree data structure and contains information
such as environment information for constructing an ap-
plication (the compiler, the library path, etc.), constituent
classes and concrete detailed implementation codes. An
AC is a tree data structure, of which each node is an in-
terface of each node of the language-dependent data struc-
tures. An IPS can handle any of such language-dependent
data structures through an AC as an interface. In this paper,
“an AC” is used to express an object of any of the language-
dependent data structures.

An IPS is also a tree data structure. One node of a PS
corresponds to several nodes of an IPS. One node of an AC
corresponds to several nodes of an IPS. One node of an IPS
has one reference to a PS and one reference to an AC.

The root node of an IPS has an identifier and is indepen-
dent from other IPSs. Therefore, it is possible to distinguish
ones which are based on the same design pattern.

4.3. Converting an Abstract Description into a Con-
crete Language

Because a PIML description does not depend on a partic-
ular programming language, it is necessary to convert it into
codes in a target programming language. To generate con-
crete source codes, it is necessary to convert basic types in
PIML into types in the target programming language. And
it is necessary to convert one-to-many relationships into ag-
gregate classes or array types.

Furthermore, it is necessary to generate concrete codes
for behaviors. Pseudo-codes are descriptions of behaviors
in a design pattern, and has a simple grammar without arith-
metic operations and comparison operation. It is necessary
to convert the simple programming language to the gram-
mar of the target programming language.

The gap is solved when converting an IPS to an AC.
The basic types which can be described in a PIML doc-

ument areint , void andboolean . The system uses a
table to convert them for each programming language. In
addition to them,anytype can be described.Anytype is
to indicate a type which is not defined in a design pattern,
and is not a basic type either. Any classes in an application
can be set in the place ofanytype . For one-to-many rela-
tionships, the system provides a candidate list of array types
and aggregate classes to enable users select.

Because the grammar of pseudo-codes consists of basic
elements, there are scarcely problems at converting them
into the target programming language. A special grammar
element is aforall statement to express a behavior to re-
peat certain operations for all child objects of the class the
generated codes belong to. For converting aforall state-

ment, the system provides a mechanism to convert each step
for iteration (initializing iteration, proceeding count, getting
the current element, checking statement and finalizing itera-
tion) into concrete codes to operate array types or aggregate
classes in the target language. When array types and aggre-
gate classes are registered in the system, concrete codes for
them corresponding to the iteration steps respectively are
also registered. The system replacesforall statements
with the codes at generation.

The generated codes from pseudo-codes can be overwrit-
ten by users freely.

4.4. Separating Language-independent Parts from
Language-dependent Parts

Because design patterns hardly depend on a pro-
gramming language, it is useful to distinguish language-
independent information and language-dependent informa-
tion for adapting the system to multiple programming lan-
guages or converting applications into another language.
Here, concretely, the language-independent information
means mainly structure information such as class names
and method names, and the language-independent infor-
mation means concrete types for one-to-many relationships
and concrete implementation codes necessary at execution.

The system provides two data structures for language-
independent information and language-dependent informa-
tion respectively, and two input processes for them. An IPS
contains language-independent information and an AC con-
tains language-dependent information. The converter from
an IPS to an AC is based onVisitor pattern as the converter
from a PS to an IPS, and converts an IPS recursively with
tracing the IPS tree. Therefore, the system can be adapted to
another programming language by replacing the converter
with one for the language.

5. A Prototype and an Example of Generated
Codes

We implement a prototype of the source code generation
support system, based on a system which we have devel-
oped for authorizing and browsing design patterns[2]. The
system reuses the PIML parser and data access part of the
existing system.

All the required data structures described in the previ-
ous section, IPS, AC, tables for managing the cloning pro-
cess and tables for relating pseudo-codes and a concrete lan-
guage, are implemented in the prototype system. The sys-
tem has converters for processing the data structures appro-
priately. Java is selected as the target language for the first
prototype system, because it is a simpler object-oriented
language than other widely-used languages.

FixedGroupIterator.javaFixedGroup.java
public class FixedGroup implements Group {
 protected Object _elements[];
 protected int _max_length;
 protected int _cur_length;

 public FixedPersonGroup(int max_length) {
 persons = new Object[_max_length = max_length];
 _cur_length = 0;
 }

 public int getMaxLength() {
 return _max_length;
 }

 public void add(Object o) {
 if (_cur_length>=_max_length)
 errorHandle();
 else
 _elements[_cur_length++] = o;
 }

 public void removeLast() {
 if (_cur_length<=0)
 errorHandle();
 else
 _elements[_cur_length--] = null;
 }

 public Object getAt(int idx) {
 return elements[idx];
 }

 /***
 * auto generated
 */
 public Iterator createIterator () {
 return new FixedGroupIterator(this);
 }

public class FixedGroupIterator implements Iterator {
 FixedGroup _group;
 int _cur_idx;

 public FixedGroupIterator (FixedGroup group) {
 _group = group;
 }

 public boolean isDone () {
 return _cur_idx >= _group.getMaxLength();
 }

 public void next () {
 _cur_idx++;
 }

 public void first () {
 _cur_idx = 0;
 }

 public Object getCurrentItem () {
 return _group.getAt(_cur_idx);
 }
}

JAVAC = /usr/local/share/java1_1_1_ja/bin/javac
JAVA = java
CLASSPATH = -classpath .:/usr/local/share/java1_1_1_ja/lib/classes.zip
JAVAOPT = $(CLASSPATH)
CLASSES = FixedGroupIterator.class FixedGroup.class ¥

GrowableGroupIterator.class GrowableGroup.class ¥
Group.class Iterator.class IteratorTest.class

%.class: %.java
 $(JAVAC) $(JAVAOPT) $<
all: myprog
myprog: $(CLASSES)
clean:
 rm -f *.class *~

Makefile

Figure 7. Generated files

In addition to the data structures and converters, we im-
plement interactive data inputting part as a Java Applet.
A user can generate Java source code files and a sim-
ple Makefile by inputting necessary information inter-
actively.

Figure 7 illustrates an example of source code files gen-
erated from theIterator pattern. Here, the codes generated
automatically are grayed and the others are made up by a
user.

FixedGroup.java is generated fromConcrete-
Aggregate . CreateIterator() operation defined
in ConcreteAggregate is converted tocreate-
Iterator() method, and concrete codes in it are gen-
erated from pseudo-codes in the operation.Fixed-
GroupIterator.java is generated fromConcrete-
Iterator . The methodsfirst() , next() , is-
Done() and getCurrentItem() are generated from
the corresponding operations in the role. Implementation of
the methods is application-dependent and is supplemented
by hand.

Makefile is all generated from environment informa-
tion and information of constituent classes stored in an AC
(strictly speaking, a JavaAC) automatically. We confirm
correct codes generated for cloned classes.

6. Related Works

There are several researches on generating source codes
from design patterns: Utrecht University[8], IBM T. J. Wat-
son Laboratory[9], and Nihon University[10].

[8] provides design pattern templates consisting of ob-
jects in Smalltalk, and generates an application by cloning

them. The constraints to be satisfied by generated classes
are checked after generation, and it does not support satis-
fying them automatically. Smalltalk is the only target lan-
guage.

[9] describes information for generation using macros in
its target language(C++). A converting program replaces
names using the macros with given user’s inputs automati-
cally. It does not concern cloning constraints. For adapting
the system to another language, macros for the target lan-
guage must be prepared.

[10] provides models of design patterns in a CASE
tool ROSE[11], and uses C++ skeleton codes generated by
ROSE. Several constraints such as inheritance, reference
and aggregate relationships are checked by a tool developed
by [10] originally. The tool targets C++ only.

Cloning constraints are caused by not only relationships
such as inheritance and aggregate, but also by other behav-
ioral characteristics such as necessity of calling a particular
method. Describing a design pattern using general model-
ing method does not express all cloning constraints. There-
fore, the [10] system depending on the modeling method in
ROSE cannot support the cloning process.

No other system than ours has the notation for express-
ing cloning constraints and supports the cloning process.
Our system is easier to be extended than other researches,
because it can be adapted to other languages by replacing a
converting module.

7. Conclusions

We aim at promoting use of design patterns by sup-
porting application creation from design patterns. We also
aim at supporting understanding structures in a given ap-
plication by relating it to design patterns through the cre-
ation process. We design a source code generation sup-
port system from design patterns, and implement a proto-
type system on the authorizing and browsing system of de-
sign patterns developed by us[2]. We design and implement
data structure for keeping many-to-many relationships be-
tween design patterns and an application and for separating
language-independent information and language-dependent
information, and converters among them. We also design
and implement the mechanism for supporting the cloning
process. We confirm correct results by inputting test data.

We have to relate design patterns to application compo-
nents in the distributed components repository developed by
us[3], by extending design of the components. We have to
examine integration of design patterns when adding another
design pattern, and have to adapt the system for addition.

In future, we would like to examine reverse engineering
such as relating structures in an application to design pat-
terns interactively based on our system. And we would like

to provide a more user-friendly integrated support environ-
ment.

References

[1] ISO 8879 Standard Generalized Markup Language
(SGML), 1986

[2] M. Ohtsuki, J. Segawa, N. Yoshida and A. Maki-
nouchi, “SGML-based Structured Document Frame-
work for Design Patterns and Its Browsing”, Trans. of
Information Processing Society of Japan, Vol. 39,
No. 3, pp. 636–645, 1998, in Japanese

[3] M. Ohtsuki, N. Yoshida and A. Makinouchi, “A
Distributed Repository for Object-Oriented Software
Components”, Proc. of the APSEC 96, pp. 439–446,
1996

[4] J. M. Neighbors, “The Draco Approach to Construct-
ing Software from Reusable Components”, IEEE
Trans. on Software Engineering, Vol. SE-10, No. 5,
1984

[5] D. Batory and S. O’Malley, “The Design and Im-
plementation of Hierarchical Software Systems Using
Reusable Components”, ACM Trans. on Software En-
gineering and Methodology, 1992

[6] W. Pree, Design Patterns for Object-Oriented Soft-
ware Development, the ACM Press, 1995

[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides,De-
sign Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995

[8] G. Florin, M. Meijers, P. V. Winsen, “Tool Support
for Object-Oriented Patterns”, Proc. of ECOOP’97
pp. 472–495 (1997)

[9] F. J. Budinsky, M. A. Finnie, J. A. Vlissides and
P. S. Yu, “Automatic Code Generation from Design
Patterns”, IBM Systems J. , Vol. 35, No. 2, 1996

[10] J. Ichihara and Y. Sugiyama, “Supporting Design Pat-
terns in ClassFactory”, Proc. of the 57th National Con-
vention IPSJ, pp. 223–224, 1998, in Japanese

[11] T. Quatrani and G. Booch,Visual Modeling with Ra-
tional Rose and UML, Addison-Wesley, 1998

