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Abstract

This paper is based on a dynamic replication control
strategy for minimizing communications costs. In dynamic
environments where the access pattern to share resources
can not be predicted statically, it is required to monitor
such parameter during the whole lifetime of the system so
as to adapt it to new requirements. The shared-object man-
agement system is implemented in a centralized manner in
which a master processor deals with the serialization of in-
vocations. On one hand, we attempt to provide fault tol-
erance as a way to adjust the system parameters to work
only with a set of correct processors so as to enhance sys-
tem functionality. On the other hand, we attempt to furnish
availability by masking the failure of the master processor.
A new master processor is elected that resumes the master
processor processing. Our shared-object management sys-
tem modularity is realized through a meta level implemen-
tation.

1. Introduction

A distributed system is a set of processors connected by
communication links. Basically, a processor comprises a
processing unit and memory, and communicate each other
by exchanging messages. Apart from the message prim-
itive, other mechanisms coexist such as RPC, the shared
memory model and ORB (Object request broker) architec-
ture that offer a high level of abstraction. Communication
is a fundamental tool to coordinate the activities in a dis-
tributed algorithm–the composition of all local algorithms
and to share resources-data, software or hardware.

One aspect that renders systems the characteristic of be-
ing distributed is shared-state, that is, a global state shared
among processors as an effort to maintain system function-
ality in spite of processor failures and to keep the correct-

ness of a distributed algorithm specification as well. Need-
less to say a lack of synchronization leads to erroneous com-
putations and then an ill-behavior of a distributed system
especially in an asynchronous distributed system where the
message delivery time is variable due to the unpredictable
message delay. Hereafter, we use the term distributed sys-
tem meaning an asynchronous distributed system.

In general, systems that require a great deal of messages
to be exchanged in order to keep shared-state degrades per-
formance to the extent that distribution no longer yields the
expected benefits. This is primarily due to the communica-
tion channel is an expensive resource. However, resource
sharing, an inherent property of distributed systems, may
lead to an increase in communication costs to keep correct-
ness of data when data resources are copied in different pro-
cessors and propagation of operations are required.

The major technique used nowadays to enhance system
fault tolerance and reduce communication costs to some ex-
tent is replication. Replication allows local access to a re-
source and provides the system with an aggregate comput-
ing power, that is, the overall computation from all proces-
sors taken as a whole. For example, data queries can be
performed in parallel. However, a data consistency protocol
is required to prevent processors from using stale copies.
Roughly speaking a process that modifies data in a particu-
lar processor, it is required to propagate the update as a nec-
essary requirement to keep correctness of data. Actual gains
in replication in terms of communication cost minimization
depend on the number of replicas , the placement of those
replicas and the nature of operations. For instance, a sys-
tem with a high rate of read accesses is advised to have a
large number of copies, on the contrary a system with a high
rate of updates a small number of copies suffices to prevent
an overuse of the communication channel since the update
protocol incurs in an extra communication overhead to keep
up to date the replicas. Besides, the placement of replicas
plays an important role so as to obtain high performance in
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distributed systems. It is worthless to place a replica in a
processor that has very low rate access or crashes regularly.
The dynamic replication control strategy aims at minimiz-
ing communication costs by monitoring the access pattern
and change to a new configuration on the fly.

Furthermore, replication also offers better availability
since even though one or some replicas are unavailable
clients can still get a service from the up replicas. Availabil-
ity can be thought of the accessibility of services and a sys-
tem is highly available if it is operational in a time interval.
It is seems that the larger the number of replicas the more
available is the system. However, it can rise communica-
tion costs because of strict consistency maintenance. Since
failures of processors can cause the partial or total lost of
system functionality, a level of availability need to be sup-
ported. Processors holding important data should not fail
so often or have backups that assumes the responsibility in
case of a crash.

We propose a fault tolerant shared-object system that al-
lows the failure of processors and enhances availability by
masking the failure of the master processor to a new pro-
cessor. Failed processors are excluded from the set of pro-
cessors by a failure detection protocol. Additionally, our
shared-object system is implemented in modular way to
avoid the mixture of algorithmic code and allocation code.
A meta level model is harnessed so as to achieve modularity.

2. Replication Techniques

Replication improves performance and availability to
some extent. First, there is no need for expensive remote ac-
cesses and an aggregate computing power from all proces-
sors is achieved by task parallelism. Second, despite proces-
sor failures, system functionality may not be lost provided
that a replica is hold in another processor. However, in prac-
tice, the benefits of replication are hardly realized since the
correctness of data have to be maintained, that is, a change
in one replica has to be visible to all replicas. Mutual con-
sistency enforcement causes an increase in communication
costs to the extent that replication no longer yields a perfor-
mance enhancement since the consistency protocol requires
a great deal of messages. Indeed, the number of replicas is
an important factor to obtain benefits from replication.

Additionally, the placement of replicas play an impor-
tant role due to the processor workload is variable during
the whole execution of the system. From this, replication
can be classified as static and dynamic. Static replication
determines the replica placement during initialization time.
Replicas last in the established processor during the whole
execution. This tends to degrade performance in open and
dynamic environments. A trivial example is the client-
server architecture. It is provided with a single copy that
is store in the server and clients access it remotely (See Fig-

ure 1.a). Indeed, read accesses are very expensive, carry-
ing as a consequence high communication costs. In the all-
servers model, read accesses are cheap but update accesses
are very expensive in terms of the number of messages to be
exchanged to achieve mutual consistency (See Figure 1.b).
The virtual shared memory approach comprise all proces-
sor's memory into a global memory. Processors store data
at a determined memory space that is known by a group of
processors with which the data is to be shared. Processors
requiring a read access, fetch the data by using a global ad-
dress. Although the data storage is decentralized, the system
still suffer from expensive read accesses (See Figure 1.c).
The previous approaches rely on a strict coherence mecha-
nism to preclude processors accessing an out-dated object,
that is, a read operation returns the value written by the most
recent write operation.

Shared memory

a. Client-server architecture b. All-servers architecture

c. Shared-memory model

:   Client

: Server

: Communication link

:     Copy

Figure 1. Static replication approaches

Another example is the Munin system [1] that com-
prises both the shared memory model and distributed mem-
ory model and aims at providing a type-specific memory
coherence and loose consistency. Replication is achieved
by means of a type-specific memory coherence. The sys-
tem identifies the shared memory access patterns of shared
data objects and determines the most appropriate coher-
ence mechanism. However, the Munin system is required
to know the anticipated access patterns of shared data ob-
jects at programming language level. The dynamic changes
of workloads on shared data objects are left out in this ap-
proach.

Due to the steady changes in distributed environ-
ments, distributed applications that uses static replication
could suffer from failing to provide optimum performance.
Hence, access patterns needs to be assessed during the
whole execution of an application and proceed to take a bet-
ter specification that adjusts gradually to the current charac-
teristics of the environment.

The previous approaches concern replication in terms of
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the distribution of copies. However, failures need a careful
attention in distributed systems. Processors exposed to fail-
ures caused by human errors, software bugs, power failures,
etc needs careful design to prevent the system from losing
functionality. For instance, consider a system in which a
processor holding a replica crashes for some reasons and an
update operation is performed. If the protocol is not design
to deal with crash processors, it has to block the operation
until the processor has recovered from the failure and re-
sume the operation. The issue gets worse when a critical
processors crashes. The system may become useless during
a fraction of time. In order to cope with failures, a failure
detection protocol is required to be operational when the
system fails to contact a replica.

In the read-one write-all available approach, an operation
is no longer required to ensure updates on all copies but only
in the available copies. In this scheme, failed processors are
not allowed to become available again until they recover by
copying the current value of the shared-object. Otherwise,
the recovering processor can allow stale reads and hence
non one-copy-serializable executions. In case that a partic-
ular processor is down there will be no response and the
coordinator will time-out. A validation protocol is realized
to make sure that the coordinator has no make any mistake
regarding the status of a failed process. In this approach,
replicas are statically assigned and dynamic creation and
removal of copies is not possible. The validation protocol
ensures correctness but at the expense of increased commu-
nication costs [3].

In the primary-backup replication approach [2] [4] , a
write operation is performed at the primary copy and prop-
agated to the backups. A read operation is carried out only
at the primary copy. When the primary fails, a backup, is
elected either by a fixed line of succession or by an elec-
tion protocol. It is required that the failure of the primary
copy be detectable. Otherwise, it is possible to have two
primary copies if a network partitions leaving the current
primary copy in one side, and the newly elected one at the
other side. This approach considers a degree of replication
to implement a service. However, it does not support for a
dynamic distribution of replicas.

Finally, dynamic replication deals with the movement of
replicas among processors according to some parameters.
Replicas number and placement changes during the whole
execution of the system. Generally, the correctness criterion
for replication is based on the access pattern ratio.

3. Dynamic Replication Control Strategy

The dynamic replication control strategy proposed in [5]
attempts to minimize communication costs. This approach
considers the remote access cost and the consistency main-
tenance cost as the principal factors that affects directly

communication costs insofar as they need to be measured
during the whole life-time of the system. Thus, the repli-
cation degree can be determined to adapt the system to a
much better configuration, that is, a system that optimizes
the number of replicas so as to obtain minimum communi-
cation costs and consequently to obtain high performance.
In dynamic environments, dynamic replication can guaran-
tee the expected benefits since replicas move from processor
to processor depending on the access ratio. For instance,
a replica that was highly accessed within an overwhelm-
ing fraction of time, could drop accesses drastically or af-
ter some time a processor with no replica increases the rate
of read accesses. It is necessary to keep track of the access
pattern and then select the most appropriate configuration of
replicas. This dynamic replication control strategy aims at
finding this configuration. It is realized in centralized man-
ner similar to the primary-backup replication technique.

The types of processors are classified as : the mas-
ter copy, the assistants (processors with a replica) and the
clients (processors with no replica) as is illustrated in Fig-
ure 2.

Master copy

Processors

: copy

Clients

Assistants

: Communication link

Figure 2. A centralized approach

The clients depend on the master copy in order to get an
access to the data object–an access can be either a query
or an update access to the data object. The assistants can
query the data object locally. There is no need to contact
the master copy before performing a query access. How-
ever, update access cannot be performed locally unless there
is an authorization from the master copy. The last entity is
the master copy. It has a special role that consists of receiv-
ing invocations from processors and send the response back.
Furthermore, it plays a similar role as that of the primary
copy that is to be responsible of keeping the correctness of
replicas. In other words, it ensures mutual consistency by
ordering update invocations. Each update invocation must
be visible to all replicas (strict consistency). To be prevent
inconsistencies, update accesses are controlled by means of
a locking mechanism. Before performing an update access,
an exclusive lock is required to proceed with the execution.

On this framework, the dynamic allocation scheme is
performed by the master copy and communication costs are
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related to the number of messages exchanged between the
master copy and the rest of processors. Speaking roughly,
Avoiding contacting the master copy as much as possible
may help to decrease the communication overhead. All up-
date requests are done via the master copy so a great deal
messages might be required to perform the update access
request to completion. On the contrary, since clients do
not take part in the update propagation, they do not af-
fect communication costs, but any query access on the data
object implicates communication. The master copy must
store read access information of all clients and the assistants
stores its own read access information locally. At the time
the replication algorithm is put into action the master copy
first collects the monitored information from the assistants
and then executes it.

The algorithm attempts to find the minimum number of
messages to be exchanged between the master and other
processors as shown in Figure 3.

# Copies

# Messages

Figure 3. Minimizing communication costs

Before explaining the replication policy, the following
notation is necessary:

n: Number of processors
A : (a1; a2; :::; an) Number of accesses by eachpi
S : (s1; s2; :::; sn) The processor status vector (0: client,

1: assistant)
The replication policy is defined as follows:

Nc = 2(1� S)At + (3SSt + 1)

The first term computes the total number of messages be-
tween the master and the client. The second term computes
the number of messages being used by an update operation.
To minimize M, PS has to be selected.

N�

c = minf2(1� S)At + (3SSt + 1)g

A is ordered in descending order and presets PS to 0.
Then the system sets each element of PS to 1 one after an-
other untilM(k) > M(k � 1) [5]

4. Dynamic Replication and Fault tolerance

The previous algorithm focuses on finding the number of
replicas that make communication costs minimum. In our
approach, we attempt to furnish fault tolerance, availability
and at the same time to provide a dynamic replication con-
trol strategy. We propose an scheme in which the replication
protocol considers only the correct processors to carry out
the selection of the new set of replicas. This approach is
similar to that of the primary-backup replication technique.

In our system, down processors are excluded from the set
of processors to avoid the delay incurred by protocols when
some processors fail. For example, the update protocol at-
tempting to upgrade a failed copy. First, we consider the
failure of clients and assistants and then later in this section
the failure of the master copy which requires careful design.
Recovering processors are added to the set of processors by
contacting the master copy and are treated as clients. They
are included in the set of processors so as to participate for
the next configuration. The failure detection protocol, that
is, a set rules that determined when a replica has failed, car-
ries some extra communication overhead, however in return
the system becomes more functional. The failure detection
policy is based on a time-out constraint in which processors
are declared as failed after a determined time-out period ex-
pires. In case that the system do not suffer failures of any
kind, then communication costs would not be affected.

Processor failures can affect functionality due to the
shared-object state is common to all processors. At the
time of a failure, functionality degrades insofar as the sys-
tem is not able to perform any computation. To provide
the system with better functionality, it is necessary to tackle
such failures such that the system can recover enough state
so as to continue a computation. The query, update and
lock invocations for accessing a shared-object need to be
re-implemented so that they can execute to completion de-
spite failures. The lock invocation used to serialize update
invocations can cause serious degradations provided that a
granted lock is at down processor. Since all processors re-
main locked until the down processor recovers, by detecting
the failure of such processor, the master copy can annul the
lock and transmit to the available copies an acknowledge-
ment regarding the cancellation of the lock (See Figure 4).
Furthermore, a processor with an execution time longer than
the time-out period being set has to send a dummy acknowl-
edgement to the master copy within the time-out period in
order to keep the lock. After the time-out expires, the pro-
cessor lost the lock and has to request it again for further
processing.
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Master copy

Assistant

client

Any processor
lock request

Master copy

Assistant
client

Any processor
lock request

T
unlock

unlock
T

a) The processor fails after receiving reply

b) The processor fails after sending request

Figure 4. Lock request and fault tolerance

An update invocation handled by the master copy has to
ensure that all correct replicas receive the shared-object cur-
rent state. An extra-message is required as an acknowledge-
ment stating that the replica has been updated. In the case
that an assistant is down, the master copy waits for the re-
ply within a time period and then declares the copy as failed
(see Figure 5).

Master copy

Assistant

Assistant

Any processor

update request

Master copy

Assistant

Assistant

Any processor

update request

a) Requesting processor fails

b) A down assistant is excluded after time-out

T

Figure 5. Update request and fault tolerance

A read operation does not affect shared-state so in case
that the reply is lost, the client is obliged to resend the pre-
vious read operation. The master copy is unaware of clients
failures until an update on processor state itself is done by
the replication protocol.

Recovering processors must talk to the master copy so

as to be included into the set of processors. By default, a
recovering process impersonate a client. After being ac-
cepted, they can resume the pending activities.

So far, failures of clients and assistants can be detected
whenever an invocation that requires cooperation to perform
a computation is executed. The failure of the master copy
can be detected by time-out and retransmission. If a pro-
cessor fails to contact the master copy after following the
previous especificacions, it has to broadcast a master-copy-
failure message so that a new processor can become a mas-
ter so that the system can resume processing. The failure of
the master copy generates more issues to cope with, for in-
stance, replication consistency which is one of its goals that
should be maintained through all failure ocurrences. Invo-
cations that fail to execute simply because the master copy
is down has to be redirected to a new master copy. In the
previous work, after the delivery of an update invocation
requested by any processor to the master copy, it assumes
that the request will be perform to completion. Yet, the up-
date operation execution is not guaranteed to be performed
if the master copy fails right before the update request was
sent. The calling processor is required to make sure the up-
date request has been perform to completion. Otherwise,
the system could end up having replicas with different states
violating serializability.

Another case is when the master copy accepts an update
request, but fails to send the update request to all replicas.
If the new master copy is selected according to a predeter-
mined order from the set of replicas and sees the last update
on the replica, then inconsistencies arises in that the new
master copy might assume that all replicas has also been up-
dated properly, and immediately proceeds to offer services.

Master copy

Assistant

Assistant

Any processor
update request

Master copy

Assistant

Assistant

Any processor
update request

new master

new master

Figure 6. Update request and the primary
copy failure

At the time the master copy is declared as failed, proces-
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sors stop performing computation until the system recovers
from that inconsistent state by selecting a new master. Co-
operation might be necessary from all replicas to agree on
the most recently state of the shared-object. After having
agree on that, then the new master broadcast an acknowl-
edgement to all processors so as to let them know the new
system status.

The failure of the master copy risks availability since
clients depend directly upon the master copy. In view that
the system can suffer serious availability lost, a better de-
sign is required to enhance availability whenever the master
copy is down. Obviously, the election of a new master copy
may render the system with an enhanced availability, but it
turns that the master copy apart from offering services to
all processors, it runs the replication protocol. Additionally,
the master copy keeps clients information required by the
replication policy. It is required that each client keeps its
own information as well so when the master copy fails, the
new master copy can recover each client information.

5. Design Issues

The shared-object model comprises a communication
handler, a replication handler and a user defined object (See
Figure 7).

Replication Communication

Data object

network

Meta
Level

Base
Level

Figure 7. The shared-object model

The issues to be treated in this model are:

� Network transparency : enables programmers to access
shared objects by using the same interface as any data
object. Programmers do not need to have any knowl-
edge regarding the location of shared-object as well.

� Replication transparency : users do not participate in
the replication decisions. The system takes full respon-
sibility for the replication protocol execution and the
finding of the optimum solution so as to reduce com-
munication costs.

� Modularity : maintenance and design of distributed ap-
plications is hard to realize in systems in which the
algorithmic code and the allocation code is mixed to-
gether [6]. Modularity arises as a solution to make dis-
tributed applications easy to design and maintain. In
our system, meta level architecture is harnessed to pro-
vide with the required modularity.

6. Conclusion

Dynamic replication plays an important role for provid-
ing a distributed system the tools to minimize communi-
cation costs. However, issues such as fault tolerance and
availability need to be consider in its design to prevent the
system from sacrificing functionality.

The shared-object management system is designed in
such a way that down processors are excluded from the set
of replicas by a failure detection protocol. A extra commu-
nication overhead rises as messages are required to detect
down processor, however, the system obtains better func-
tionality. A time-out constraint determines whether proces-
sors are in a failed state or not. The replication protocol uses
only the set of correct processors to determine the new set
of replicas and then proceeds to propagate the new states.
Since a master copy handles serialization and executes the
replication protocol by making use of access ratio infor-
mation from all processors, the failure of the master copy
causes availability loss. We attempt to enhance availability
by masking the failure of the master copy through an elec-
tion protocol.
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