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Abstract

A fundamental step in sentence comprehension involves assigning semantic roles to sentence con-

stituents. To accomplish this, the listener must parse the sentence, find constituents that are candi-

date arguments, and assign semantic roles to those constituents. Each step depends on prior lexical

and syntactic knowledge. Where do children begin in solving this problem when learning their

first languages? To experiment with different representations that children may use to begin under-

standing language, we have built a computational model for this early point in language acquisition.

This system, BabySRL, learns from transcriptions of natural child-directed speech and makes use

of psycholinguistically plausible background knowledge and realistically noisy semantic feedback

to begin to classify sentences at the level of “who does what to whom.”

Starting with simple, psycholinguistically-motivated representations of sentence structure, the

BabySRL is able to learn from full semantic feedback, as well as a supervision signal derived from

partial semantic background knowledge. In addition we combine the BabySRL with an unsuper-

vised Hidden Markov Model part-of-speech tagger, linking clusters with syntactic categories using

background noun knowledge so that they can be used to parse input for the SRL system. The results

show that proposed shallow representations of sentence structure are robust to reductions in parsing

accuracy, and that the contribution of alternative representations of sentence structure to successful

semantic role labeling varies with the integrity of the parsing and argument-identification stages.

Finally, we enable the BabySRL to improve both an intermediate syntactic representation and its

final semantic role classification. Using this system we show that it is possible for a simple learner

in a plausible (noisy) setup to begin comprehending simple semantics when initialized with a small

amount of concrete noun knowledge and some simple syntax-semantics mapping biases, before

acquiring any specific verb knowledge.
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Chapter 1

Introduction

Children’s ability to rapidly learn language continues to inspire and confound. Faced with noisy,

complex speech in complex, ambiguous environments, children are able to acquire language with

little explicit instruction. No one provides corrections for every erroneous utterance, or valid inter-

pretations and alternative phrasing for all misunderstood speech. Even with this lack of supervision

children seem to follow a regular schedule, starting with knowledge of a few words or structures

and quickly generalizing to global language patterns.

Previous computational models of this stage of early language acquisition have demonstrated

the abilities of various knowledge and representation schemes using existing learning protocols and

potentially unrealistic levels of supervision to acquire the link between syntax and semantics. In

this thesis we develop a machine learning model that supports psycholinguistic theories of acqui-

sition, including the ability to deal with noisy input and ambiguous feedback. To date, machine

learning algorithms have been successful for a variety of natural language tasks, largely by relying

on fine grained supervision over large training sets. We demonstrate a powerful alternative means

of supervision motivated by psycholinguistic accounts of child language acquisition.

Statistical machine learning approaches have provided many advances for the Natural Language

Processing (NLP) community, allowing some global task representation to be inferred from copious

amounts of data. The dominant paradigm in this field is that of supervised learning that relies on the

existence of a correct “answer” or label for not only every example, but every decision faced in the

data. This labeling defines what the machine will learn; instead of relying on a hand coded model,

NLP engineers and experts just need to define what they want the answer to be and create a model

to learn from this data.

But what happens when the full “correct answer” is not or cannot be known? When learning

language, a child is not provided sentence/interpretation pairs from which to learn. Instead the
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child must rely on innate assumptions, background knowledge, and feedback from a complex and

ambiguous world to drive its learning. In NLP this case abounds, either where a task is too ill

defined to provide consistent labeling or else input is available without human labels (e.g. new

domains or languages). Most supervised machine learning algorithms expect supervision at the

level of individual decisions or structures in the language of the machine representation. In this

thesis we develop an architecture that instead combines background knowledge and ambiguous

feedback to replace this supervised data.

To train a word sense classifier, a human expert must first partition a word’s meaning into a set

of senses, label individual occurrences of that word with its sense, define a relevant representation

to capture necessary semantics of a context (which may depend on external parsers, dictionaries or

other further information investment), and feed the labeled data into a supervised machine learning

algorithm. While a machine learning algorithm may be able to learn from this labeling, its use-

fulness is entirely dependent on how well the human defined the sense repository, or how much

vocabulary was covered in the training data. To train a child to distinguish word senses, it is only

necessary for the child to understand that words can have different meanings in different contexts.

When a word comes up, if the specific meaning is not clear, the child is able to accomodate, using

other possible sources of information such as a guess at the possible intended meaning of the en-

tirety of the sentence/dialogue/scene. This feedback is ambiguous and noisy, but task oriented; the

child learner understands a high level goal while learning and fits both internal representation and

feedback to this goal.

Child language acquisition presents a case where a learner is able to learn a full model of

language without being constantly given complete supervision. By assuming that language carries

some meaning, the child is able to go a long way towards learning how to extract that meaning. If

one’s goal is to have computers learn human language, then it seems natural to explore how humans

learn language, with a focus on both what knowledge and representations they may use to offset the

lack of supervision, and how language allows itself to be learned with this information.

Human language is an unquestionably human phenomena, so far humans are the only known

instance of a successful learner of it. Whether one believes this facility is due to an innate Univer-

sal Grammar or that language adapts itself to human’s general brain capabilities and needs, child
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language acquisition provides not only an interesting case study, but provides definite evidence that

language is learnable. Despite its seeming complexity, elements of language itself allows early

generalization and learning from entities with not necessarily complete knowledge and processing

capabilities. Here we show that paired with general assumptions about abstract communicative

meaning (sentences mean something, and this meaning has structure), specific early knowledge can

be used to begin understanding and potentially bootstrap full learning.

The purpose of language is to communicate some meaning, which we can model as a logical

predicate with some set of arguments, where each argument serves a role in that predicate. We thus

model language acquisition as a learner attempting to learn to predict such a predicate-argument se-

mantic structure given a sentence. This forms a semantic role labeling (SRL) task [Màrquez et al.,

2008] that attempts to assign abstract semantic roles to noun arguments of verb predicates (on the

level of “who did what to whom”). This represents a useful high level semantic task (used for in-

formation extraction [Surdeanu et al., 2003], question answering [Shen and Lapata, 2007], machine

translation [Wu and Fung, 2009], etc.) that needs to abstract over various sentence structures and

lexical objects to be able to predict semantics for novel sentences with novel verbs.

To complete the model of language acquisition, we build a “BabySRL” system that is trained on

semantically tagged transcripts of child directed speech (CDS), and tested using both held out CDS

and constructed sentences of fixed structure with known nouns and novel verbs. The BabySRL

allows us to experiment with different simple representations of sentences based on knowledge

available to young children and varying levels of both input information and semantic feedback.

Children are certainly not given semantic feedback along the lines of correct interpretation of the

role of every argument in a sentence, nor are they expected to form perfect syntactic parses for every

sentence, so we incorporate these restrictions into our training.

We are motivated by the “structure-mapping” account of syntactic bootstrapping. This model

proposes that children are able to begin processing sentences by assuming innate abstract semantic

roles, early noun knowledge, and a mapping from nouns to semantic arguments, all assumptions

that can naturally be encoded in our BabySRL system. The success of the system developed in

this thesis when faced with real data provides evidence not only for the effectiveness of this theory

for real children, but points the way for more psycholinguistically motivated computer learners to
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prime the pump when learning language.

1.1 Language Acquisition: Syntactic Bootstrapping

An important stage in early language acquisition is at the beginning of sentence understanding,

when semantics are first being applied and generalized to novel multiword units. For example a

child encounters the sentence “The girl tickles the boy” with the relevant scene of a girl and a

boy playing together. Semantic Bootstrapping [Pinker, 1984] claims that children are able to use

their understanding of the meaning of the sentence to constrain the structure or syntax of the sen-

tence, and thus begin learning. In this case the event provides interpretations such as the correct

girl tickling the boy, as well as girl and the boy playing, the boy squirming and giggling, the girl

laughing, etc. To learn from this sentence the child apparently has to already know the meaning of

“tickle”; semantic bootstrapping assumes that word learning must precede syntactic learning. Syn-

tactic bootstrapping [Landau and Gleitman, 1985; Naigles, 1990] counters that children are able to

use the structure of the sentence to drive the selection of the meaning of the sentence. Together

with semantic bootstrapping the two theories provide a cyclical bootstrapping process for language

acquisition, but the question is: where does this cycle start; how can children begin to bootstrap

when the language input is mostly ambiguous regarding both structure and meaning. In this thesis

we demonstrate a full scale computer model using ‘structure-mapping’ [Fisher et al., 2010]: sim-

ple representations depending only on the minimal knowledge available (namely knowing a small

number of concrete nouns) can prevail, allowing a language learner to begin to identify verbs and

determine who does what to whom.

We instantiate the structure-mapping account through our model’s basic assumptions, or “Uni-

versal Grammar”: 1) Sentences contain at least one predicate and arguments for that predicate, 2)

Arguments fill unique abstract roles in predicates (Agent, Patient, etc.), 3) Structural/Combinatorial

properties of words are encoded and used independent of knowing the meaning of the word, and

4) Nouns are treated as arguments for verb predicates. These simple innate assumptions allow the

learner to immediately begin to identify verbs and map meaning to a sentence once a set of nouns

have been identified.

Applying these assumptions to the “girl tickles boy” example, the child is able to recognize
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“girl” and “boy” as nouns, and by identifying them as arguments can treat the sentence as con-

veying an event containing two participant-roles, eliminating such interpretations as “the boy is

squirming” or “the girl is laughing”. Even without correct identification of exact meaning (deciding

between “girl and boy are playing” and “girl tickles boy” interpretations), the occurrence of the

word “tickles” in a two argument sentence provides evidence for it as a two argument predicate. If

this word commonly appears in similar structures then the child can conclude it is the predicate and

knows something about the relative position and order of its arguments.

In this thesis we develop a machine learning model that is able to combine simple, partial

syntactic constraints along ambiguous semantic feedback to begin to learn sentence structure and

meaning. The idea of syntactic bootstrapping does not throw out the contribution of the semantic

scene, it merely acknowledges that faced with the enormous ambiguity of even the simplest real

world setting, additional structural cues from the sentence itself are necessary to guide interpretation

and learning.

1.2 Thesis Statement

Even with its complexity, language is learned, and thus learnable. We demonstrate with real child

directed speech (CDS) that simple abstract representations are able to begin extracting sentence-

level semantics in the presence of noise and ambiguity. More specifically we show how small sets

of high precision noun knowledge combined with abstract patterns are able to begin both identifying

structure and semantics in sentences. This early noun knowledge is defensible in young children,

and our process represents a mechanism for them to begin learning structure and syntax early,

without relying on complete (and more difficult) verb knowledge. Furthermore we show that a

combination of bottom-up noun knowledge and abstract representations allows a learner to gain a

foothold when faced with an ambiguous world.

The overall contributions of this thesis is twofold: 1) We develop a machine learning model that

learns on a realistic scale and is able to support psycholinguistic theories of syntactic bootstrapping

for language acquisition, demonstrating the theory’s effectiveness and applicability on real child

directed speech. 2) Through this model we demonstrate a useful alternative means of supervision

that does not rely on fine grained knowledge injection in the form of fully tagged and labeled data,
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but instead uses weaker, ambiguous higher level feedback to infer both intermediate representations

and final task predictions.

As more specific psycholinguistic contributions, in developing our BabySRL model we show

that:

1. Simple, psycholinguistically plausible representations can allow a start to sentence under-

standing without needing to know every word in the sentence.

2. Simple representations are robust to bootstrapped, partial feedback and noisy input

3. Early noun knowledge can bootstrap both noun and verb category knowledge, useful for

simple representations

4. A learner with simple representations can recover both syntax and semantics from real sen-

tences with ambiguous semantic feedback, but only when they incorporate some noun knowl-

edge.

Putting these claims together we demonstrate a learning protocol that uses well developed su-

pervised learning techniques in an unsupervised setting, combining simple assumptions and small

amounts of background knowledge to generate a supervision signal from real data. This learning

can form the basis for further self-improvement when faced with sentences of growing complexity,

just as a real child does.

1.3 Thesis Organization

The main focus of this thesis is the development of our BabySRL model from basic representations

through processing its input and producing its training signal. This model represents key assump-

tions of the structure-mapping account, integrated both into the structure of the semantic labeling

task and the syntactic representation used. Figure 1.1 traces an example sentences through the

complete BabySRL pipeline. Individual aspects of the pipeline will be described in future chapters.

The overall outline of the remainder of this thesis is:

• Chapter 2 gives general background information about some concepts of supervised and un-

supervised learning that are used in this thesis, as well as about the specific task of Semantic
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78: like, got, did, had, saw
50: many, nice, good, dirty
48: more, juice, milk, coffee

78: 13% 1 arg, 54% 2 arg, 17% 3 arg
50: 41% 1 arg, 31% 2 arg, 17% 3 arg

Word=
    I

Verb=
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  Two

Before
 Verb

A0 A2 ...

I is an agent
A0

bread is a patient
A1

I is animate
A0

bread is unknown,
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so bread is not 
an agent

Trained on
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Uses Lexical
Development Norms

1.
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6.

7.

N V N
Syntactic
Representation:

A1

Word=
bread

Verb=
like
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  Two

 After
 Verb

A0 A2 ...A1

Figure 1.1: Complete BabySRL Pipeline Example for sentence “I like dark bread .” Base semantic
classifier and feature representation based on simple linear syntactic representation (number and
order of nouns, relative location of verb), box 4 and 5, described in chapter 3. This simple syntactic
representation is induced with minimal supervision using a Hidden Markov Model (HMM) trained
on Child Directed Speech (CDS) (box 1), and a seed set of concrete nouns to identify arguments
(box 2) and predicates (box 3), described in chapter 4. The full BabySRL can be trained with either
true semantically tagged CDS (box 7), or can use internally generated semantic feedback based on
world knowledge (box 6; animacy of arguments indicates agent, chapter 4). The full pipeline model
with minimally supervised arguments, simple representation and animacy feedback demonstrates
the effectiveness of a small amount of early noun knowledge in bootstrapping simple representations
for whole sentence semantic understanding. Chapter 5 revises the pipeline approach, viewing the
syntactic representation as a latent structure that is inferred to help predict ambiguous semantics.

Role Labeling and Unsupervised Part-Of-Speech tagging. A brief review of relevant child

language acquisition experimental and computational modeling work will also be covered.

• Chapter 3 will introduce the basic learning model and simple representations that make up the

core of our BabySRL model (boxes 4 and 5 in figure 1.1). Experiments with perfect syntactic

input and semantic feedback will demonstrate and provide an upper bound on the abilities of

these simple representations.

• Chapter 4 strips the perfect syntax and semantics of the BabySRL model from chapter 3 and
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replaces them with minimally supervised argument and predicate identification (box 1-3 in

figure 1.1) and internally generated semantic feedback based on animacy background knowl-

edge (box 6 in figure 1.1). This entire minimally supervised pipeline shows the robustness of

simple representations and demonstrates that this entire model can be trained when starting

with the knowledge of a small number of concrete nouns.

• Chapter 5 re-evaluates the pipeline approach of BabySRL from the previous two chapters, and

instead views the syntactic structure as a hidden variable that is inferred jointly with seman-

tic interpretation of the sentence. This model allows experimentation with both ambiguous

semantic feedback and syntactic constraints, and we show that learning is possible with am-

biguous semantics, but it does require interaction with some early syntactic knowledge (as

provided by minimally-supervised argument identification).

• And Chapter 6 concludes and describes potential future directions of how this model can be

used in the first step of self improvement and language acquisition.
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Chapter 2

Background

This chapter covers some of the background material that the rest of the thesis builds upon. All

research directions discussed cover vast swaths of literature, so only pertinent or illustrative mate-

rial will be discussed along with pointers to other related work when appropriate. We will start in

section 2.1 with a brief description of our supervised learning framework, focusing on online learn-

ing algorithms, then look at how lack of supervision is handled in unsupervised or semi-supervised

methods (with a special focus on one specific application, unsupervised part-of-speech). Section 2.2

introduces the NLP Semantic Role Labeling task, and also briefly reviews related work that incorpo-

rates alternative training for this task in the form of Unsupervised Semantic Role Labeling. Finally

section 2.3 gives some relevant background in language acquisition and other psycholinguistacly

relevant computational models.

2.1 Supervised Learning

With supervised learning we are interested in learning a function h : X → Y that maps examples

from some input space X to an output space Y , when we are given a finite number of samples

from the true target distribution DX×Y . The goal of a learning algorithm is to find some func-

tion h out of a given hypothesis space H that best matches the true distribution DX×Y , where

we can formally define matching as minimizing the expected loss in terms of some loss func-

tion L : Y × Y → R+. In this case the learning algorithm A∗ : H × D × L would return

h = arg minh′∈H E(x,y)∼DX×Y
[L(h′(x), y)]. Of course in the real learning case we do not know

the true target distribution DX×Y , so we have to rely on empirically estimating it given some sam-

ple S = {(xi, yi)}m drawn i.i.d. from DX×Y . This suggests a learning algorithm A : H × S × L

that returns ĥ = arg minh′∈H
1
m

∑m
i=1 L(h′(xi), yi).
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Different classes of learning algorithms can thus be compared by their hypothesis space, what

loss functions they use, and how they use the training samples. In this thesis we are interested in

online learning algorithms that process the training samples one example at a time. The training

sample S is viewed as a sequence of examples that the algorithm may run over, perhaps multiple

times1. This class of algorithms are both biologically relevant due to their limited memory and

processing requirements, and for the same reasons scale to handle truly tremendous amounts of

data.

The simplest, and most widely studied classification setting is that of a binary classifier where

there are only two labels, Y = −1, 1. Now examples can be seen as coming from one of two sets,

negative and positive, and often the examples are referred to as such. This setting is both simple and

easy to analyze, as well as allowing for generalizations and reductions from many more complicated

classification settings. As we will see, binary classifiers form an effective base for which to build

classifiers with multiple labels or more complicated output structures.

Additionally we focus on the hypothesis space of linear functions, which can be defined the

binary setting as:

h(x|Φ, w) =

 1 if w · Φ(x) > 0

−1 otherwise

where Φ : X → Rn is a feature function that maps an input example x into a vector of n real

valued features, and w ∈ Rn is a vector of weights in the feature space, and here acts as a sep-

arating hyperplane between negative and positive examples. Learning a linear function requires

setting the weight vector w to minimize loss on the training set. Linear classifiers can be efficiently

learned with a polynomial number of training examples [Kearns and Schapire, 1994], provide a nat-

ural geometric interpretation of the classification space2, and perhaps more importantly, they focus

the actual engineering work of setting up the learning algorithm into how one defines the feature

function Φ.

Since we have already specified that we are interested in an online learning algorithm for linear

classifiers, a natural algorithm to use is the single layer perceptron [Rosenblatt, 1958]. This is an
1Alternatively, we can imagine online algorithms are provided with some method of stochastically sampling one

example at a time from the target distribution, instead of being given a fixed size set of examples. Obviously in a finite
amount of time such an algorithm would only see an algorithm could only see a finite number of examples.

2Although such intuitions can often lead one astray in high dimensional feature spaces
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easy to implement learning algorithm that processes training examples one at a time, making a

prediction using the current weight vector and updating the weights with a fixed additive amount

whenever a mistake is made. The algorithm is presented in algorithm 1.

Algorithm 1 Binary Perceptron Algorithm
1: Input: S = {(xi, yi)}mi=1 where xi ∈ Rn, yi ∈ {−1, 1}, number of training epochs T and

learning rate α
2: Output: w ∈ Rn

3: Initialize w = ~0
4: for t = 1→ T do
5: for all Examples (xi, yi) ∈ S do
6: y∗ ← sign(w · xi)
7: if y∗ 6= yi then
8: w ← w + αyixi
9: end if

10: end for
11: end for

When the data is linearly separable (a u ∈ Rn exists s.t. yi = sign(u · xi)∀(xi, yi) ∈ S),

the perceptron algorithm will find such a separating hyperplane after making a bounded number of

mistakes during training [Novikoff, 1963]. When the data is not linearly separable (such as the case

with the famous binary parity or XOR example [Minsky and Papert, 1969]), the simple response is

to add more features, increasing the dimensionality into a region where the data is linearly separable.

Hence the focus on feature engineering when working with linear classification.

Over the years (decades even) there have been numerous modifications and improvements to the

basic fixed increment perceptron algorithm. Winnow [Littlestone, 1988] modifies the basic additive

weight update on misclassification to a multiplicative update, leading to faster training, especially

in cases where only a small number of features are important and the vast majority are irrelevant.

Average or voted perceptron [Freund and Schapire, 1998] remembers the weight vector at each

iteration and averages them all together for a final predictor, which has the effect of decreasing the

learning rate over time. Additionally it is possible to set the learning rate per example, depending on

size of the error (such as with the family of Passive-Aggressive online algorithms [Crammer et al.,

2006]), which may lead to faster learning. Of course perceptrons may be viewed in the same general

framework of neural networks, so many of the tricks of the trade used there can also be applied (e.g.

[Haykin, 1999; LeCun et al., 1998]). In my own experience additive perceptron is easier to tune

11



than winnow, and average perceptron helps in almost all cases although may take more rounds to

converge.

So far we have only described binary classification, the case where there are two possible labels

in the Y output space. What if there are multiple possible discrete labels, such as Parts of Speech, or

Semantic Roles? Here we assume there are N classes, and that the set of Y outputs are the integers

{1, · · · , N}. In this work we use the standard “one vs. all” classification technique of reducing

the learning and classification of N classes into N binary classification tasks. In the context of

linear classifiers we train N weight vectors, {wi}Ni=1, and final prediction is h(x|Φ, {wi}N ) =

arg maxj = 1Nwi · Φ(x). During training the “one vs. all” means that for each class i we train

wi where all the training examples labeled with class i form the set of positive examples, and all

examples from other classes form the negative training examples. This way, it is hoped that when

presented with a new example, the true class’s classifier will give a higher score than any other

class.

There are of course many other schemes for multiclass classification beyond the standard and

direct “one vs. all.” For example it is also possible to form
(
n
2

)
classifiers in an “all vs. all” ap-

proach, training a classifier to distinguish between every pair and then doing either voting or some

sort of tournament for predicting the target class. Alternatively it is possible to do more compli-

cated optimization methods, training N classifiers together as one (e.g. [Vapnik, 1998; Crammer

and Singer, 2001]), where they trade off a global error or slack per example. Another major class

of multiclass classification approaches is error-correcting codes (e.g. [Dietterich and Bakiri, 1995;

Crammer and Singer, 2002]), where some number of binary classifiers are trained (this number not

necessarily dependent on the number of classes) where each classifier is trained on some “metatask”

that combines multiple classes together as positive and negative sets with the goal of creating sep-

arable metatasks allowing good individual binary classifiers. Despite (or perhaps because of) the

complexity of the alternative approaches, “one vs. all” is still the dominant approach and empirical

results suggest that it should fare well if the underlying binary classifiers are strong [Rifkin and

Klautau, 2004].

Later in this thesis we will expand the label output space to structured predictions, where for

each input x we are predicting some structure y. This case abounds in NLP because often the
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object of interest are not just categorical (as is the case with POS), but may have some internal

structure, such as predicting the full parse tree for a given sentence. This case can be reduced to

multiclass classification where Y is the set of all possible structures, but this set may be exponential

size (or greater), so it is not possible to efficiently do “one vs. all” or the like. Various meth-

ods of learning with structured prediction have been introduced (e.g. CRF [Lafferty et al., 2001],

Structured SVM[Tsochantaridis et al., 2004]), LASO[Daumé and Marcu, 2005], etc.), but in this

paper we stick with the online, perceptron approach and build on the ideas of Collin’s Structured

Perceptron [Collins, 2002].

In the structured prediction case we use a feature function Φ : X × Y → Rn that extracts

features from the entire input + label structure. The goal of a linear structured classifier is to find

a weight vector w ∈ Rn such that yi = arg maxy w · Φ(xi, y), i.e. it gives highest weight to the

features of true structures over false. Collin’s perceptron finds such a weight vector through online

training similar to regular binary perceptron: for each example predict the top structure according to

current weight vector, if the prediction does not match the true structure, we increment the weights

for those features in true structure, and decrement those in the falsely predicted one. This algorithm

is illustrated in algorithm 2:

Algorithm 2 Structured Perceptron Algorithm
1: Input: S = {(xi, yi)}mi=1, Feature function Φ : X × Y → Rn, number of training epochs T

and learning rate α
2: Output: w ∈ Rn

3: Initialize w = ~0
4: for t = 1→ T do
5: for all Examples (xi, yi) ∈ S do
6: y∗ ← arg maxy w · Φ(xi, y)
7: if y∗ 6= yi then
8: w ← w + α(Φ(xi, yi)− Φ(xi, y

∗))
9: end if

10: end for
11: end for

Again, it can be shown that this algorithm will converge to a separating hypothesis if the training

data is linearly separable, and acts “reasonably” if data is close to separable [Collins, 2002]. This

algorithm is easy to implement and allows the engineer to focus on the important issue of feature

extraction.
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2.1.1 Unsupervised Learning

While the previous section laid the foundation for the supervised learning techniques used in this

thesis, what about unsupervised methods? The goal of unsupervised learning is for human experts to

exert their knowledge in the form of models, constraints, or other knowledge sources, and then hope

that untagged data will fill in the gaps. This practice manifests itself in two ways: 1) Experts devise

a statistical model of how labels relate to data, and then fit this model to the data, treating labels

as hidden values, or 2) Background knowledge is used to inject a supervised signal into otherwise

untagged text, allowing the use of standard supervised classifiers. The first approach is essentially

clustering, a widely studied, used, and rarely understood methodology, and we will discuss one

specific manifestation of this approach for unsupervised POS.

One relevant and commonly cited example of the second class of unsupervised methods is

Yarowsky’s Word Sense Disambiguation (WSD) bootstrapping algorithm [Yarowsky, 1995]. This

algorithm attempts to solve the WSD task (determine the sense, or meaning, of a word in context,

selecting from a fixed number of “dictionary definitions” for each word) starting with two basic

assumptions about language, a handful of seed examples, and larger set of untagged examples. We’ll

later return to this important idea that it is possible to (begin to) learn various language phenomena

with just such a setting: small seed of high precision knowledge, general assumptions/constraints,

and exposure to language. For this task the assumptions are that words tend to have the same sense

if they appear multiple times in a discourse (one sense per discourse), and that the sense of the word

can be determined from context. These two assumptions allow a supervised classifier (decision list

in this case) with features based on context to spread, or generalize sense knowledge from the seed

set to those words that share context or discourse.

There are many different such algorithms for unsupervised (really minimally or weakly super-

vised) learning that are often task specific in terms of assumptions and knowledge brought to bear.

In section 2.2.1, we will go through some related unsupervised Semantic Role Labeling models

as further examples. It is also possible to define a more general framework for minimal supervi-

sion that attempts to abstract away some notion of knowledge injection. Co-training [Blum and

Mitchell, 1998] is a prominent framework where the expert imports knowledge through a division

of the features into multiple independent subsets or “views.” The co-training algorithm uses two
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weak classifiers (trained on small amount of seed examples) with independent views to bootstrap

more labeled data by independently selecting and labeling examples they are confident about. The

intuition here is that if both views are compatible with the target function (able to learn the func-

tion) and conditionally independent given the label, then confident examples from one classifier

will appear randomly distributed to the other classifier. Thus by having independent views (as de-

termined by the human expert) share information through cross-training, label confidence, accuracy,

and generalization ability is increased.

Unsupervised Part of Speech

As an example of the model based, or clustering, approach to unsupervised learning we here discuss

Unsupervised Part of Speech tagging. In this task each word in a text is assigned to some tag or

cluster, and then this clustering is compared to hand annotated syntactic category, or POS. We

develop and use such a system in our BabySRL model to identify arguments and predicates in

section 4.1. One notable aspect of viewing POS as a clustering task is that it is context sensitive

clustering, a single word can appear with multiple different POS tags in real language (”I went for a

walk” vs. ”I like to walk”) depending on context, so accurate unsupervised tagging requires putting

words in multiple clusters3.

There are various approaches to unsupervised POS, with various levels of knowledge available

to the system. Good results can be obtained if a tagging dictionary is supplied (for every word we

know the possible POS for that word, e.g. [Merialdo, 1994; Smith and Eisner, 2005; Toutanova

and Johnson, 2007]), or as with previously mentioned unsupervised methods a small number of

seed labeled examples, or prototypes, are given to a supervised learner [Haghighi and Klein, 2006].

Here we focus on the induction task where little to no POS categorical information is given, beyond

possibly desired number of classes. More specifically we focus on methods that use Hidden Markov

Models (HMM) as their base statistical model, and incorporate extra information through priors

and training constraints. For a recent empirical review and comparison of POS Induction systems,

see [Christodoulopoulos et al., 2010]. Interestingly, the authors of this comparison find that older,

purely clustering methods (such as Brown Clusters [Brown et al., 1992]) work almost as well as
3Whether this complication is necessary is a separate issue, since a majority of words often appear as a single POS in

a given discourse, a simplification that we will see exploited.
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more modern and more complicated HMM based methods, and may work better as input for further

processing (a finding that matches empirical results in other NLP tasks [Koo et al., 2008; Ratinov

and Roth, 2009; Turian et al., 2010]).

HMMs have long been used as a model for POS [Garside et al., 1987], naturally matching the

simplified view of the syntax of a sentence being a sequence of syntactic categories and the actual

observed words are just a manifestation of that category. Unsupervised POS is implemented as

a first-order HMM4 by specifying a sequence of hidden states (interpreted as syntactic category),

where the probability of each state is conditioned only on the previous state (transition probability:

p(ti|ti−1)), and each state emits an observed word (emission probability: p(wi|ti)). Given these

probabilities (along with an initial distribution for first state in a sequence: π(t0)), it is possible

to efficiently predict the most likely sequence of hidden states for a new sentence using Viterbi

decoding, or to predict the most likely state for a given word in the sentence given the rest of

the sentence (marginal likelihood, using Forward-Backward algorithm). See Rabiner [1989] for a

thorough review of HMM use, training, and good practices.

Early works using HMM models for POS would estimate such probability tables using hand

labeled POS training data, but we are interested in methods that estimate these parameters from

untagged text directly. Elworthy [1994] and Merialdo [1994] both first explored the use of Baum-

Welch [Baum, 1972] Expectation Maximization (EM) unsupervised training for HMM and POS,

both as re-estimation from already trained parameters and from uninitialized probabilities. EM for

HMM alternates between finding the likely tagging of the training text using current parameters,

and then re-estimating those parameters based on the current likely tagging. This approach can be

shown to find a local maximum of the model likelihood. [Johnson, 2007] asked why this method

does not seem to work very well for linguistic phenomena, including POS, and concludes that the

true distribution of categories, with a few tags covering a large number of words (open class) and

most tags covering very few words (closed), differs from that produced by EM, which favors a more

uniform distribution of words to hidden state.

It is now the job of the unsupervised POS approach to somehow impart this knowledge of

state distribution into the HMM. One method is by specifying Bayesian priors on the transition and
4It is possible to use higher order HMM for POS, although for unsupervised training the increase in complexity of

training and inference is generally not offset by a comparable increase in accuracy.
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emission probabilities which should bias the model towards different distributions. With multino-

mial transition and emission probabilities in the HMM, it is natural to use Dirichlet priors. The

Dirichlet distribution has a single parameter, a vector of positive real values that is commonly all

set to the same value (known as the concentration parameter, here referred to as α). Intuitively, as

α approaches 0, then the Dirichlet prior will prefer distributions that allocate more weight to fewer

entities, thus forming sparser models. These Bayesian HMM can be estimated using either Markov

Chain Monte Carlo (MCMC) methods such as Gibb’s Sampling, or Variational Bayes (VB). Gibb’s

Sampling (see [Goldwater and Griffiths, 2007] for demonstration on HMM POS induction) gener-

ates many samples from the posterior distribution and converges towards likely samples very slowly.

VB inference only requires a simple modification to the standard EM algorithm for HMM to incor-

porate priors (see [MacKay, 1997; Beal, 2003] for more details regarding VB use in HMM). There

is a surprising amount of literature that compares these two inference approaches and the various

parameter settings that both require, see [Johnson, 2007; Gao and Johnson, 2008; Christodoulopou-

los et al., 2010]. In this thesis we use VB when moving to a Bayesian model due to its ease of

implementation when one already has EM working.

To further improve unsupervised POS and incorporate more knowledge into the model systems

have to move beyond a single symmetric concentration parameter in the Bayesian model. Following

from the intuition that closed and open class words show different word distributions, and thus

should have different priors Moon et al. [2010] specify different sparseness for different groups

of states by altering the prior. As a means of both simplifying inference and incorporating the

reasonable constraint that words tend to appear predominantly with a single tag, it is possible to do

inference over all appearances of a word at once Lee et al. [2010], which leads to faster convergence

but a slightly weaker model. Instead of relying on purely Bayesian methods, it is also possible to

directly regularize the posterior to control for sparseness [Graca et al., 2009], or use integer linear

programming to minimize model size [Ravi and Knight, 2009]. Berg-Kirkpatrick et al. [2010]

replace the multinomial representation of the transition and emission probabilities with a logistic

function, enabling them to incorporate additional features such as whether word contains a digit,

is capitalized, or various prefixes and suffix features. In this thesis we introduce an alternative

mechanism of injecting information using a list of closed class words, an approach which appears
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to have been simultaneously developed by [Graca et al., 2009].

2.2 Semantic Role Labeling

Semantic Role Labeling is an NLP task to identify and classify the verbal predicate-argument struc-

tures in a sentence, assigning semantic roles to arguments of verbs. Combined with the development

of robust syntactic parsers, this level of semantic information should aid other tasks in handling and

understanding natural language sentences, such as for information extraction or language under-

standing. While there was early work with a comparable level of semantic classification, the SRL

task itself really caught on with the NLP and ML community with the development of the PropBank

semantic annotated corpora [Kingsbury and Palmer, 2002; Palmer et al., 2005] and the introduction

of the CoNLL (Annual Conference on Computational Natural Language Learning) shared task SRL

competitions [Carreras and Màrquez, 2004, 2005]. For a good review of the SRL task along with

summary of the state of the art, see [Màrquez et al., 2008].

As an example, here is a sentence from PropBank:

Mr. Monsky sees much bigger changes ahead.

And the task is to identify the arguments of the verb “sees” and classify their role in this struc-

ture, producing this labeling:

[A0 Mr. Monsky] sees [A1 much bigger changes] [AM−LOC ahead] .

Where A0 (sometimes written as Arg0) represents the agent, in this case the seer, A1 (also

Arg1) represents the patient, or that which is being seen, and AM-LOC is an adjunct argument that

specifies where (the location) the thing is being seen. Note that given a sentence and a verb in that

sentence (“see” above), the task is to both identify the arguments (square brackets above) and the

roles of the arguments (here A0, A1 and AM-LOC). The combination of predicate and arguments

is known as a proposition, hence the term Proposition Bank or PropBank.

PropBank defines two types of argument roles: core roles A0 through A5, and adjunct like roles

such as the AM-LOC above. The core role labels are general across verbs, so A0 and not “seer”

above, but the interpretation is specific to that verb usage. These different verb usages or senses
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are collected in frame files for each verb, provided as part of PropBank. Each frame file has a

different frame set for each sense of a verb that both specifies and defines the possible roles and

the allowable syntactic frames for this usage. One consistency across rolesets is the interpretation

of A0 as a prototypical agent [Dowty, 1991] and A1 as a prototypical patient or theme. In general

some attempt was made such that the rolesets for semantically related words should correspond in

some meaningful way.

With these framesets, PropBank annotators set about tagging each verb occurrence in the Penn

Treebank Wall Street Journal corpus [Marcus et al., 1993] by identifying the frame it belongs to,

identifying the arguments of that verb in the sentence, and classifying the roles of those arguments

from its frame. As can be seen in the example above arguments are full phrases, and in fact are

derived by labeling sub-branches of the syntactic tree as provided in the treebank.

State of the art SRL approaches (as measured in CoNLL competitions) commonly involve a

pipeline approach to this complex and multifaceted classification task (e.g. [Punyakanok et al.,

2005a]). Given the sentence it is necessary to 1) parse the sentence (perhaps with multiple different

parsers), 2) Identify possible arguments based on the parse, 3) Classify the likely roles of each

possible argument, and 4) Combine separate argument predictions into a global (sentence level)

classification incorporating any global constraints (arguments cannot overlap and must have unique

roles, verb frame role constraints, etc). This naturally structured prediction task is reduced to a

series of multiclass predictions through this final global inference step, which can makes use of

some general purpose solver (such as integer linear programming [Punyakanok et al., 2005b]).

The performance of such SRL systems is intimately tied to the accuracy of the syntactic repre-

sentation. The argument identification stage usually involves some sort of pruning step [Xue and

Palmer, 2004] that considers siblings and cousins of the verb node in the parse tree as possible argu-

ments, and here the accuracy of the tree is especially important Punyakanok et al. [2008]. As seen

in the jump in performance between CoNLL 2004 [Carreras and Màrquez, 2004] when training

data contained only syntactic chunking information to 2005 [Carreras and Màrquez, 2005] when

full tree information was provided as part of the training data, better syntactic trees were helpful, as

was considering many trees at once [P. Koomen and Yih, 2005].

If the syntax and semantics are so intricately linked in these learning models, then it would seem
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that a model that jointly learns both syntax and semantics together should be able to improve on the

strict pipeline model. Recent shared tasks [Surdeanu et al., 2008; Hajič et al., 2009] have sought to

explore exactly this point, giving a task where systems have to predict both syntactic and semantic

structures for given text. Disappointingly, in both cases mainly pipeline approaches achieved the

best results, either reranking a small number of joint candidates [Johansson and Nugues, 2008], or

relying on well engineered rich features in a straightforward pipeline [Zhao et al., 2009]. This thesis

will revisit this idea of joint syntax and semantics, exploring the idea of simple syntax as a latent

structure necessary for prediction of semantics.

2.2.1 Unsupervised Semantic Role Labeling

Since this thesis largely concerns itself with learning SRL without full supervision, it may be rel-

evant to look how this problem has been approached previously in the NLP community. We will

pay special attention to the knowledge assumptions that previous models have made use of, and

how those may either relate to our assumptions about a child learner, or the question of acquisition

in general. We separately address more psycholinguistically motivated computational models of

language acquisition in section 2.3.1.

One approach to making an unsupervised semantic distinction between verb-argument struc-

tures is to cluster verbs based on some distributional cues such as syntactic frames, or types of argu-

ments the verbs appear with. This line of work is inspired by Levin’s work on verb classes [Levin,

1993] and the idea that different semantic classes can appear with different fixed sets of syntac-

tic structures (diathesis alternation). [Stevenson and Merlo, 1999; Merlo and Stevenson, 2001;

Stevenson and Joanis, 2003] classify verbs into classes based on various linguistic features in both

a supervised and unsupervised setting, evaluating how well specific features are able to capture

important aspects of verb-argument structure. [Schulte im Walde, 2003] also experiments with ex-

plicitly clustering German verbs into semantic classes based on syntactic frame features, relying

on an (unsupervised) syntactic parse. These works demonstrate the importance of linking simple

to extract structural cues with verb semantics, but their methodology is less relevant to the current

work. By performing a hard clustering of verb types, they ignore both verb polysemy and the task

of assigning semantics to a specific instance of a verb. Such unsupervised clustering methods may
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serve to create data or dictionaries for further unsupervised individual role assignments.

For full unsupervised role labelers, the task is often presented as clustering the arguments of a

verb (across many sentences) into semantic classes that should hopefully correspond to the desired

roles. Much like the supervised case, these systems often follow the pipeline approach of first iden-

tifying arguments and then classifying them, with some models focusing on only one of these steps.

Abend et al. [2009] focuses on argument identification, starting from an unsupervised POS parse,

combining hand crafted rules and counts over data to refine decisions about possible arguments of

a verb. Lang and Lapata [2010] focus on role induction, so given arguments and a syntactic parse

with labeled dependency links, they build a classifier to separate roles by essentially smoothing over

syntactic roles.

Since SRL represents a fairly high level NLP task, to make any headway with unsupervised

approaches often requires a great deal of additional knowledge to supplant the missing supervision.

Such knowledge can take the form of verb or noun dictionaries, supervised and unsupervised syn-

tactic parses, or hand coded rules. [Grenager and Manning, 2006] assume a syntactic parse and

incorporate hand coded rules for how the model may link syntax and semantics, relying on EM to

fill in some blanks. [Swier and Stevenson, 2004, 2005] use the VerbNet [Kipper et al., 2000] verb

lexicon to constrain possible frames for verbs, and then build a probabilistic model over class based

features where the classes come from either VerbNet and WordNet [Fellbaum, 1998]. As their base

syntactic representation they rely on chunking to isolate potential frames for a verb [Swier and

Stevenson, 2004] or a full supervised syntactic parser [Swier and Stevenson, 2005]. Abend and

Rappoport [2010] make their fully unsupervised SRL model by relying on an unsupervised POS

induction system [Clark, 2003] and an unsupervised syntactic parser [Seginer, 2007], then building

a classifier to discriminate between core and adjunct roles of prepositional arguments. Using their

knowledge of the distribution of the labels in the data, they set by hand thresholds for the resulting

classification.

All of these models represent a serious knowledge investment, although still less than that re-

quired by a fully annotated corpus. One goal of our model is to rely on a smaller amount of injected

knowledge to simulate an earlier, less sophisticated learner. Although it must be said that by fo-

cusing on CDS, we do potentially make the classification task easier than when faced with full
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newswire sentences, but perhaps this is how children are able to learn, by starting small.

2.3 Language Acquisition

Children follow a regular pattern of increasing complexity when learning language. Just to give one

rough timeline of the the stages of language development, children typically produce babbling at

6-8 months, single words at 9-18 months, two-word mini-sentences at 18-24, 3 word ”telegraphic”

sentences 24-30, and multiword sentences at 3 years of age. By 24 months production vocabulary

is estimated at 200-300 words [Nelson, 1973; Dale and Fenson, 1996]. The first 100 words of this

vocabulary are dominated by common nouns and by 18 months children are considered to have

acquired an internal noun class category [Tomasello, 1992]. Verbs are more difficult to acquire, but

necessary for full multiword sentences, so how, between roughly 2 and 3 years of age, are children

able to make this jump?

Nouns are easier to both recognize in the scene and in the communicative event (eye gaze,

pointing, holding, etc.) even without linguistic cues Gillette et al. [1999]). Verbs on the other hand

are much more difficult, depending on both an understanding of speaker intent from a scene that

contains many different visible and not visible relations and actions, and understanding the relation

between linguistic objects that may span an entire sentence (after first somehow concluding that

there are multiple objects in the sentence and that they are somehow related). In this learning sit-

uation children hear a sentence while immersed in some scene, and we are interested in how they

eventually acquire the knowledge of verb structure and semantics: how the semantic arguments of a

verb map to its syntactic frame, what possible frames a verb may appear in, how different semantic

categories demonstrate different syntactic behaviour, etc. How children are able to learn and gener-

alize about verbs meaning and behaviour is a key question in the study of language acquisition.

To learn about verbs’ meaning, behaviour and syntax, Semantic Bootstrapping [Pinker, 1984]

proposes that children use their understanding of the semantics of the sentence and scene to deter-

mine the structure of the sentence. When first encountering the sentence “The dog chases the cat”

and the accompanying scene, semantic bootstrapping says that children use their understanding that

a dog is chasing a cat, map the word “dog” to the entity dog, and “cat” to the cat, and then they can

start to accumulate rules and patterns such as the agent, or the “chaser”, appears before the verb and
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the patient or “chasee” appears after the verb. Over a large number of such sentence/meaning pairs

children can begin to acquire general rules for how syntax and semantics combine in both general

and verb specific ways.

The issue with the above scenario is how are the children supposed to interpret the sentence

“The dog chases the cat” corresponds to the dog chasing the cat if they do not already know the

meaning of the verb chase. Why can the semantics of the sentence not mean that the cat is fleeing

the dog? Or that the dog and the cat are running? Without already understanding the meaning of the

verb, or how verbs are used in sentences, how can a child identify that there are even two arguments

in the sentence, and map those arguments to entities in the scene. The semantics of the world is

far more ambiguous than providing a single consistent interpretation to every scene, so the learner

must use some additional guidance in making sense of the feedback.

Usage based theories[Tomasello, 2000, 2003] posit that children learn verbs individually, through

exposure and repetition, before finally generalizing that there exists some verb class (or classes).

Child production experiments show that children do not (or are less willing to) generalize argu-

ment structure for novel verbs, thus do not consider novel verbs in the same category, or to share

properties with other verbs. Of course to begin learning about an individual verb and to later recog-

nize similarities between verbs implies some sort of abstract representation, and as we will discuss

comprehension studies (mentioned below) have shown that children do seem to generalize under-

standing of situations involving novel verbs from an early age.

Syntactic Bootstrapping [Landau and Gleitman, 1985; Naigles, 1990] complements semantic

bootstrapping by proposing that children use early or innate knowledge of syntax to constrain pos-

sible meanings given ambiguous semantics. The “structure-mapping” account of syntactic boot-

strapping [Fisher et al., 2010] says that children use abstract representations and their early noun

class knowledge as a form of structural constraint to quickly generalize from their provided level

of semantic feedback. By relying on abstract representations early on, structure-mapping predicts

generalization to novel verbs, and thus allows bootstrapping learning.

The structure-mapping view of early verb and syntax acquisition proposes that children start

with a shallow structural analysis of sentences: children treat the number of nouns in the sentence

as a cue to its semantic predicate-argument structure [Fisher, 1996; Gillette et al., 1999; Lidz et al.,
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2003]. This view is based on three key assumptions: First, sentence comprehension is grounded

by the acquisition of an initial set of concrete nouns. Nouns are arguably less dependent on prior

linguistic knowledge for their acquisition than are verbs; thus children are assumed to be able to

identify the referents of some nouns via cross-situational observation [Gillette et al., 1999]. Sec-

ond, these nouns, once identified, yield a skeletal sentence structure. Children treat each noun as a

candidate argument, and thus interpret the number of nouns in the sentence as a cue to its semantic

predicate-argument structure [Fisher, 1996]. Third, children represent sentences in an abstract for-

mat (i.e. a structural representation that goes beyond representing individual specific word forms)

that permits generalization to new verbs [Gertner et al., 2006].

The structure-mapping account makes strong predictions. First, as soon as children can iden-

tify some nouns, they should interpret transitive and intransitive sentences differently, simply by

assigning a distinct semantic role to each noun in the sentence. Second, language-specific syntac-

tic learning should transfer rapidly to new verbs. Third, some striking errors of interpretation can

occur. In “Fred and Ginger danced”, an intransitive verb is presented with two nouns. If children

interpret any two-noun sentence as if it were transitive, they should be fooled into interpreting the

order of two nouns in such conjoined-subject intransitive sentences as conveying agent-patient role

information. Experiments with young children support these predictions. First, 21-month-olds use

the number of nouns to understand sentences containing new verbs [Yuan et al., 2007]. Second,

21-month-olds generalize what they have learned about English transitive word-order to sentences

containing new verbs: Children who heard ”The girl is gorping the boy” interpreted the girl as an

agent and the boy as a patient [Gertner et al., 2006]. Third, 21-month-olds make the predicted error,

treating intransitive sentences containing two nouns as if they were transitive: they interpret the

first noun in “The girl and the boy are gorping” as an agent and the second as a patient [Gertner

and Fisher, 2006]. This error is short-lived. By 25 months, children add new features to their rep-

resentations of sentences, and interpret conjoined-subject intransitives differently from transitives

[Naigles, 1990].
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2.3.1 Computational Models

In summarizing computational models that explicitly model elements of language acquisition, we

focus on those models that investigate the learning of both semantics and syntax. This means

leaving out generative syntax models (e.g. [Waterfall et al., 2010; Bannard et al., 2009]) that attempt

to model aspects of early syntax acquisition, possibly learning from real child directed speech.

As in the discussion of unsupervised SRL models above, our interest here is in what knowledge

and feedback is assumed by each model. Because these are computational models of cognitive

processes, we are also interested in the possibly cognitively plausible representations used by the

models.

Connectionist models have proved to be a vital mainstay for building computational models

of various cognitive process, and language acquisition is no different. Desai [2002, 2007] builds

a recurrent network [Elman, 1991] that predicts simple semantics of a sentence: whether the verb

is causal or non-casual. This network is trained on a generated grammar of phrases and sentences

of one or two nouns, similar to test sentences we will later introduce. One interesting aspect of

recurrent network training is that the sentence is presented one word at a time to the network, while

the semantic feedback for the whole sentence is provided as feedback, thus the network has to figure

out a linking between the order it sees and full sentence semantic prediction. Chang et al. [2006]

also make use of a recurrent network, although their task is to predict the next word given previous

word and meaning. Their model incorporates an internal representation of both lexical semantics

(it learns the connection between the word “dog” and symbol DOG) and abstract argument role

semantics to help predict the word order for a sentence given its meaning. Both of these models are

trained with sentences generated by an artificial grammar paired with true semantics.

Allen [1997] presents a connectionist model whose architecture looks at a representation of

an entire sentence when making a prediction about semantics, conceptually closer to some of the

representations we use in this paper (representations that need to see the entire sentence to define

features). They represent sentences in terms verb, preposition, and semantic features for nominal ar-

guments of the verb (from WordNet), and they predict the semantic role for each argument (abstract

roles such as cause, patient, motion, etc.) along with more specific subroles. Trained over a fully

labeled sample of CHILDES, their model was able to generalize semantics to sentences with novel
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verbs, based on the argument semantics and sequence in the sentence, reflecting similar results we

will show with our base system in a fully supervised case.

Tourigny [2010] build a recurrent network for predicting the noun argument semantics (at the

level of Agent/Undergoer) of a miniature language with six different verb classes. Interestingly this

model is not trained with fully semantically labeled sentences. To model syntactic bootstrapping,

some sentences without given semantic interpretations were included in the training to complement

a set of fully labeled sentences. During training, the model needed to make its own prediction about

the scene of unlabeled sentences, and then train on that prediction. While their model was able to

learn from the labeled sentences, they report less than successful results for novel words that were

only present in unlabeled sentences during training. In this thesis we develop machine learning

techniques that focus on some level of supervision between these two extremes where we know a

little something about both the input and the semantics, and use that to learn over real sentences and

broader semantics.

[Alishahi and Stevenson, 2008] develop a Bayesian clustering approach to learning and gen-

eralizing argument structure and semantics. Instead of hard clustering verbs, their system clusters

specific verb usage frames, thus allowing the system to predict semantic and syntactic frames for

novel sentences and verbs. The input frames that the system clusters contains information about

the sentence/meaning pair including head verb, semantics of verb, number of arguments, argument

roles and lexical categories, and syntactic pattern (such as NVN, NV, etc.). For verb semantics

they use nine semantic primitives (act, cause, move, become, possess, change-of-state, perceive,

contact, and manner), and for the arguments use 10 abstract thematic roles (agent, theme, desti-

nation, source, beneficiary, stimulus, state, experiencer, instrument, co-agent) [Jackendoff, 1990].

While they assume that the child is able to extract this level of information from a scene/utterance

pair, they do acknowledge that some noise is present in the environment and incorporates this via

dropping features from some terms during training.

[Alishahi and Stevenson, 2010] expand on their previous system by replacing the abstract role

information with word specific semantic information and allowing the clustering to discover appro-

priate level of semantics for a given frame cluster. Instead of identifying an abstract role, the input

argument structure frame uses relatively deep semantics provided by WordNet hierarchy and some
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hand coded event-based properties for each argument. Additionally the level of noise during train-

ing was augmented with both missing features and some bootstrapped examples where a missing

feature was filled in with current most likely prediction of the system. When tested with sentences

with a novel verb, the system was able to predict general semantics for argument positions based

largely on syntactic pattern.

Previous models have shown that it is possible for simple learners to link semantics to syntax us-

ing a variety of representation schemes based on various levels of semantic and syntactic sophistica-

tion. One key aspect of these models is that they use a level of semantic feedback, or understanding

of the scene, that is unrealistically high in the case of an actual child attempting to learn language.

In cases where noise is added to the supervision, this noise either assumes that the interpretation is

largely valid, or otherwise there is absolutely no supervision. What we wish to demonstrate with

this thesis is an alternative machine learning method that makes use of intermediate levels of super-

vision, relying on combinations of background knowledge and partial interpretation of scene and

sentence to guide language learning.
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Chapter 3

Baby SRL Model

This chapter introduces the BabySRL learning model, the training data used and the simple repre-

sentations that will be the focus of much of the rest of this thesis. We test these representations in

a fully supervised setting to validate that they can capture the desired semantic patterns. To test the

generalization abilities of this system we introduce a new testing paradigm using constructed test

sentences in this chapter, experimenting with various parameters in this initial study. To show off

the capabilities of our BabySRL, we explore the ramifications of one possible means of developing

knowledge during development, which will also be reflected in more principled results in the next

section. Much of this chapter was published in [Connor et al., 2008].

From an NLP perspective this feature study provides evidence for the efficacy of alternative,

simpler syntactic representations in gaining an initial foothold on sentence interpretation. It is clear

that human learners do not begin interpreting sentences in possession of full part-of-speech tag-

ging, or full parse trees. By building a model that uses shallow representations of sentences and

mimics features of language development in children, we can explore the nature of initial represen-

tations of syntactic structure and build more complex features from there, further mimicking child

development.

3.1 CHILDES Training Data

One goal of the BabySRL project is to attempt to learn language the way a child does, which

means use as input the same input available to an actual child. To accomplish this we used sam-

ples of parental speech to three children (Adam, Eve, and Sarah; [Brown, 1973]), available via

CHILDES [MacWhinney, 2000]. The SRL annotated corpus consists of parental utterances from

sections Adam 01-23 (child age 2;3 - 3;2), Eve 01-20 (1;6 - 2;3), and Sarah 01-90 (2;3 - 4;1).
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All verb-containing utterances without symbols indicating disfluencies were automatically parsed

with the Charniak parser [Charniak, 1997], annotated using an existing SRL system [Punyakanok

et al., 2008] and then errors were hand-corrected. The final annotated sample contains about 15,148

sentences, 16,730 propositions, with 32,205 arguments: 3951 propositions and 8107 arguments in

Adam, 4209 propositions and 8499 arguments in Eve, and 8570 propositions and 15599 arguments

in Sarah.

3.1.1 Preprocessing and Annotation

During preprocessing of the CDS transcripts, only utterances from the Mother and Father were

used. Other adults were typically present, including the researchers who collected the data, but we

focused on parental speech because we considered it most likely to be typical CDS. Because our

goal was to create a corpus for studying input for language learning, we made no attempt to annotate

the children’s speech.

Removing sentences that contained symbols indicating unintelligible/unidentifiable speech or

did not contain a verb represents a relatively strict filter. After an initial experience of annotation of

one child (Eve), additional guidelines were set, especially in regard to what constituted a main or

auxiliary verb, and it was decided that ‘be’ verbs would not be annotated even if acting as a main

verb in the sentence. Of the 45,166 parental utterances in the sections annotated, only 15,148 were

parsed and annotated, less than 34% of total utterances. Many of the ignored utterances were short

(“yes .”, “what ?”, “alright .”, etc.), marked as ambiguous by the original transcribers so we decided

to ignore them (“we’ll get xxx a pencil .”), or did not contain an explicit main verb (“no graham

crackers today .”, “macaroni for supper ?”).

In general annotators were instructed to follow Propbank guidelines [Palmer et al., 2005] in their

semantic annotations, matching decisions with Propbank’s previously identified verb frames. If no

frame exists for a specific verb (such as “tickle”, which can be found in CDS but not the newswire

that Propbank was developed on), or a frame had to be modified to account for uses specific to

casual speech, then the annotators were free to make a new decision and note this addition1.

To assess the reliability of the SRL annotation, 15 of the 133 files (5 sections from each child)
1Corpus, decision files and additional annotation information available at http://cogcomp.cs.illinois.

edu/˜connor2/babySRL/
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were annotated by 2 separate annotators and then compared: Eve sections 12, 14, 16, 18, Adam

15, 16, 18, 20, 22 and Sarah 32, 37, 46, 47, 83. Across all files annotators agreed on an average of

96.57% of the annotated arguments (matching both argument boundaries and label). This resulted

in a very good level of agreement at the full proposition level as well: The annotators agreed on the

boundaries and labels of all arguments in 88.50% of propositions.

The full Propbank SRL annotation labels multiword argument phrases relative to a target pred-

icate, but our focus in these experiments is on individual noun identification. This matches the

structure mapping assumption of treating each noun as a potential argument, and classifying its

semantic role. To reconcile and simplify the labeled multiword arguments we converted them to

labeled single nouns (as identified by POS). A simple heuristic collapsed compound or sequential

nouns to their final noun: an approximation of the head noun of the noun phrase. For example, ‘Mr.

Smith’ was treated as the single noun ‘Smith’. Other complex noun phrases were not simplified

in this way. Thus, a phrase such as ‘the toy on the floor’ would be treated as two separate nouns,

‘toy’ and ‘floor’. This represents the assumption that young children know ‘Mr. Smith’ is a single

name, but they do not know all the predicating terms that may link multiple nouns into a single noun

phrase. Note that this labeled noun data is only used for training; when testing on heldout labeled

CDS we compare to the full arguments, although our system only identifies individual nouns.

Using the true labels during training represents a clear upper bound in terms of knowledge

available to the child. The world is full of ambiguities, and for a child to understand the intended

meaning of each word in the sentence while first learning language is a feat on the order of mind

reading. Training with this data reflects both what the representation is capable of and what patterns

may exist in the data children receive. In future sections we explore what happens when we limit

the amount of supervision the system receives to a more plausible, or even lower bound setting.

As this chapter represents an initial validation of the learning model, we report results only for

a single child’s data (Eve). In all future chapters we look at results across all three children.

3.2 SRL Learning Model

Our learning task is similar to the full SRL task [Carreras and Màrquez, 2004], except that we

classify the roles of individual words rather than full phrases. A full automatic SRL system (e.g.
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[Punyakanok et al., 2005a]) typically involves multiple stages to 1) parse the input, 2) identify

arguments, 3) classify those arguments, and then 4) run inference to make sure the final labeling for

the full sentence does not violate any linguistic constraints. Our simplified SRL architecture (Baby

SRL) essentially replaces the first two steps with heuristics. Rather than identifying arguments via a

learned classifier with access to a full syntactic parse, the Baby SRL treats each noun in the sentence

as a candidate argument and assigns a semantic role to it.

The simplified learning task of the Baby SRL implements a key assumption of the structure-

mapping account: that at the start of multiword sentence comprehension children can tell which

words in a sentence are nouns [Waxman and Booth, 2001], and treat each noun as a candidate

argument. Feedback is provided based on annotation in Propbank style: in training, each noun

receives the role label of the phrase that noun is part of. Feedback is given at the level of the

macro-role (agent, patient, etc., labeled A0-A4 for core arguments, and AM-* adjuncts). We also

introduced a NO label for nouns that are not part of any argument.

For argument classification we use a linear classifier trained with a regularized perceptron up-

date rule [Grove and Roth, 2001]. This learning algorithm provides a simple and general linear

classifier that has been demonstrated to work well in other text classification tasks, and allows us to

inspect the weights of key features to determine their importance for classification. The Baby SRL

does not use inference for the final classification. Instead it classifies every argument independently;

thus multiple nouns can have the same role.

3.2.1 Simple Representation

The basic representational assumption of the Baby SRL is that nouns are classified into semantic

roles relative to some predicate. For this to happen, nouns must be identified, and a verb is assumed

to exist in the sentence (and potentially be identified as well). Because we focus on role classifica-

tion in this chapter, we assume that the identity of the nouns in the sentence is known to us, and can

be used both to identify arguments and act as a structural representation. Figure 3.1 illustrates the

classification of an example sentence “I like dark bread” where ‘I’ and ‘bread’ are considered the

arguments of ‘like.’ The features extracted from these arguments will be explained below.

Without using any structure from the sentence, one piece of information we do have for a target

31



Figure 3.1: BabySRL basic architecture processing sentence “I like dark bread .” Given the sen-
tence, first a syntactic representation is formed using knowledge of the nouns and verb in the sen-
tence (here we assume this is available to the learner). This linear representation recognizes two
arguments (nouns), and classifies each one relative to the target verb ‘like’. The features for each
argument are the noun and verb itself, the noun pattern (‘I’ is first of two nouns, ‘bread’ is sec-
ond of two) and relative position to the verb (before or after). These features are fed into a linear
classifier which predicts a semantic role for that argument. Feedback is given to correct the classi-
fier’s prediction; here we assume veridical feedback is being given from some exterior source (hand
annotation).

noun is the noun itself. We use as a lexical baseline features indicating the word form of the

target noun and the predicate it is being classified relative to. These features should indicate per

word preferences for roles that a word is often classified as, as well as for predicate the roles that

often appear with that verb. What these features do not allow is generalizing to new sentences and

novel words. All representations that follow are meant to improve on this memorizing per word in

generalizing to new sentences based on simple structures in the sentence.

The basic feature we propose is the noun pattern feature. We hypothesize that children use the

number and order of nouns to represent argument structure. To encode this we created a feature

(NPattern) that indicates how many nouns there are in the sentence and which noun the target is.

For example, in our two-noun test sentences noun A has the feature ’ N’ active indicating that it is

the first noun of two. Likewise for B the feature ’N ’ is active, indicating that it is the second of two

nouns. This feature is easy to compute once nouns are identified, and does not require fine-grained

distinctions between types of nouns or any other part of speech.

At some point the learner must develop more sophisticated syntactic representations. These

could include many aspects of the sentence, including noun-phrase and verb-phrase morphological
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features, and word-order features. If, in addition to nouns we can also identify verbs, then we can

incorporate this information into our structural representation. We did this by adding a verb position

feature (VPosition) that specifies whether the target noun is before or after the verb. Now simple

transitive sentences in training should support the generalization that pre-verbal nouns tend to be

agents, and post-verbal nouns tend to be patients.

The representation described above provides four active features for each argument example (as

illustrated in figure 3.1) when they are all combined. It is also possible to include more specific

combinations of features for each example, such as lexicalizing either of the structural feature with

the verb2. This new feature, such as lexicalized noun pattern, will be active when the argument

is the first of two nouns and the verb has some value. These features can now acquire specific

structural patterns for each predicate, but will not be applicable when encountering novel verbs.

The rest of this chapter explores the impact of learning with each of these features over the

semantically tagged CDS data, especially as they relate to simple patterns of one and two argument

sentences. Future chapters build on these experiments, using these simple representations as their

basic learning building block.

3.3 Experimental Setup

Throughout this thesis we will use two main types of experimental setups to evaluate SRL perfor-

mance: full SRL performance on held out set of CHILDES role tagged data and evaluation using

constructed test sentences. The constructed test sentences allow us to focus on specific phenom-

ena, especially as they relate to generalization to sentences with known nouns and a novel verb.

These sentences were designed to mimic test sentences used in experiments with children described

previously.

All constructed test sentences contained a novel verb (‘gorp’) in one of three templates: with

one noun ‘A gorps’ or two nouns ‘A gorps B’ and ‘A and B gorp’, where A and B were replaced

with nouns that appeared more than twice in training.

We structured our tests of the BabySRL to test the predictions of the structure-mapping account.
2It is of course also possible to lexicalize with the noun, but since structure of the sentence is so dominated by verb,

this lexicalization was explored first and more fully
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(1) NounPat features will improve the SRL’s ability to interpret simple transitive test sentences con-

taining two nouns and a novel verb, relative to a lexical baseline. Like 21-month-old children [Gert-

ner et al., 2006], the SRL should interpret the first noun as an agent and the second as a patient. (2)

Because NounPat features represent word order solely in terms of a sequence of nouns, an SRL

equipped with these features will make the errors predicted by the structure-mapping account and

documented in children [Gertner and Fisher, 2006]. (3) NounPat features permit the SRL to assign

different roles to the subjects of transitive and intransitive sentences that differ in their number of

nouns. This effect follows from the nature of the NounPat features: These features partition the

training data based on the number of nouns, and therefore learn separately the likely roles of the

‘1st of 1 noun’ and the ‘1st of 2 nouns’.

These patterns contrast with the behavior of the VerbPos features: When the BabySRL was

trained with perfect parsing, VerbPos promoted agent-patient interpretations of transitive test sen-

tences, and did so even more successfully than NounPat features did, reflecting the usefulness of

position relative to the verb in understanding English sentences. In addition, VerbPos features

eliminated the errors with two-noun intransitive sentences. Given test sentences such as ‘You and

Mommy krad’, VerbPos features represented both nouns as pre-verbal, and therefore identified both

as likely agents. However, VerbPos features did not help the SRL assign different roles to the sub-

jects of simple transitive and intransitive sentences: ‘Mommy’ in ‘Mommy krads you’ and ’Mommy

krads’ are both represented simply as pre-verbal.

We filled the A and B slots by sampling nouns that occurred roughly equally as the first and

second of two nouns in the training data. For various experiments we used different selections of

nouns to bias the system differently. The three predominant sampling methods we used were for

Unbiased nouns, Biased nouns, and Animate nouns. In the unbiased case we uniformly selected A

and B from the list of nouns, so the test sentences do not reflect any possible order statistics from the

real sentences. For biased case we sample A nouns based on the distribution of first of two nouns,

and select B based on the word’s distribution of second of two nouns in the training data. This way

we can see the lexical ordering effect where words that are more likely to appear first in a sentence

will do so in the test sentences. For the animate noun test set (used in future chapters), we identify

a set of animate nouns that appear in each child’s data and create test sentences where A and B are
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filled with all pairs of these nouns. Appendix A lists these nouns as used to fill the test sentences,

along with statistics about how they appear in the data.

For each of the Unbiased and Biased noun sets used in this chapter we generated a test set of 100

sentences by randomly sampling nouns to fill the templates (depending on the biased or unbiased

sampling method). The focus of the experiments in this chapter are how the simple representations

compete with lexical baseline, and how both relate to different sampling of nouns; a biased sampling

will benefit the lexical baseline since the words themselves carry important information relating to

how they are used in training data.

The test sentences with novel verbs ask whether the classifier transfers its learning about argu-

ment role assignment to unseen verbs. Does it assume the first of two nouns in a simple transitive

sentence (‘A gorps B’) is the agent (A0) and the second is the patient (A1)? Does it over-generalize

this rule to two-noun intransitives (‘A and B gorp’), mimicking children’s behavior? We used two

measures of success, one to assess classification accuracy, and the other to assess the predicted er-

ror. We used a per argument F1 for classification accuracy, with F1 based on correct identification

of individual nouns rather than full phrases. The desired labeling for ’A gorps B’ is A0 for the first

argument and A1 for the second; for ’A and B gorp’ both arguments should be A0.

Because in general we are comparing the classification of individual nouns to labeled phrases

(in the held out test set), we defined precision as as the proportion of nouns that were given the

correct label based on the argument they belong to. For example if in the test set the argument

“The large man” was tagged as A0, and the classifier predicted ‘man’ to be A0, then this would

be correct. Likewise recall was defined as the proportion of complete arguments for which some

noun in that argument was correctly labeled. In this case, given the annotated phrase “the man and

woman” labeled as A0, if the classifier correctly notes either individual noun ‘man’ or ‘woman’ as

A0, then this phrase will be considered correct in terms of argument recall.

To measure predicted errors we also report the proportion of test sentences classified with A0

first and A1 second (%A0A1). This labeling is a correct generalization for the novel ’A gorps B’

sentences, but is an overgeneralization for ’A and B gorp.’

For these experiments the implementation of additive update perceptron in the SNoW learning

architecture A. Carlson and Roth [1999] was used as the learning algorithm. Training was run
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for 5 rounds, with a learning weight of 0.1, prediction threshold of 3.0 for multiclass one vs all

training, initial weight of 1.0 and a thick separator of 1.5 (predictions within the thick separator

around the prediction threshold are counted as mistakes during training). These parameters were

tuned on cross-validation of Eve training data and initial experiments with subsets of Wall Street

Journal corpus.

3.4 Experimental Results

CHILDES WSJ
Unbiased Noun Choice Biased Noun Choice Biased Noun Choice

A gorps B A and B gorp A gorps B A and B gorp A gorps B A and B gorp
Features %A0A1 %A0A1 %A0A1 %A0A1 %A0A1 %A0A1
1. Words 0.38 0.38 0.65 0.65 0.31 0.31
2. NPattern&V 0.28 0.28 0.67 0.67 0.31 0.31
3. NPattern 0.65 0.65 0.92 0.92 0.44 0.44
4. + NPattern&V 0.65 0.65 0.90 0.90 0.53 0.53
5. + VPosition 0.96 0.00 1.00 0.01 0.88 0.39

Table 3.1: Experiments showing the efficacy of Noun Pattern features for determining agent/patient
roles in simple two-noun sentences. The novel verb test sets assess whether the Baby SRL general-
izes transitive argument prediction to unseen verbs in the case of ‘A gorps B’ (increasing %A0A1),
and overgeneralizes in the case of ‘A and B gorp’ (increasing %A0A1, which is an error). By
varying the sampling method for creating the test sentences we can start with a biased or unbiased
lexical baseline, demonstrating that the noun pattern features still improve over knowledge that can
be contained in typical noun usage. The simple noun pattern features are still effective at learning
this pattern when trained with Wall Street Journal training data.

3.4.1 Noun Pattern

Table 3.1 shows the initial feature progression that involves this feature. The baseline system (fea-

ture set 1) uses lexical features only: the target noun and the root form of the predicate.

We first tested the hypothesis that children use the NPattern features to distinguish different noun

arguments, but only for specific verbs. The NPattern&V features are conjunctions of the target verb

and the noun pattern, and these are added to the word features to form feature set 2. Now every

example has three features active: target noun, target predicate, and a NPattern&V feature indicating

’the target is the first of two nouns and the verb is X.’ This feature does not improve results on the

novel ’A gorps B’ test set, or generate the predicted error with the ’A and B gorp’ test set, because

the verb-specific NPattern&V features provide no way to generalize to unseen verbs.
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We next tested the NPattern feature alone, without making it verb-specific (feature set 3). The

noun pattern feature was added to the word features and again each example had three features

active: target noun, target predicate, and the target’s noun-pattern feature (first of two, second of

three, etc.). The abstract NPattern feature allows the Baby SRL to generalize to new verbs: it

increases the system’s tendency to predict that the first of two nouns is A0 and the second of two

nouns is A1 for verbs not seen in training. Feature set 4 includes both the abstract, non-verb-specific

NPattern feature and the verb-specific version. This feature set preserves the ability to generalize

to unseen verbs; thus the availability of the verb-specific NPattern features during training did not

prevent the abstract NPattern features from gathering useful information.

3.4.2 Lexical Cues for Role-Labeling

Thus far, the target nouns’ lexical features provided little help in role labeling, allowing us to clearly

see the contribution of the proposed simple structural features. Would our structural features pro-

duce any improvement above a more realistic lexical baseline? We created a new set of test sen-

tences, sampling the A nouns based on the distribution of nouns seen as the first of two nouns in

training, and the B nouns based on the distribution of nouns seen as the second of two nouns. Given

this revised sampling of nouns, the words-only baseline is strongly biased toward A0A1 (biased

results for feature set 1 in table 3.1). This high baseline reflects a general property of conversation:

Lexical choices provide considerable information about semantic roles. For example, the 6 most

common nouns in the Eve corpus are pronouns that are strongly biased in their positions and in their

semantic roles (e.g., ’you’, ’it’). Despite this high baseline, however, we see the same pattern in the

unbiased and biased experiments in table 3.1. The addition of the NPattern features (feature set 3)

substantially improves performance on ‘A gorps B’ test sentences, and promotes over-generalization

errors on ‘A and B gorp’ sentences.

3.4.3 More Complex Training Data

For comparison purposes we also trained the Baby SRL on a subset of the Propbank training data of

Wall Street Journal (WSJ) text [Kingsbury and Palmer, 2002]. To approximate the simpler sentences

of child-directed speech we selected only those sentences with 8 or fewer words. This provided a
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training set of about 2500 sentences, most with a single verb and two nouns to be labeled. The CDS

and WSJ data pose similar problems for learning abstract and verb-specific knowledge. However,

newspaper text differs from casual speech to children in many ways, including vocabulary and

sentence complexity. One could argue that the WSJ corpus presents a worst-case scenario for

learning based on shallow representations of sentence structure: Full passive sentences are more

common in written corpora such as the WSJ than in samples of conversational speech, for example

[Roland et al., 2007]. As a result of such differences, two-noun sequences are less likely to display

an A0-A1 sequence in the WSJ (0.42 A0-A1 in 2-noun sentences) than in the CDS training data

(0.67 A0-A1). The WSJ data provides a more demanding test of the Baby SRL.

We trained the Baby SRL on the WSJ data, and tested it using the biased lexical choices as

described above, sampling A and B nouns for novel-verb test sentences based on the distribution

of nouns seen as the first of two nouns in training, and as the second of two nouns, respectively.

The WSJ training produced performance strikingly similar to the performance resulting from CDS

training (last 4 columns of Table 3.1). Even in this more complex training set, the addition of the

NPattern features (feature set 3) increases the expected prediction of Agent-Patient on ‘A gorps

B’ test sentences, and promotes over-generalization errors on ‘A and B gorp’ sentences. Even on

sentences targeted at adults, the number and order of nouns provides a basic structure that can

generalize meaning to novel sentences.

3.4.4 Tests with Familiar Verbs

Total A0 A1 A2
Features Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1
1. Words 0.73 0.58 0.64 0.79 0.87 0.83 0.69 0.81 0.74 0.57 0.23 0.33
2. NPattern&V 0.77 0.60 0.67 0.82 0.90 0.86 0.75 0.80 0.77 0.57 0.37 0.45
3. NPattern 0.75 0.59 0.66 0.85 0.89 0.87 0.74 0.79 0.76 0.53 0.29 0.37
4. NPattern + NPattern&V 0.78 0.60 0.68 0.86 0.88 0.87 0.78 0.81 0.80 0.56 0.40 0.47
5. + VPosition 0.81 0.62 0.70 0.82 0.94 0.88 0.84 0.81 0.83 0.76 0.37 0.50

Table 3.2: Testing NPattern features on full SRL task of heldout section 8 of Eve when trained on
sections 9 through 20. Each result column reflects a per argument precision, recall and F1. Only A0,
A1 and A2 individual role predictions are presented, these three labels combine to cover 73.42% of
the arguments in the heldout section, the rest of the arguments are spread amongst 7 AM-* labels
(AM-MOD, AM-TMP, AM-DIS, AM-LOC, AM-NEG, AM-ADV, AM-MNR).

Learning to interpret sentences depends on balancing abstract and verb-specific structural knowl-

edge. Natural linguistic corpora, including our CDS training data, have few verbs of very high
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frequency and a long tail of rare verbs. Frequent verbs occur with differing argument patterns. For

example, ’have’ and ’put’ are frequent in the CDS data. ’Have’ nearly always occurs in simple

transitive sentences that display the canonical word order of English (e.g., ’I have cookies’). ’Put’,

in contrast, tends to appear in non-canonical sentences that do not display an agent-patient ordering,

including imperatives (’Put it on the floor’). To probe the Baby SRL’s ability to learn the argument-

structure preferences of familiar verbs, we tested it on a held-out sample of CDS from the same

source (Eve sample 8, approximately 234 labeled sentences). Table 3.2 shows the same feature

progression shown previously, with the full SRL test set. The words-only baseline (feature set 1 in

Table 3.2) yields fairly accurate performance, showing that considerable success in role assignment

in these simple sentences can be achieved based on the argument-role biases of the target nouns and

the familiar verbs. Despite this high baseline, however, we still see the benefit of simple structural

features. Adding verb-specific NPattern (feature set 2) leads to small increases overall, and these

gains are most noticeable in the more verb specific A2 role. The abstract NPattern features (feature

set 3) leads to similar overall classification performance, and the combination of both verb-specific

and abstract NPattern features (feature set 4) yields higher performance than either alone. The com-

bination of abstract NPattern features with the verb-specific versions allows the Baby SRL both

to generalize to unseen verbs, as seen in earlier sections, and to learn the idiosyncrasies of known

verbs.

3.4.5 Verb Position

The noun pattern feature results show that the Baby SRL can learn helpful rules for argument-role

assignment using only information about the number and order of nouns. It also makes the error

predicted by the structure-mapping account, and documented in children, because it has no way to

represent the difference between the ‘A gorps B’ and ‘A and B gorp’ test sentences. When we add

verb position information (feature set 5 in table 3.1 and 3.2), performance improves still further for

transitive sentences, both with biased and unbiased test sentences. Also, for the first time, the A0A1

pattern is predicted less often for ‘A and B gorp’ sentences. This error diminished because the

classifier was able to use the verb position features to distinguish these from ‘A gorps B’ sentences.

Verb position alone provides another simple abstract representation of sentence structure, so it
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Unbiased Lexical
A gorps B A and B gorp

Features F1 %A0A1 F1 %A0A1
1. Words 0.59 0.38 0.46 0.38
3. NPattern 0.83 0.65 0.33 0.65
6. VPosition 0.99 0.95 0.97 0.00

Table 3.3: Verb Position vs. Noun Pattern features alone. Verb position features yield better overall
performance, but do not replicate the error on ‘A and B gorp’ sentences seen with children.

might be proposed as an equally natural initial representation for human learners, rather than the

noun pattern features we proposed. The VPosition features should also support learning and gen-

eralization of word-order rules for interpreting transitive sentences, thus reproducing some of the

data from children that we reviewed above. In table 3.3 we compared the words-only baseline (set

1), words and NPattern features (set 3), and a new feature set, words and VPosition (set 6). In terms

of correct performance on novel transitive verbs (’A gorps B’), the VPosition features out-perform

the NPattern features. This may be partly because the same VPosition features are used in all sen-

tences during training, while the NPattern features partition sentences by number of nouns, but is

also due to the fact that the verb position features provide a more sophisticated representation of

English sentence structure. Verb position features can distinguish transitive sentences from imper-

atives containing multiple post-verbal nouns, for example. Although verb position is ultimately a

more powerful representation of word order for English sentences, it does not accurately reproduce

a 21-month-old’s performance on all aspects of this task. In particular, the VPosition feature does

not support the overgeneralization of the A0A1 pattern to the ‘A and B gorp’ test sentences with

novel verbs. This suggests that children’s very early sentence comprehension is dominated by less

sophisticated representations of word order, akin to the NPattern features we proposed, perhaps

especially when faced with unfamiliar verbs.

3.4.6 Informativeness vs. Availability

In the preceding sections, we modeled increases in syntactic knowledge by building in more so-

phisticated features. The Baby SRL escaped the predicted error on two-noun intransitive sentences

when given access to features reflecting the position of the target noun relative to the verb. This

imposed sequence of features is useful as a starting point, but a more satisfying approach would be

to use the Baby SRL to explore possible reasons why NPattern features might dominate early in
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acquisition, even though VPosition features are ultimately more useful for English.

In theory, a feature might be unavailable early in acquisition because of its computational com-

plexity. For example, lexical features are presumably less complex than relative position features

such as NPattern and VPosition. In practice, features can also be unavailable at first because of an

informational lack. Here we suggest that NPattern features might dominate VPosition features early

in acquisition because the early lexicon is dominated by nouns, and it is easier to compute position

relative to a known word than to an unknown word. Many studies have shown that children’s early

vocabulary is dominated by names for objects and people [Gentner and Boroditsky, 2001].

To test the consequences of this proposed informational bottleneck on the relative weighting of

NPattern and VPosition features during training, we modified the Baby SRL’s training procedure

such that NPattern features were always active, but VPosition features were active during training

only when the verb in the current example had been encountered a critical number of times. This

represents the assumption that the child can recognize which words in the sentence are nouns, based

on lexical familiarity or morphological context [Waxman and Booth, 2001], but is less likely to be

able to represent position relative to the verb without knowing the verb well. In future chapters we

will explore alternative means of verb identification further.

Figure 3.2 shows the tendency of the NPattern feature ’ N’ (first of two nouns) and the VPosition

feature ’ V’ (pre-verbal noun) to predict the role A0 as opposed to A1 as the difference between the

weights of these connections in the learned network. Figure 3.2(a) shows the results when VPosition

features were active whenever the target verb had occurred at least 5 times; in Figure 3.2(b) the

threshold for verb familiarity was 20. In both figures we see that the VPosition features win out

over the NPattern features as the verb vocabulary grows. Varying the degree of verb familiarity

required to accurately represent VPosition features affects how quickly the VPosition features win

out (compare Figures 3.2(a) and 3.2(b)). Figure 3.2(c) shows the same analysis with a threshold of

20, but with verb-specific as well as abstract versions of the NPattern and the VPosition features.

In this procedure, every example started with three features: target noun, target predicate, NPattern,

and if the verb was known, added NPattern&V, VPosition, and VPosition&V. Comparing Figures

3.2(b) and 3.2(c), we see that the addition of verb-specific versions of the structural features also

affects the rate at which the VPosition features come to dominate the NPattern features.
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(c) Verb threshold = 20, +verb-specific features

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  1000  2000  3000  4000  5000

A
0-

A
1

Examples

_N
_V

(d) Threshold = 20, +verb-specific, Zoomed

Figure 3.2: Testing the consequences of the assumption that Verb Position features are only active
for familiar verbs. The figure plots the bias of the features ‘first of two nouns’ (‘ N’) and ‘before the
verb’ (‘ V’) to predict A0 over A1, as the difference between the weights of these connections in the
learned network. Verb position features win out over noun pattern features as the verb vocabulary
grows. Varying the verb familiarity threshold ((a) vs. (b)) and the presence versus absence of
verb-specific versions of the structural features ((b) vs. (c)) affects how quickly the verb position
features become dominant. When verbs are learned slowly (threshold set at 20, so must see a verb
20 times before recognizing it as a verb), and verb specific features are included during learning
(subfigure (c) and (d)), the noun pattern feature initially provides a stronger bias for predicting
agent first sentences until enough verbs have been recognized to prime the verb position feature,
after about 1000 examples.

Thus, in training the VPosition features become dominant as the SRL learns to recognize more

verbs. However, the VPosition features are inactive when the Baby SRL encounters the novel-verb

test sentences. Since the NPattern features are active in test, the system generates the predicted error

until the bias of the NPattern features reaches 0. Note in figure 3.2(c) that when verb-specific struc-

tural features were added, the Baby SRL never learned to entirely discount the NPattern features

within the range of training provided. This result is reminiscent of suggestions in the psycholin-
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Figure 3.3: Testing the ability of simple features to cope with varying amounts of noisy feedback.
Even with noisy feedback, the noun pattern features support learning and generalization to new
verbs of a simple agent-patient template for understanding transitive sentences. These results are
lower than those found in table 3.1 due to slightly different training assumptions.

guistics literature that shallow representations of syntax persist in the adult parser, alongside more

sophisticated representations (e.g., [Ferreira, 2003]).

3.4.7 Noisy Training

So far, the Baby SRL has only been trained with perfect feedback. Theories of human language

acquisition assume that learning to understand sentences is naturally a partially-supervised task:

the child uses existing knowledge of words and syntax to assign a meaning to a sentence; the

appropriateness of this meaning for the referential context provides the feedback (e.g., [Pinker,

1989]). But this feedback must be noisy. Referential scenes provide useful but often ambiguous

information about the semantic roles of sentence participants. For example, a participant could be

construed as an agent of fleeing or as a patient being chased. In a final set of experiments, we

examined the generalization abilities of the Baby SRL as a function of the integrity of semantic

feedback.

We provided noisy semantic-role feedback during training by giving a randomly-selected argu-

ment label on 0 to 100% of examples. Following this training, we tested with the ’A gorps B’ test

sentences, using the unbiased noun choices.

As shown in Figure 3.3, feature sets including NPattern or VPosition features yield reasonable

performance on the novel verb test sentences up to 50% noise, and promote an A0-A1 sequence over
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the words-only baseline even at higher noise levels. Thus the proposed simple structural features

are robust to noisy feedback.

3.5 Conclusion

The simplified SRL classifier mimicked experimental results with toddlers. We structured the learn-

ing task to ask whether shallow representations of sentence structure provided a useful initial rep-

resentation for learning to interpret sentences. Given representations of the number and order of

nouns in the sentence (noun pattern features), the Baby SRL learned to classify the first of two

nouns as an agent and the second as a patient. When provided with both verb-general and verb-

specific noun pattern features, the Baby SRL learned to balance verb-specific and abstract syntactic

knowledge. By treating each noun as an argument, it also reproduced the errors children make.

Crucially, verb-position features improved performance when added to the noun-pattern feature,

but when presented alone failed to produce the error found with toddlers.

In this chapter we have introduced the basic Baby SRL training and testing methodologies in

the simplest fully supervised learning setting. When both true structure (nouns and verbs) and

correct semantic feedback is provided to the learner the simple representations of noun pattern and

verb position provide an effective starting structure that can accurately generalize beyond lexical

patterns. Furthermore these representations were able to handle the introduction of noise both in

terms of missing or random semantic feedback and missing verb identification. In the next chapter

we will explore both of these issues further with more plausible methods of identifying nouns and

verbs, and of providing minimal semantic feedback.
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Chapter 4

Baby SRL Noisy Training

The previous chapter’s experiments with BabySRL showed that it is possible to learn to assign basic

semantic roles based on a shallow sentence representations proposed by the structure-mapping view.

Once nouns have been identified a learner can immediatly begin using a representation of sentence

structure as simple as ‘first of two nouns’ to begin learning general patterns in sentence semantics.

While this result is useful in teasing out statistics from the corpus of child directed speech, it may

not be relevant to real world language acquisition because it relies on perfect knowledge of both

noun and verb identification and accurate semantic feedback. Our current BabySRL is modeling

not a child hearing unknown sentences in an ambiguous environment, but a child who is given a

(shallow) parsed sentence while also being able to read the mind of the speaker.

In this chapter we explore both of these avenues of information that feed into the child learner,

removing the dependence on explicit external supervision to form an understanding of structure

and semantics while retaining the same core BabySRL role classifier. In section 4.1 we create

a minimally supervised argument and predicate identifier that uses a small set of concrete nouns

(that children plausibly already recognize) to seed identification of noun clusters, and then uses

statistics of noun cooccurence to recognize argument taking (and thus likely verb) clusters. Even

with this potentially noisy structure, the simple representation is still able to learn and generalize. In

section 4.2 we replace the full semantic feedback (imagined to come from complete understanding

of external scene) with internally generated feedback based on background knowledge. Using both

expectations based on animacy of identified arguments as well as structural constraints, the animacy

trained BabySRL still extracts useful patterns.

In section 4.3 we combine these two approaches to create a complete minimally supervised

SRL pipeline that begins with a small set of nouns, unlabeled text, and knowledge of animacy for

some set of nouns to 1) identify noun category, 2) use noun category to identify verbs, 3) use nouns
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and verbs to form structure of sentence and classify semantic roles of the nouns 4) using semantic

feedback from background knowledge only. Where the learner from the previous chapter represents

an upper bound of information available to the child, the system introduced here represents a lower

bound, yet is still able to begin classifying novel multiword sentences given these assumptions.

4.1 Minimally Supervised Argument Identification

Perfect built-in parsing finesses two problems facing the human learner. The first problem involves

classifying words by part-of-speech. Proposed solutions to this problem in the NLP and human

language acquisition literatures focus on distributional learning as a key data source (e.g., [Mintz,

2003; Johnson, 2007]). Importantly, infants are good at learning distributional patterns [Gomez and

Gerken, 1999; Saffran et al., 1996]. Here we use a fairly standard Hidden Markov Model (HMM) to

generate clusters of words that occur in similar distributional contexts in a corpus of input sentences.

The second problem facing the learner is more contentious: Having identified clusters of distri-

butionally similar words, how do children figure out what role these clusters of words should play

in a sentence interpretation system? Some clusters contain nouns, which are candidate arguments;

others contain verbs, which take arguments. How is the child to know which are which? In order to

use the output of the HMM tagger to process sentences for input to an SRL model, we must find a

way to automatically label the clusters.

Our strategies for automatic argument and predicate identification, spelled out below, reflect

core claims of the structure-mapping theory: (1) The meanings of some concrete nouns can be

learned without prior linguistic knowledge; these concrete nouns are assumed based on their mean-

ings to be possible arguments; (2) verbs are identified, not primarily by learning their meanings via

observation, but rather by learning about their syntactic argument-taking behavior in sentences.

By using the HMM part-of-speech tagger in this way, we can ask how the simple structural

features that we propose children start with stand up to reductions in parsing accuracy. In doing so,

we move to a parser derived from a particular theoretical account of how the human learner might

classify words, and link them into a system for sentence comprehension.

Much of this section originally appeared in [Connor et al., 2010].
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4.1.1 Model

As in the previous chapter, we model language learning as a Semantic Role Labeling (SRL) task [Car-

reras and Màrquez, 2004]. This allows us to ask whether a learner, equipped with particular

theoretically-motivated representations of the input, can learn to understand sentences at the level

of who did what to whom. We refer to this simplified SRL system as BabySRL.

BabySRL follows a conventional multi-stage pipeline where the stages are: (1) Parsing the

sentence, (2) Identifying potential predicates and arguments based on the parse, (3) Classifying

role labels for each potential argument relative to a predicate, (4) Applying constraints to find the

best labeling of arguments for a sentence. In this section we focus on the first and second stages,

attempting to limit the knowledge available to what we argue is available to children in the early

stages of language learning: knowledge of a small number of concrete nouns and the exposure to a

large amount of language.

We develop here a Minimally Supervised Argument Identification version of BabySRL, where

the parsing stage uses an unsupervised parser based on Hidden Markov Models (HMM), modeling

a simple ‘predict the next word’ parser. Next the argument identification stage identifies HMM

states that correspond to possible arguments based on a seed set of concrete nouns (the minimal

supervision), and these argument states are used to identify verb states. The candidate arguments

and predicates identified in each input sentence are passed to an SRL classifier that uses simple

abstract features based on the number and order of arguments to learn to assign semantic roles.

As input to our learner we use samples of child directed speech (CDS) from the CHILDES

corpora [MacWhinney, 2000]. During initial unsupervised parsing we experiment with incorporat-

ing knowledge through a combination of statistical priors favoring a skewed distribution of words

into classes, and an initial hard clustering of the vocabulary into function and content words. The

argument identifier uses a small set of frequent nouns to seed argument states, relying on the as-

sumptions that some concrete nouns can be learned as a prerequisite to sentence interpretation, and

are interpreted as candidate arguments.

The SRL classifier starts with noisy largely unsupervised argument identification, and receives

feedback based on annotation in the PropBank style; in training, each word identified as an argu-

ment receives the true role label of the phrase that word is part of. This represents the assumption
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that learning to interpret sentences is naturally supervised by the fit of the learner’s predicted mean-

ing with the referential context. The provision of perfect ‘gold-standard’ feedback over-estimates

the real child’s access to this supervision, but allows us to investigate the consequences of noisy

argument identification for SRL performance. We show that even with imperfect parsing, a learner

can identify useful abstract patterns for sentence interpretation. In section 4.2 we experiment with a

different method of providing semantic feedback, and in section 4.3 we combine this feedback with

the minimally supervised arguments to form a complete end to end BabySRL systme.

4.1.2 Unsupervised Parsing

As a first step of processing, we feed the learner large amounts of unlabeled text and expect it to

learn some structure over this data that will facilitate future processing. This stage represents the

assumption that the child is naturally exposed to and surrounded by large amounts of language, and

even without understanding every utterance they will begin to determine statistics over their input.

One caveat to our method is that we use transcripts of child directed speech, so we are assuming that

the learner is able to correctly segment speech into words. The source of this text is child directed

speech collected from various projects in the CHILDES repository1. As an attempt to use only

complete sentences from parents to children, we removed utterances with fewer than three words

or markers of disfluency. In the end we used 320 thousand sentences from this set, totaling over 2

million tokens and 17 thousand unique words. Note that this set does cover the semantically tagged

training data (Adam, Eve and Sarah corpus we use for semantic training and testing).

The goal of the parsing stage is to give the learner a representation permitting it to generalize

over word forms. The exact parse we are after is a distributional and context-sensitive clustering of

words based on sequential processing. We chose an HMM based parser for this since, in essence

the HMM yields an unsupervised POS classifier, but without names for states. An HMM trained

with expectation maximization (EM) is analogous to a simple process of predicting the next word

in a stream and correcting connections accordingly for each sentence.

We train the HMM in an offline, batch process. While the rest of our training procedure uses
1We used parts of the Bloom [Bloom, 1970, 1973], Brent [Brent and Siskind, 2001], Brown [Brown, 1973],

Clark [Clark, 1978], Cornell, MacWhinney [MacWhinney, 2000], Post [Demetras et al., 1986] and Providence [Demuth
et al., 2006] collections.
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online training, we envision this unsupervised HMM process to be reminiscent of an earlier stage

of processing whereby a child learns the statistics of a language merely through exposure to large

quantities of that language (without requiring further interpretation). In general this can be done

alongside our higher semantic training, and it may make sense to use feedback from higher seman-

tics to partially drive and be incorporated into the low level lexical (and lower) statisical model, but

for these initial experiments we treat this stage as having already happened in the learner.

With HMM we can also easily incorporate additional knowledge during parameter estimation.

The first (and simplest) parser we used was an HMM trained using EM with 80 hidden states.

The number of hidden states was made relatively large to increase the likelihood of clusters cor-

responding to a single part of speech, while preserving some degree of generalization. Other re-

searchers [Huang and Yates, 2009] have also found 80 states to be an effective point for creating a

representation to generalize features (using the states to represent out of vocab words, or otherwise

help domain adaptation), trading off complexity of training with specifity.

Johnson [Johnson, 2007] observed that EM tends to create word clusters of uniform size, which

does not reflect the way words cluster into parts of speech in natural languages. The addition of

priors biasing the system toward a skewed allocation of words to classes can help. The second parser

was an 80 state HMM trained with Variational Bayes EM (VB) incorporating Dirichlet priors [Beal,

2003].2

In the third and fourth parsers we experiment with enriching the HMM POS-tagger with other

psycholinguistically plausible knowledge. Words of different grammatical categories differ in their

phonological as well as in their distributional properties (e.g., [Kelly, 1992; Monaghan et al., 2005;

Shi et al., 1998]); combining phonological and distributional information improves the clustering

of words into grammatical categories. The phonological difference between content and function

words is particularly striking [Shi et al., 1998]. Even newborns can categorically distinguish content

and function words, based on the phonological difference between the two classes [Shi et al., 1999],

and infants can use both phonology and frequency to recognize novel content words [Hochmann

et al., 2010]. Human learners may treat content and function words as distinct classes from the start.
2We tuned the prior using the same set of 8 value pairs suggested by Gao and Johnson [Gao and Johnson, 2008],

using a held out set of POS-tagged CDS to evaluate final performance. Our final values are an emission prior of 0.1 and
a transitions prior of 0.0001; as dirichlet prior approaches 0 the resulting multinomial becomes peakier with most of the
probability mass concentrated in a few points.
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To implement this division into function and content words3, we start with a list of function

word POS tags4 and then find words that appear predominantly with these POS tags, using tagged

WSJ data [Marcus et al., 1993]. We allocated a fixed number of states for these function words,

and left the rest of the states for the content of the words. This amounts to initializing the emission

matrix for the HMM with a block structure; words from one class cannot be emitted by states

allocated to other classes. We selected the exact allocation of states through tuning the argument

and predicate identification on a held out set of CDS, settling on 5 states for punctuation, 30 states

for function words, and 45 content word states. This trick has been used before in speech recognition

work [Rabiner, 1989], and requires far fewer resources than the full tagging dictionary that is often

used to intelligently initialize an unsupervised POS classifier (e.g. [Brill, 1997; Toutanova and

Johnson, 2007; Ravi and Knight, 2009]).

Because the function and content word preclustering preceded parameter estimation, it can be

combined with either EM or VB learning. Although this initial split forces sparsity on the emission

matrix and allows more uniform sized clusters, Dirichlet priors may still help, if word clusters

within the function or content word subsets vary in size and frequency. The third parser was an 80

state HMM trained with EM estimation, with 30 states pre-allocated to function words; the fourth

parser was the same except that it was trained with VB EM.

Parser Evaluation

We first evaluate these parsers (the first stage of our SRL system) on unsupervised POS tagging.

Figure 4.1 shows the performance of the four systems using both many to one accuracy and variation

of information to measure match between fine grained POS and unsupervised parsers as we vary

the amount of text they train on. Each point on the graph represents the average result over 10 runs

of the HMM with different samples of the unlabeled CDS.

Many to one accuracy is used when there are more states than POS tags, and accuracy is mea-

sured by greedily mapping each state to the POS tag it most frequently occurs with in the test data;

all other occurences of that state are then considered incorrect. It is known that EM gives a better

many to one score than VB trained HMM [Johnson, 2007], and likewise we see that here: with all
3We also include a small third class for punctuation, which is discarded.
4TO,IN,EX,POS,WDT,PDT,WRB,MD,CC,DT,RP,UH
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Figure 4.1: Unsupervised Part of Speech results, matching states to gold POS labels. All systems
use 80 states, and comparison is to POS labeled CDS text (a combined set of all three children’s
training sections: adam01-20, eve01-18, sarah001-083), which makes up a subset of the HMM
training data. The gold POS are according to WSJ Treebank POS, with 44 unique POS appearing in
this data, including punctuation. Many to 1 matching accuracy greedily matches states to their most
freqent part of speech (figure 4.1(a), higher is better). Variation of Information is an information-
theoretic measure summing mutual information between tags and states, proposed by [Meilă, 2002],
and first used for Unsupervised Part of Speech in [Goldwater and Griffiths, 2007]. Smaller numbers
are better, indicating less information lost in moving from the HMM states to the gold POS tags.
Note that incorporating function word preclustering allows both EM and VB algorithms to achieve
the same performance with an order of magnitude fewer sentences.

data EM gives 0.75 matching, VB gives 0.74, while both EM+Funct and VB+Funct reach 0.80.

Variation of information is an distance metric between two clusters (true POS labels and HMM

states) which measures the loss and gain of information when moving from one clustering to the

other. It is defined as V I(C1, C2) = H(C1|C2) +H(C2|C1) = H(C1) +H(C2)− 2 ∗ I(C1, C2),

where H(C) is the entropy of the clustering assignment C and I(C1, C2) is the mutual information

between the clustering C1 and C2. V I is a valid metric, and thus if two clusterings are identical,

their V I will be 0. With this measure we see that adding the function word split always improves,

for both EM and VB training, indicating that it is adding helpful information regarding the true POS

distribution.

Adding the function/content word split to the HMM structure improves both EM and VB esti-

mation in terms of both tag matching accuracy and information. However, these measures look at

the parser only in isolation. What is more important to us is how useful the provided word clusters

are for future semantic processing. In the next sections we use the outputs of our four parsers to

identify arguments and predicates.
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V

58: I, you, ya, Kent, Ursula
78: like, got, did, had, saw
50: many, nice, good, dirty
48: more, juice, milk, coffee

78: 13% 1 arg, 54% 2 arg, 17% 3 arg
50: 41% 1 arg, 31% 2 arg, 17% 3 arg

Trained on
Child Directed Speech

Uses Lexical
Development Norms

1.

2.

3.

N V N
Syntactic
Representation:

Figure 4.2: Minimally supervised argument and predicate identification for example sentence “I
like dark bread .” (1) Hidden states are found for each word according to a Hidden Markov Model
(HMM), trained on a large sample of child directed speech. (2) Nouns are identified based on
those states that tend to appear with a small set of known concrete nouns (from lexical development
norms). In this example state 58 tends to appear with known person nouns such as pronouns ‘I’ and
‘you’, and state 48 appears with known nouns ‘juice’, and ‘milk’, so ‘bread’ (which is not in the
lexical development norm) is also assigned as an argument. (3) With the two arguments identified,
the predicate is identified as whichever remaining content word is more likely to appear with that
number of arguments. The words in state 78, such as ‘like’ seen here, frequently appear in two
argument sentences, indicating this may be a set of two-argument predicates.

4.1.3 Argument Identification

The unsupervised parser provides a state label for each word in each sentence; the goal of the

argument identification stage is to use these states to label words as potential arguments, predicates

or neither. As described in the introduction, core premises of the structure-mapping account offer

routes whereby we could label some HMM states as argument or predicate states.

The structure-mapping account holds that sentence comprehension is grounded in the learning

of an initial set of nouns. Children are assumed to identify the referents of some concrete nouns

via cross-situational learning [Gillette et al., 1999; Smith and Yu, 2008]. Children then assume,

by virtue of the meanings of these nouns, that they are candidate arguments. This is a simple

form of semantic bootstrapping, requiring the use of built-in links between semantics and syntax to

identify the grammatical type of known words [Pinker, 1984]. We use a small set of known nouns

to transform unlabeled word clusters into candidate arguments for the SRL: HMM states that are

dominated by known names for animate or inanimate objects are assumed to be argument states.

Given text parsed by the HMM parser and a list of known nouns, the argument identifier pro-

ceeds in multiple steps as illustrated in figure 4.3. The first stage identifies as argument states those

states that appear at least half the time in the training data with known nouns. This use of a seed list
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Algorithm ARGUMENT STATE IDENTIFICATION
INPUT: Parsed Text T = list of (word, state) pairs

Set of concrete nouns N
OUTPUT: Set of argument states A

Argument count likelihood ArgLike(s, c)

Identify Argument States
Let freq(s) = |{(∗, s) ∈ T}|
Let freqN (s) = |{(w, s) ∈ T |w ∈ N}|

For each s:
If freqN (s) ≥ 4

Add s to A

Collect Per Sentence Argument Count statistics
For each Sentence S ∈ T :

Let Arg(S) = |{(w, s) ∈ S|s ∈ A}|
For (w, s) ∈ S s.t. s /∈ A

Increment ArgCount(s,Arg(S))

For each s /∈ A, and argument count c:
ArgLike(s, c) = ArgCount(s, c)/freq(s)

(a) Argument Identification

Algorithm PREDICATE STATE IDENTIFICATION
INPUT: Parsed Sentence S = list of (word, state) pairs

Set of argument states A
Sentence Argument Count ArgLike(s, c)

OUTPUT: Most likely predicate (v, sv)

Find Number of arguments in sentence
Let Arg(S) = |{(w, s) ∈ S|s ∈ A}|

Find Non-argument state in sentence most likely
to appear with this number of arguments

(v, sv) = argmax(w,s)∈SArgLike(s,Arg(S))

(b) Predicate Identification

Figure 4.3: Argument identification algorithm. This is a two stage process: argument state identifi-
cation based on statistics collected over entire text and per sentence predicate identification.

and distributional clustering is similar to Prototype Driven Learning [Haghighi and Klein, 2006],

except we are only providing information on one specific class.

As our seed set of plausible concrete nouns we wanted a set of nouns that young children know,

should recognize, and that appear in our training data. We used lexical development norms [Dale

and Fenson, 1996], selecting all words for things or people that were commonly produced by 20-

month-olds (over 50% reported), and that appeared at least 5 times in our training data. Because

this list is of words that children produce, it obviously represents a lower bound on the set of words

that such a child should comprehend or recognize. This yielded 71 words, including words for com-
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mon animals (‘pig’, ‘kitty’, ‘puppy’), objects (‘truck’, ‘banana’, ‘telephone’), people (‘mommy’,

‘daddy’), and some pronouns (‘me’ and ‘mine’). To this set we also added pronouns ‘you’ and

‘I’, as well as given names ‘adam’, ’eve’ and ‘sarah’. Pronouns refer to people or objects, but are

abstract in that they can refer to any person or object. The inclusion of pronouns in our list of

known nouns represents the assumption that toddlers have already identified pronouns as referential

terms. Even 19-month-olds assign appropriately different interpretations to novel verbs presented

in simple transitive versus intransitive sentences with pronoun arguments (“He’s kradding him!” vs.

“He’s kradding!”; [Yuan et al., 2007]). See appendix A for the full list of nouns used as seed set.

The lexical development norm words represent a high precision set of argument nouns, they are

not highly frequent in the data (outside of added pronouns), but they nearly always appear as nouns

and arguments in the data (over 99% of occurences of words in this list are considered nouns or

pronouns in the training data, over 97% are part of arguments). As such we set a very permissive

condition that identifies argument states as those HMM states that appear above some frequency

with known nouns. Thus the high precision of the seed set is shared with all other words that appear

in states that word appears with. In our experiments we set the threshold of known nouns to 4

through tuning argument identifier.

Figure 4.2 acts as a companion to figure 3.1, illustrating how the minimal supervised argument

identification can find the syntactic structure used in the previous example. Starting with the sen-

tence “I like dark bread”, first the HMM is used to find the best state for each word in the sentence5.

Then argument states are identified using the lexical development norm seed set. In this example,

the set of known concrete nouns does not contain the word ‘bread’, but does contain words such as

‘juice’ and ‘milk’, which appear with the same HMM state as ‘bread’ in our example sentence, so

‘bread’ is also considered a noun.

What about verbs? A typical SRL model identifies candidate arguments and tries to assign roles

to them relative to each verb in the sentence. In principle one might suppose that children learn

the meanings of verbs via cross-situational observation just as they learn the meanings of concrete

nouns. But identifying the meanings of verbs is much more troublesome. Verbs’ meanings are
5We use the state with the highest marginal probability for each word given the sentence, instead of the Viterbi

state estimate which finds the sequence of states that have the highest probability for an entire sentence. In previous
experiments this has proven to give slightly better results for unsupervised POS.

54



abstract, therefore harder to identify based on scene information alone [Gillette et al., 1999]. As

a result, early vocabularies are dominated by nouns [Gentner, 2006]. On the structure-mapping

account, learners identify verbs, and begin to determine their meanings, based on sentence structure

cues. Verbs take noun arguments; thus, learners could learn which words are verbs by detecting

each verb’s syntactic argument-taking behavior. Experimental evidence provides some support for

this procedure: 2-year-olds keep track of the syntactic structures in which a new verb appears, even

without a concurrent scene that provides cues to the verb’s semantic content [Yuan and Fisher,

2009].

We implement this behavior by identifying as predicate states the HMM states that appear com-

monly with a particular number of previously identified arguments. First, we collect statistics over

the entire HMM training corpus regarding how many arguments are identified per sentence, and

which states that are not identified as argument states appear with each number of arguments. Next,

for each parsed sentence that serves as SRL input, the algorithm chooses as the most likely predicate

the word whose state is most likely to appear with the number of arguments found in the current

input sentence. Note that this algorithm assumes exactly one predicate per sentence. Implicitly,

the argument count likelihood divides predicate states up into transitive and intransitive predicates

based on appearances in the simple sentences of CDS.

Two arguments are identified in figure 4.2, so predicate identification proceeds by selecting

determing which of the non-argument HMM states that appear in the sentence is most likely to

appear with two arguments. Deciding between ‘like’ and ‘dark’, we see that state 78, which ‘like’

is assigned to, frequently appears in two argument sentences, indicating that these words may be

two argument predicates, or transitive verbs. Looking at the most frequent words that appear with

this state, ‘like’, ‘got’, ‘had’, ‘saw’, these do appear to correctly be verbs that take two arguments,

which we were able to identify through distributional similarity and argument count statistics.

Argument Identification Evaluation

Figure 4.4 shows argument and predicate identification accuracy for each of the four parsers when

provided with different numbers of known nouns. For each HMM we train 10 models over the

training data with different random initializations and take the one with the highest perplexity for
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Figure 4.4: Effect of number of concrete nouns for seeding argument identification with various un-
supervised parsers. Each line represents the mean of 100 runs with a single HMM (which acheived
lowest perplexity on training data over 10 runs) and random selection of seed nouns. For each parser
(different color and line style) there are three lines indicating: Argument identification (marked with
triangle), Predicate identification (circle) and Predicate guessing baseline (square). Argument iden-
tification accuracy is computed against true argument boundaries from hand labeled data. The left
graph (subfigure (a)) does not distinguish between function and content word states when identify-
ing argument and predicate states while the right graph does include this distinction with the two
parsers that support such a seperation. Eliminating function words from consideration when identi-
fying arguments and predicates does not impact argument identification, but greatly helps predicate
identification.

experiments. In these graphs, for each number of seed nouns we take the mean over 100 runs of

argument and predicate identification with a random selection of seed nouns each time. Because for

each of the four unsupervised parsers we use the same HMM over each run, comparison may not

be complete reflection of different HMM training approaches.

Three groups of curves appear in figure 4.4: the upper group (marked with triangles) shows the

primary argument identification accuracy, the middle group (circle) shows the predicate identifica-

tion accuracy, and bottom group (squares) shows the lower bound random predicate baseline. We

evaluate compared to gold tagged data with true argument and predicate boundaries. The primary

argument (A0-4) identification accuracy is the F1 (harmonic mean of precision and recall), with

precision calculated as the proportion of identified arguments that appear as part of a true argument,

and recall as the proportion of true arguments that have some state identified as an argument. This

is a rather lenient measure of accuracy since we are comparing identified individual words to full

phrase boundaries.

F1 is calculated similarly for predicate identification, as one state per sentence is identified as

the predicate. The predicate guess baseline reflects the expected accuracy if we randomly select a
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non-argument word to be predicate. As argument identification improves and more arguments are

correctly identified, more non-predicates are eliminated from consideration in each sentence and

thus predicate guess icreases.

As shown in figure 4.4, argument identification F1 is higher than predicate identification (which

is to be expected, given that predicate identification depends on accurate arguments), and as we add

more seed nouns the argument identification improves. Surprisingly, despite the clear differences in

unsupervised POS performance seen in figure 4.1, the different parsers do not yield very different

argument and predicate identification. As we will see in the next section, however, when the argu-

ments identified in this step are used to train SRL classifier, distinctions between parsers reappear,

suggesting that argument identification F1 masks systematic patterns in the errors.

An important factor for predicate identification is the contribution of the content/function word

split. In the cases of where the HMM contains this division (EM+Funct and VB+Funct) we can

make use of this information to only consider content word states for both argument and predicate

identification. The two subfigures in figure 4.4 compare the argument and predicate identification

performance when we do not eliminate function words (because either the HMM does not contain

this division, or else we ignore it) and when we consider only content words. Predicate identification

improves dramatically between the two, both because there are naturally fewer options (as can be

seen by increase of the guessing baseline), and because the function words are no longer confused

with verbs based on their appearing frequently with verbs in the same argument number sentences

(such as ‘to’ or ‘and’).

In our previous minimally supervised argument-identification experiments [Connor et al., 2010],

we did not find such an improvement of predicate identification over a guessing baseline even as

argument identification improved. After this result we did error analysis (on training data) and

acheived the current result through three improvements: 1) Evaluate predicate identification on

a sentence by sentence basis, instead of per proposition as done for SRL evaluation. Because

the same number of arguments are identified per proposition or per sentence, the same predicate

would be identified in all cases, meaning we force some entries to be incorrect in sentences with

multiple predicates (15% of sentences). 2) Include pronouns and names in lexical development set,

improving argument identification and eliminating these words from confusion with predicate, and
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3) Distinguish between function and content words when making argument and predicate decisions.

With this minimally supervised argument and predicate identification system we can succes-

fully identify arguments and predicates starting with a handful of concrete nouns. With just 10

nouns argument identification is around 0.6 F1, and already this argument information is enough

such that predicate identification is doing better than random guessing. With 75 nouns (which is

still small relative to the number of nouns children should have acquired by this stage), argument

identification improves to over 0.8 F1, and predicate identification continues to improve (especially

so when only content words are considered). Partial knowledge of arguments (which can come from

knowing a handful of nouns) is enough to identify predicates in a majority of sentences, without

knowing anything about the individual verbs other than how often they appear with some number

of arguments.

4.1.4 Testing SRL Performance

Note that the results in this section use the original argument identifier that uses a larger set of seed

nouns and the poorer predicate identification.

We used the results of the previous parsing and argument-identification stages in training our

simplified BabySRL classifier equipped with sets of features derived from the structure-mapping

account. In what follows, we compare the performance of the BabySRL across the four parsers. We

evaluated SRL performance by testing the BabySRL with constructed sentences like those described

in section 3.3. All test sentences contained a novel verb, to test the model’s ability to generalize.

The goal of these experiments is to see how the simple features that form the base of BabySRL

(noun pattern and verb position) deal with the noisy minimally supervised argument and predicate

identification. Are the features robust in an environment where a learner only has access to minimal

information in making structure predictions?

To test the system’s predictions on transitive and intransitive two noun sentences, we constructed

two test sentence templates: ‘A krads B’ and ‘A and B krad’, where A and B were replaced with

familiar animate nouns. The animate nouns were selected from all three children’s data in the

training set and paired together in the templates such that all pairs are represented.

Figure 4.5 shows SRL performance on test sentences containing a novel verb and two animate
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Two Noun Transitive, % Agent First One Noun Intransitive, % Agent Prediction
Lexical NPat VPos Combine Lexical NPat VPos Combine

VB+Funct 10 seed 0.48 0.61 0.55 0.71 0.48 0.57 0.56 0.59
VB+Funct 365 seed 0.22 0.64 0.41 0.74 0.23 0.33 0.43 0.41
Gold Arguments 0.16 0.41 0.69 0.77 0.17 0.18 0.70 0.58

Table 4.1: SRL result comparison when trained with best unsupervised argument identifier versus
trained with gold arguments. Comparison is between agent first prediction of two noun transitive
sentences vs. one noun intransitive sentences. The unsupervised arguments lead the classifier to rely
more on noun pattern features; when the true arguments and predicate are known the verb position
feature leads the classifier to strongly indicate agent first in both settings.
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Figure 4.5: SRL classification performance on transitive and intransitive test sentences containing
two nouns and a novel verb. Performance with gold-standard argument identification is included
for comparison. Across parses, noun pattern features promote agent-patient (A0A1) interpretations
of both transitive (“You krad Mommy”) and two-noun intransitive sentences (“You and Mommy
krad”); the latter is an error found in young children. Unsupervised parsing is less accurate in
identifying the verb, so verb position features fail to eliminate errors with two-noun intransitive
sentences.

nouns. Each plot shows the proportion of test sentences that were assigned an agent-patient (A0-

A1) role sequence; this sequence is correct for transitive sentences but is an error for two-noun

intransitive sentences. Each group of bars shows the performance of the BabySRL trained using

one of the four parsers, equipped with each of our four feature sets. The top and bottom panels
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in Figure 4.5 differ in the number of nouns provided to seed the argument identification stage.

The top row shows performance with 10 seed nouns (the 10 most frequent nouns, mostly animate

pronouns), and the bottom row shows performance with 365 concrete (animate or inanimate) nouns

treated as known. Relative to the lexical baseline, NPat features fared well: they promoted the

assignment of A0-A1 interpretations to transitive sentences, across all parser versions and both sets

of known nouns. Both VB estimation and the content-function word split increased the ability

of NPat features to learn that the first of two nouns was an agent, and the second a patient. The

NPat features also promote the predicted error with two-noun intransitive sentences (Figures 4.5(b),

4.5(d)). Despite the relatively low accuracy of predicate identification noted in section 4.1.3, the

VPos features did succeed in promoting an A0A1 interpretation for transitive sentences containing

novel verbs relative to the lexical baseline. In every case the performance of the Combined model

that includes both NPat and VPos features exceeds the performance of either NPat or VPos alone,

suggesting both contribute to correct predictions for transitive sentences. However, the performance

of VPos features did not improve with parsing accuracy as did the performance of the NPat features.

Most strikingly, the VPos features did not eliminate the predicted error with two-noun intransitive

sentences when the NPat feature is also present. As shown in panels 4.5(b) and 4.5(d), the Combined

model predicted an A0A1 sequence for these sentences, showing no reduction in this error due to

the participation of VPos features.

Table 4.1 shows SRL performance on the same transitive test sentences (‘A krads B’), compared

to simple one-noun intransitive sentences (‘A krads’). To permit a direct comparison, the table re-

ports the proportion of transitive test sentences for which the first noun was assigned an agent (A0)

interpretation, and the proportion of intransitive test sentences with the agent (A0) role assigned to

the single noun in the sentence. Here we report only the results from the best-performing parser

(trained with VB EM, and content/function word pre-clustering), compared to the same classifiers

trained with gold standard argument identification. When trained on arguments identified via the

unsupervised POS tagger, noun pattern features promoted agent interpretations of transitive subjects

(relative to the lexical baseline), but not for intransitive subjects. This differentiation between tran-

sitive and intransitive sentences was clearer when more known nouns were provided. Verb position

features, in contrast, promote agent interpretations of subjects weakly with unsupervised argument
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identification, but equally for transitive and intransitive.

Noun pattern features were robust to increases in parsing noise. The behavior of verb position

features suggests that variations in the identifiability of different parts of speech can affect the use-

fulness of alternative representations of sentence structure. Representations that reflect the position

of the verb may be powerful guides for understanding simple English sentences, but representations

reflecting only the number and order of nouns can dominate early in acquisition, depending on the

integrity of parsing decisions.

4.1.5 Conclusion and Future Work

The key innovation in this section is the combination of unsupervised part-of-speech tagging and

argument identification to permit learning in a simplified SRL system. Children do not have the

luxury of treating part-of-speech tagging and semantic role labeling as separable tasks. Instead, they

must learn to understand sentences starting from scratch, learning the meanings of some words, and

using those words and their patterns of arrangement into sentences to bootstrap their way into more

mature knowledge.

We have created a first step toward modeling this incremental process. We combined unsu-

pervised parsing with minimal supervision to begin to identify arguments and predicates. An SRL

classifier used simple representations built from these identified arguments to extract useful abstract

patterns for classifying semantic roles. Our results suggest that multiple simple representations of

sentence structure could co-exist in the child’s system for sentence comprehension; representations

that will ultimately turn out to be powerful guides to role identification may be less powerful early

in acquisition because of the noise introduced by the unsupervised parsing.

Notably we have also shown that a learner can begin to identify verb predicates based on their

argument taking behaviour based on the knowledge of a handful of nouns only. This leads the way

to a development path where total word learning does not have to precede syntax learning; the two

certainly interact and feed each other.

In the next section we explore when the semantic feedback is similarily decreased to rely on

only a subset of semantic background knowledge that children have access to. Instead of assuming

that the learner can understand the full semantics of the scene, and then uses this information to

61



drive sentence understanding and learning, we seek to use some minimal amount of background

knowledge to drive a feedback signal that still allows plausible interpretations and patterns to be

learned from real text, in the absence of true semantic feedback. This minimal feedback can be

combined with the HMM based argument and predicate identification to form a full minimally

supervised BabySRL in section 4.3.

4.2 Animacy Feedback

Theories of human language acquisition assume that learning to understand sentences is naturally

a partially-supervised task: the fit of the learner’s predicted meaning with the referential context

and background knowledge provides corrective feedback (e.g., Pinker [Pinker, 1989]). But this

feedback must be noisy; referential scenes provide ambiguous information about the semantic roles

of sentence participants. For example, the same participant could be construed as an agent who

’fled’ or as a patient who is ’chased’.

In this section, we address this problem by designing a Semantic Role Labeling system (SRL),

equipped with shallow representations of sentence structure motivated by the structure-mapping

account, that learns with no gold-standard feedback at all. Instead, the SRL provides its own

internally-generated feedback based on a combination of world knowledge and linguistic con-

straints. As a simple stand-in for world knowledge, we assume that the learner has animacy in-

formation for some set of nouns, and uses this knowledge to determine their likely roles. In terms

of linguistic constraints, the learner uses simple knowledge about the possible arguments verbs can

appear with.

This approach has two goals. The first is to inform theories of language learning by investigating

the utility of the proposed internally-generated feedback as one component of the human learner’s

tools. Second, from an NLP and Machine Learning perspective we propose to inject information

into a supervised learning algorithm through a channel other than labeled training data. From both

perspectives, our key question is whether the algorithm can use these internally labeled examples to

extract general patterns that can be applied to new cases.

By building a model that uses shallow representations of sentences and minimal feedback, but

that mimics features of language development in children, we can explore the nature of initial

62



representations of syntactic structure.

Our previous computational experiments with BabySRL in Chapter 3 suggest that it is pos-

sible to learn to assign basic semantic roles based on the simple representations proposed by the

structure-mapping view. The classifier’s features were limited to lexical information (nouns and

verbs only) and the number and order of nouns in the sentence, and trained on a sample of child-

directed speech annotated in PropBank [Kingsbury and Palmer, 2002] style. Given this training,

our classifier learned to label the first of two nouns as an agent and the second as a patient. Even

amid the variability of casual speech, simply representing the target word as the first or the second

of two nouns significantly boosts SRL performance (relative to a lexical baseline) on transitive sen-

tences containing novel verbs. This result depends on key assumptions of the structure-mapping

view, including abstract representations of semantic roles, and abstract but simple representations

of sentence structure.

However, our previous experimental design has a serious drawback that limits its relevance to

the study of how children learn their first language. In training, our SRL received gold standard

feedback consisting of correctly labeled sentences. Thus when the SRL made a mistake in identify-

ing the semantic role of any noun in a sentence, it received feedback about the ‘true’ semantic role

of this noun. As noted above, this is an unrealistic assumption for the input to human learners.

Here we ask whether an SRL could learn to interpret simple sentences even without gold-

standard feedback by relying on world knowledge to generate its own feedback. This internally-

generated feedback was based on the following assumptions. First, nouns referring to animate

entities are likely to be agents, and nouns referring to inanimate entities are not. Second, each pred-

icate takes at most one agent. Such role uniqueness constraints are typically included in linguistic

discussions of thematic roles [Bresnan, 1982; Carlson, 1998]. The animacy heuristic is not always

correct, of course. For example, in “The door hit you”, an inanimate object is the agent of action,

and an animate being is the patient. Nevertheless, it is useful for two reasons. First, there is a strong

cross-linguistic association between agency and animacy [Aissen, 1999; Dowty, 1991]. Second,

from the first year of life, children have strong expectations about the capacities of animate and

inanimate entities [Baillargeon et al., (in press]. Two-year-olds more readily comprehend sentences

with animate than inanimate subjects, suggesting early sensitivity to the tendency for animates to
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be agents [Corrigan, 1988; Lempert, 1989]. Given the universal tendency for speakers to talk about

animate action on less animate objects, many sentences will present useful training data to the SRL:

In ordinary sentences such as ”You broke it,” feedback generated based on animacy will resemble

gold-standard feedback.

Much of this section was originally published in [Connor et al., 2009].

4.2.1 Learning Model

As a starting point, we will use the BabySRL model introduced in chapter 3, for now assuming

that we are given knowledge of true nouns and verbs. We further simplify the SRL task such that

classification is between two macro-roles: A0 (agent) and A1 (non-agent; all non-A0 arguments).

We did so because we reason that this simplified feedback scheme can be primarily informative for a

first stage of learning in which learners identify how their language identifies agents vs. non-agents

in sentences. In addition, this level of role granularity is more consistent across verbs [Palmer et al.,

2005].

For the final predictions, the classifier uses predicate-level inference to ensure coherent argu-

ment assignments. In our task the only active constraints are that all nouns require a label (a NO

label is possible for non role assigned arguments), and that they have unique labels, which for this

restricted case of A0 vs. not A0 means there will be only one agent.

Training and Feedback

The key feature of this experiment lies in the way feedback is provided. Ordinarily, during training,

SRL classifiers predict a semantic label for an argument and receive gold-standard feedback about

its correct semantic role. Such accurate feedback is not available for the child learner. Children must

rely on their own error-prone interpretation of events to supply feedback. This internally-generated

feedback signal is presumably derived from multiple information sources, including the plausibility

of particular combinations of argument-roles given the current situation [Chapman and Kohn, 1978].

Here we model this process by combining background knowledge with linguistic constraints to

generate a training signal. The ‘unsupervised’ feedback is based on: 1) nouns referring to animate

entities are assumed to be agents, while nouns referring to inanimate entities are non-agents and 2)
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each predicate can have at most one agent.

This internally-generated feedback bears some similarities to Inference Based Training [Pun-

yakanok et al., 2005b]. In both cases the feedback to local supervised classifiers depends on global

constraints. With IBT, feedback for mistakes is only considered after global inference, but for

BabySRL the global inference is applied to the feedback itself. Figure 4.6 gives an overview of the

training and testing procedure, making clear the distinction between training and testing inference.

The results in this section are based on experiments with training data from one child in the se-

mantic role labeled CDS corpus described in section 3.1 (‘Sarah’; utterances in samples 1 through

80, recorded at child age 2;3-3;10 years) This child-directed speech training set consists of about

8300 tagged arguments over 4700 sentences, of which a majority had a single verb and two labeled

nouns. The annotator agreement on this data set ranged between 95-97% at the level of argu-

ments. In the current section these role-tagged examples provide a comparison point for the utility

of animacy-based feedback during training.

Our BabySRL did not receive these hand-corrected semantic roles during training. Instead, for

each training example it generated its own feedback based in part on an animacy table. To obtain

the animacy table we coded the 100 most frequent nouns in our corpus (which constituted less than

15% of the total number of nouns, but 65% of noun occurrences). We considered 84 of these nouns

to be unambiguous in animacy: Personal pronouns and nouns referring to people were coded as

animate (30). Nouns referring to objects, body parts, locations, and times, were coded as inanimate

(54). The remaining 16 nouns were excluded because they were ambiguous in animacy (e.g., dolls,

actions). See Appendix A for a full list of animate and inanimate words used for generating our

feedback signal.

We test 3 levels of feedback representing increasing amounts of linguistic knowledge used to

generate internal interpretations of the sentences. Using the animacy table, Animacy feedback

(Feedback 1) was generated as follows: for each noun in training, if it was coded as animate it

was labeled A0, if it was coded as inanimate it was labeled A1, otherwise no feedback was given.

Because of the frequency of animate nouns this gives a skewed distribution of 4091 animate agents

and 1337 inanimate non-agents.

(Feedback 2) builds on Feedback 1 by adding another linguistic constraint: if a noun was not
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found in the animacy-table and there is another noun in the sentence that is labeled A0, then the

unknown noun is an A1. In the training set this adds non-agent training examples, yielding 4091

A0 and 2627 A1 examples.

Feedback 1 and Feedback 2 allow two nouns in a sentence to be labeled with A0. Feedback

3 prevents this; it implements a unique agent constraint that incorporates bootstrapping to make an

‘intelligent guess’ about which noun is the correct agent. This decision is made based on the current

predictions of the classifier. Given a sentence with multiple animate nouns, the classifier predicts a

label for each, and the one with the highest score for A0 is declared the true agent and the rest are

classified as non-agent. Note that we cannot apply role uniqueness to the A1 (not A0) role, given

that this label encompasses multiple non-agent roles. This feedback scheme, allowing at most one

agent per sentence, reduces the number of A0 examples and increases the number of A1 examples

to 3019 A0 and 3699 A1.

Feature Sets

The basic features of the BabySRL depend on a simple syntactic representation based on number

and order of nouns and relative location of verb (Noun pattern and verb position, see section 3.2).

We compare the noun pattern (NPat) feature to a baseline lexical feature set (Words): the target noun

and the root form of the predicate. The NPat feature set includes lexical features as well as features

indicating the number and order of the noun (first of two, second of three, etc.). With gold-standard

role feedback, chapter 3 demonstrates that the NPat feature allowed the BabySRL to generalize to

new verbs: it increased the system’s tendency to predict that the first of two nouns was A0 and the

second of two nouns A1 for verbs not seen in training.

To the extent that in child-directed speech the first of two nouns tends to be an agent, and agents

tend to be animate, we anticipate that with the NPat feature the BabySRL will learn the same thing,

even when provided with internally-generated feedback based on animacy. In the previous chap-

ter we showed that, because this NPat feature set represents only the number and order of nouns,

with this feature set the BabySRL reproduced the errors children make as noted in the Introduction,

mistakenly assigning agent- and non-agent roles to the first and second nouns in intransitive test

sentences containing two nouns. In the present chapter, the linguistic constraints provide an addi-
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Algorithm BABYSRL TRAINING
INPUT: Unlabeled Training Sentences
OUTPUT: Trained Argument Classifier

For each training sentence
Generate Internal Feedback: Find interpreted meaning

Feedback 1: Apply Animacy Heuristic
For each argument in the sentence (noun)

If noun is animate→ mark as agent
If noun is inanimate→ mark as non-agent
else leave unknown

end

Feedback 2: Known agent constraint
Beginning with Feedback 1
If an agent was found

Mark all unknown arguments as non-agent

Feedback 3: Unique agent constraint
Beginning with Feedback 2
If multiple agents found

Find argument with highest agent prediction
Leave this argument an agent, mark rest as non-agent

Train Supervised Classifier
Present each argument to classifier

Update if interpreted meaning does not match
classifier prediction

end

(a) Training

Algorithm BABYSRL TESTING
INPUT: Unlabeled Testing Sentences
OUTPUT: Role labels for each argument

For each test sentence
Predict roles for each argument
Test Inference:

Find assignment to whole sentence with highest sum of
predictions that doesn’t violate uniqueness constraint

end

(b) Testing

Figure 4.6: BabySRL training and testing procedures. Internal feedback is generated using animacy
plus optional constraints. This feedback is fed to a supervised learning algorithm to create an agent-
identification classifier.

tional cause for this error. In addition, as a first step in examining recovery from the predicted error,

we added a verb position feature (VPos) specifying whether the target noun is before or after the

verb. Given these features, the BabySRL’s classification of transitive and two-noun intransitive test

sentences diverged, because the gold-standard training supported the generalization that pre-verbal

nouns tend to be agents, and post-verbal nouns tend to be patients.
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Testing

To evaluate the BabySRL we tested it with both a held-out sample of child-directed speech, and with

constructed sentences containing novel verbs as detailed in section 3.3. These sentences provide

a more stringent test of generalization than the customary test on a held-out section of the data.

Although the held-out section of data contains unseen sentences, it may contain few unseen verbs.

In a held out section of our data, 650 out of 696 test examples contain a verb that was encountered in

training. Therefore, the customary test cannot tell us whether the system generalizes what it learned

to novel verbs.

In this section we report on results with test sentence templates that were filled with random

sampling of nouns from two distributions:

Full distribution: The first nouns in the test sentences (A) are chosen from the set of all first

nouns in our corpus, taking their frequency into account when sampling. The second nouns in

the sentences (B) are chosen from the set of nouns appearing as second nouns in the sentence of

our corpus. This way of sampling the nouns will maximize the SRL’s test performance based on

the baseline feature set of lexical information alone (Words). This is so because in our data many

sentences have an animate first noun and an inanimate second noun. Based on these words alone the

SRL could learn to predict an A0-A1 role sequence for our test sentences. Nevertheless, we expect

that when the BabySRL is also given the NPat feature it should be able to perform better than this

high lexical baseline.

Two animate nouns: In these test sentences the A and B nouns are chosen from our list of

animate nouns. We chose nouns from this list that were fairly frequent (ranging from 8 to 240 uses

in the corpus), and that occurred roughly equally as the first and second noun. This mimics the

sentences used in the experiments with children (e.g., “The girl is kradding the boy!”). The lexical

baseline system’s tendency to assign an A0-A1 sequence to these nouns should be much lower for

these test sentences. We therefore expect the contribution of the NPat feature to be more apparent

in these test sentences.

The test sentences with novel verbs ask whether the classifier transfers its learning about argu-

ment role assignment to unseen verbs. Does it assume the first of two nouns in a simple transitive

sentence (’A gorps B’) is the agent (A0) and the second is not an agent (A1)? In section 3.4 we
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Feedback Words +NPat
1. Just Animacy 0.72 0.73
2. + non A0 Inference 0.74 0.75
3. + unique A0 bootstrap 0.70 0.74
10 Gold 0.43 0.47
100 Gold 0.61 0.65
1000 Gold 0.75 0.76

Table 4.2: Agent identification results (A0 F1) on held-out sections of the Sarah Childes corpus. We
compare a classifier trained with various amounts of gold labeled data (averaging over 10 different
samples at each level of data). For noun pattern features the internally generated bootstrap feedback
provides comparable accuracy to training with between 100-1000 fully labeled examples.

showed that a system with the same feature and representations also over-generalized this rule to

two-noun intransitives (‘A and B gorp’), mimicking children’s behavior. In the present experiments

this error is over-determined, because the classifier learns only an agent/non-agent contrast, and the

linguistic constraints forbid duplicate agents in a sentence. However, for comparison to the earlier

results we test our system on the ‘A and B gorp’ sentences as well.

4.2.2 Experimental Results

Our experiments use internally-generated feedback to train simple, abstract structural features: the

NPat features that proved useful with gold-standard training in chapter 3. Section 4.2.2 tests the

system on agent-identification in held-out sentences from the corpus, and demonstrates that the

animacy-based feedback is useful, yielding SRL performance comparable to that of a system trained

with 1000 sentences of gold-standard feedback. Section 4.2.2 presents the critical novel-verb test

data, demonstrating that this system replicates key findings of the previous chapter with no gold

standard feedback. Using only noisy internally-generated feedback, the BabySRL learned that the

first of two nouns is an agent, and generalized this knowledge to sentences with novel verbs.

Comparing Self Generated Feedback with Gold Standard Feedback

Table 4.2 reports for the varying feedback schemes, the A0 F1 performance for a system with

either lexical baseline feature (Words) or structural features (+NPat) when tested on a held-out

section of the Sarah CHILDES corpus section 84-90, recorded at child ages 3;11-4;1 years. Agent

identification based on lexical features is quite accurate given animacy feedback alone (Feedback
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Full Distribution Nouns Animate Nouns
Feedback Words NPat VPos Words NPat VPos

‘A gorps B’
1. Animacy 0.86 0.86 0.87 0.76 0.79 0.70
2. + non A0 Inference 0.87 0.92 0.90 0.63 0.86 0.85
3. + unique A0 bootstrap 0.87 0.95 0.89 0.63 0.82 0.66

‘A and B gorp’
1. Animacy 0.86 0.86 0.84 0.76 0.79 0.68
2. + non A0 Inference 0.87 0.92 0.85 0.63 0.86 0.66
3. + unique A0 bootstrap 0.87 0.95 0.86 0.63 0.82 0.63

Table 4.3: Percentage of sentences interpreted as agent first (%A0-A1) by the BabySRL when
trained on unlabeled data with the 3 internally-generated feedback schemes described in the text.
Two different two-noun sentence structures were used (‘A gorps B’, ‘A and B gorp’), along with
two different methods of sampling the nouns (Full Distribution, Animate Nouns) to create test sets
with 100 sentences each.

1). As expected, because many agents are animate, the animacy tagging heuristic itself is useful. As

linguistic constraints are added via non-A0 inference (Feedback 2), performance increases for both

the lexical baseline and NPat feature-set, because the system experiences more non-A0 training

examples.

When the unique A0 constraint is added (Feedback 3), the lexical baseline performance de-

creases, because for the first time animate nouns are being tagged as non-agents. With this feedback

the NPat feature set yields a larger improvement over lexical baseline, showing that it extracts more

general patterns. We discuss the source of these feedback differences in the novel-verb test section

below.

We compared the usefulness of the internally-generated feedback to gold-standard feedback by

training a classifier equipped with the same features on labeled sentences. We reduced the SRL

labeling for the training sentences to the binary agent/non-agent set, and trained the classifier with

10, 100, or 1000 labeled examples. Surprisingly, the simple feedback derived from 84 nouns labeled

with animacy information yields performance equivalent to between 100 and 1000 hand-labeled

examples.

Comparing Structural Features with Lexical Features

The previous section shows that the BabySRL equipped with simple structural features can use

internally generated feedback to learn a simple agent/non-agent classification, and apply it to unseen
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sentences. In this section we probe what the SRL has learned by testing generalization to new verbs

in constructed sentences. Table 4.3 summarizes these experiments. The results are broken down

both by what sentence structure is used in test (‘A gorps B’, ‘A and B gorp’) and how the nouns

‘A’ and ‘B’ are sampled (Full Distribution, Animate Nouns). The results are presented in terms of

%A0A1: the percentage of test sentences that are assigned an Agent role for ‘A’ and a non-Agent

role for ‘B’.

For the transitive ‘A gorps B’ sentences, A0A1 is the correct interpretation; A should be the

agent. As predicted, when A and B are sampled from the full distribution of nouns, simply basing

classification on the Words feature-set already strongly predicts this A0A1 ordering for the majority

of cases. This is because the data (language in general, child directed speech in particular here)

are naturally distributed such that particular nouns that refer to animates tend to be agents, and

tend to appear as first nouns, and those that refer to inanimates tend to be non-agents and second

nouns. Thus, a learner representing sentence information in terms of words only succeeds with full-

distribution ’A gorps B’ test sentences even with the simplest animacy feedback (Feedback 1); the

A and B nouns in these test sentences reproduce the learned distribution. Also as predicted, given

this simple feedback, the additional higher-level features (NPat, VPos) do not improve much upon

the lexical baseline. This is due to the strictly lexical nature of the animacy feedback: each lexical

item (e.g., ’you’ or ’it’) will always either be animate or inanimate and therefore either A0 or A1.

Therefore, in this case lexical features are the best predictors.

Also as expected, higher-level features (NPat, and VPos) improve performance with a more

sophisticated self-generated feedback scheme. Adding inferred feedback to label unknown nouns

as A1 when the sentence contains a known animate noun (Feedback 2) decreases the ratio of A0

to non-A0 arguments. This feedback is less lexically determined: for nouns whose animacy is

unknown, feedback will be provided only if there is another animate noun in the sentence. This

leaves room for the abstract structural features to play a role.

Next we test a form of the unique-A0 constraint. In (Feedback 3), in addition to the non-A0

inference added in (Feedback 2), the BabySRL intelligently selects one noun as A0 in sentences

with multiple animate nouns. With this feedback we see a striking increase in test performance

based on the noun pattern features over the lexical baseline. In principle, this feedback mechanism
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might permit the classifier to start to learn that animate nouns are not always agents. Early in

training, the noun pattern feature learns that first nouns tend to be animate (and therefore interpreted

as agents), and it feeds this information back into subsequent training examples, generating new

feedback that continues to interpret as agents those animate nouns that appear first in sentences

containing two animates.

For the nouns sampled from the full distribution we see that structural features improve over the

lexical baseline despite the high performance of the lexical baseline. This finding tells us that simple

representations of sentence structure can be useful in learning to interpret sentences even with no

gold-standard training. Provided only with simple internally-generated feedback based on animacy

knowledge and linguistic constraints, the BabySRL learned that the first of two nouns tends to be

an agent, and the second of two does not.

The results for the ‘A B gorp’ test sentences demonstrate an important way in which predictions

based on different simple structure representations can diverge. As expected, the NPat feature makes

the same overgeneralization error seen by children and the gold trained BabySRL from chapter 3.

However, when the VPos feature is added, different results are obtained for the ‘A gorp B’ and ‘A

and B gorp’ sentences. The SRL predicts fewer A0A1 for ‘A and B gorp’ (it cannot predict the

expected A0A0 because of the uniqueness constraint used in test inference).

Next, we replicate our findings by performing the same experiments with test sentences in which

both ‘A’ and ‘B’ are animate. Because lexical features alone cannot determine if ‘A’ or ‘B’ should

be the agent, it is a more sensitive test of generalization.

When we look at the lexical baseline for animate sentences, the agent-first percentage is lower

compared to the full distribution results, because the word features indicate nearly evenly that both

nouns should be agents, so the Words baseline model must rely on small, chance differences in its

experience with particular words. This percentage is still well above chance due to the method used

to apply inference during testing. Recall that the classifier uses predicate-level inference at test to

ensure that only one argument is labeled A0. This inference is implemented using a beam search

that looks at arguments in a fixed order and roles from A0 up. Thus in the case of ties there is a

preference for first seen solutions, meaning A0A1 in this case. This bias has a large effect on the

SRL’s baseline performance with the test sentences containing two animate nouns. Despite this
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high baseline, however, because lexical features alone cannot determine if ‘A’ or ‘B’ should be the

agent, we are able to see more clearly the improvement gained by including structural features.

Regardless of our testing scheme, we see that as the feedback incorporates more information,

both added linguistic constraints and the SRL’s own prior learning, the noun pattern structural fea-

ture is better used to identify agents beyond the lexical baseline. The largest improvement over this

lexical baseline is obtained by combining knowledge of animacy with a single-agent constraint and

bootstrapping predictions based on prior learning.

Conclusion

Conventional approaches to supervised learning require creating large amounts of hand-labeled

data. This is labor-intensive, and limits the relevance of the work to the study of how children

learn languages. Children do not receive perfect feedback about sentence interpretation. Here we

found that our simple SRL classifier can, to a surprising degree, attain performance comparable

to training with 1000 sentences of labeled data. This suggests that fully labeled training data can

be supplemented by a combination of simple world knowledge (animates make good agents) and

linguistic constraints (each verb has only one agent). The combination of these sources provides

an informative training signal that allows our BabySRL to learn a high-level semantic task and

generalize beyond the training data we provided to it. The SRL learned, based on the distribution

of animates in sentences of child-directed speech, that the first of two nouns tends to be an agent.

It did so based on representations of sentence structure as simple as the ordered set of nouns in the

sentence. This demonstrates that it is possible to learn how to correctly assign semantic roles based

on these very simple cues. This together with experimental work (e.g. [Fisher, 1996] suggests that

such representations might play a role in children’s early sentence comprehension.

4.3 Minimally Supervised BabySRL

Putting both minimally supervised argument identification and animacy based training together into

a single largely unsupervised system allows us to see what simple representations can learn given

a clear lower bound on knowledge children have available. This minimally supervised BabySRL

model represents an end-to-end SRL system (first pictured in figure 1.1) that uses knowledge of
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the identity and animacy of a handful of nouns plus exposure to language to identify a class of

arguments, use the number of arguments to identify likely predicate, and then infer semantics based

on the structure of arguments and predicate.

To normalize the experimental setups of previous results reported here, which may have been

trained over data from different children with slightly different parameters, we have trained our en-

tire minimal supervised BabySRL on each of the three children independently and report the aver-

age plus individual performance. For HMM argument identification we used the VB trained HMM

with function/content word split, discarding function states during identification, seeded with all 75

lexical development norm words. For animacy feedback, the most frequent 365 known animate and

inanimate words were used. Finally, inference on the predicted sentences during testing (ensuring

role uniqueness) was not used in either the fully or minimally supervised cases, so multiple role

predictions are allowed.
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Figure 4.7: Comparison of fully and minimally supervised BabySRL on two noun sentences. Exper-
iments over all three children, with bars representing average performance and points representing
each child. A noun pattern based representation alone may cause specific errors in sentence inter-
pretation. With two noun sentences, noun pattern does not distinguish between “A krads B” and “A
and B are kradding”, while features that depend on verb position do. On the left, when trained with
perfect arguments and complete feedback, the verb position feature strongly predicts agent/patient
for two noun transitive, and weakly predicts the same for two noun intransitive. This pattern dom-
inates even when verb position is combined with noun pattern. On the right, with the minimally
supervised SRL trained with HMM arguments and animacy feedback, the noun pattern and verb
position alone show the same general patterns in terms of increase over lexical baseline as when
trained with perfect feedback, but verb position predictions no longer dominates the combined fea-
ture representation performance. The number of arguments is a more consistent cue due partly to
the weaker ability to identify verbs. The combination of noise in argument identification and low
amount of supervision through animacy feedback causes the decline in overall performance.
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Figure 4.7 graphs these results for two noun transitive sentences, and the patterns have not

changed much from previous results; for both fully and minimally supervised BabySRL all sim-

ple structural features succesfully increase the agent-patient interpretation of two-noun transitive

sentences over a lexical baseline. Note that due to feedback differences the predictions for the mini-

mally supervised system are between agent and not agent, and not across all different possible roles.

The noun pattern feature handles noise from both argument identification and feedback better than

verb position so it is able to extract a more reliable pattern regarding the expected order of agents.

While the simple abstract noun pattern feature has been shown to allow early learning of se-

mantic patterns while being robust to noise from both input and feedback, it is clearly not a perfect

representation. Namely without verb information a noun only representation will confuse two noun

sentences of different structures: transitive “A krads B” and intransitive “A and B are kradding”.

Figure 4.7 shows the predictions of the four feature sets on these two sentence structures with both

perfect pipeline of gold arguments and feedback, and the minimal supervised case of HMM ar-

gument identification and animacy based feedback. With complete information the NPat feature

makes the same prediction for both transitive and intransitive sentences, while the verb position

feature is able to distinguish these two structures and predict agent/patient for transitive and not for

intransitive. The combined feature set is buoyed by both NPat and VPos in the transitive case, but

its predictions agree mostly with VPos in the intransitive case. With complete information the verb

position feature dominates in the combined feature set.

With the minimally supervised HMM arguments and animacy feedback (right side of figure 4.7),

the NPat feature still makes the same predictions for transitive and intransitive, but in this noisy case

the combined feature set agrees with it in both cases. Although the verb position alone still learns

to treat the two structures differently, it does not handle the noisier input and feedback as well

(especially the noisier predicate identification), and so the NPat feature is able to dominate it when

the two features are present together in the combined feature set. Although the verb position feature

may be a more powerful indicator in the english language, in early language acquisition when not

all information in the sentence is available or understood by the learner, noun structure information

may serve as a more reliable cue.
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4.4 Conclusion

The next step is to ‘close the loop’, using higher level semantic feedback to improve the earlier

argument identification and parsing stages. Perhaps with the help of semantic feedback the system

can automatically improve predicate identification, which in turn allows it to correct the observed

intransitive sentence error. This approach will move us closer to the goal of using initial simple

structural patterns and natural observation of the world (semantic feedback) to bootstrap more and

more sophisticated representations of linguistic structure.
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Chapter 5

Latent Baby SRL

When first learning language, children must cope with enormous ambiguity both in terms of mean-

ing and structure. They have to pick out candidate meanings from the world and align them with

the sentence forms presented, without already knowing which parts of the sentence refers to which

parts of the scene. Despite this, children do learn to interpret sentences of various structures, and

do so without detailed feedback about whether their interpretations were correct.

Computational language learning systems often rely on exactly this level of implausible fine

grained feedback to solve this problem, divining structure from a sentence and fitting the true mean-

ing to it. Often this is done in a pipeline where first a fixed structure for each sentence (commonly

full parse trees) is learned, and then this structure is used to learn a predefined meaning repre-

sentation (in our case Semantic Role Labels). The structure learned is not tailored for the final

semantic task, and the learning depends on the provision of an exact interpretation of the sentence

as feedback for learning. We started with this exact setup to experiment with our BabySRL simple

representations in chapter 3.

In this chapter we experiment with a computational system that models early stages of language

acquisition, attempting to learn to predict semantic roles from a corpora of child directed speech.

The system treats a highly simplified form of sentence structure as a latent structure that must be

learned jointly with the role classification based solely on high level semantic feedback in an online,

sentence by sentence setting.

With this system we aim to show:

• With just semantic role feedback we can identify latent argument and predicate identifiers.

• We can use the latent structure information to train argument and predicate classifiers, incor-

porating additional features and prior knowledge.
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• Improved hidden structure allows generalization of role feedback to a more realistic, ambigu-

ous level.

• To recover from loss of feedback information, we need to incorporate a small amount plausi-

ble bottom-up noun-based background knowledge.

Most of this chapter has previously appeared in [Connor et al., 2011].

5.1 Related Work

In our previous computational experiments with BabySRL we showed that it is possible to learn to

assign basic semantic roles based on the shallow sentence representations in chapter 3. Furthermore,

these simple structural features were robust to drastic reductions in the integrity of the semantic-role

feedback or being used with a minimally supervised parser in chapter 4. These experiments showed

that representations of sentence structure as simple as ‘first of two nouns’ are useful as a starting

point for sentence understanding, even given the bare minimum of supervised training, and lead to

systematic errors.

Other models of early language acquisition such as in [Alishahi and Stevenson, 2010] provide a

lexically motivated model of acquisition that is capable of production and comprehension, including

argument role understanding. These models assume as input a simple syntactic structure for the

sentence, including identifying arguments and predicates. One of the focuses of the current work is

how can we identify these structures without being given this information.

A similar task which happens at an earlier stage of language acquisition is the problem of

word segmentation. [Johnson et al., 2010] presents a computational model that jointly learns word

segmentation along with word referents, and demonstrates synergistic benefits from learning these

together. Here we try to use this insight to learn both the structure of the sentence in terms of

identifying arguments and predicates along with the higher level semantics.

For the general natural language problem of semantic role labeling, it is well known that the

parsing step which gives structure to the sentence is pivotal to final role labeling performance [Gildea

and Palmer, 2002; Punyakanok et al., 2008]. There is much interest in trying to learn both syntax

and semantics jointly, with two recent CoNLL shared tasks devoted to this problem [Surdeanu et al.,
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2008; Hajič et al., 2009]. In both cases the best systems learned syntax and semantics separately,

then applied together, so at this level the promise of joint synergies have yet to be realized.

5.2 Model

We model language learning with a Semantic Role Labeling (SRL) task [Carreras and Màrquez,

2004]. This allows us to ask whether a learner, equipped with particular theoretically-motivated

representations of the input, can learn to understand sentences at the level of who did what to

whom with controlled amounts of supervision. As a baseline architecture for our BabySRL system

introduced in chapter 3, which is itself based on a standard pipeline architecture of a full SRL

system (e.g. [Punyakanok et al., 2008]). The stages are: (1) Unsupervised parsing of the sentence,

(2) Identifying potential arguments and predicates based on the parse, (3) Classifying role labels for

each potential argument, trained using role-labeled child directed speech.

For the lowest level of representation, after the words themselves, we use an unsupervised Hid-

den Markov Model (HMM) tagger to provide a context sensitive clustering of the words (essentially

an unsupervised POS parse). The HMM states are preclustered into a function/content word division

which is both beneficial for unsupervised POS performance (see section 4.1.2), and also psycholin-

guistically defensible [Shi et al., 1998, 1999]. An alternative approach is to differentiate the prior

distribution for different sets of states, which unsurprisingly provides nearly the same division of

function and content word states [Moon et al., 2010]. Our HMM model is trained with two million

words of child directed speech, in a process that represents the year or so of listening to speech

and clustering based on distributional similarity before the child firmly learns any specific words or

attempts multi-word sentence interpretation.

Given the sentence and unsupervised tagging, the next step in the system is to determine which

words in the sentence are predicates, and which words are potential arguments. We use a structured

approach to this, considering the entire predicate/argument identification of the sentence at once,

with the constraints that (1) only content words are considered (identified by preclustering of HMM

states), (2) there is exactly one predicate, and (3) at most four arguments. These constraints are true

of over 98% of the sentences in our training data. The next section describes how we identify these

structures.
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Once a predicate and arguments have been identified, a role classifier must decide the role for

each argument relative to the predicate. We use the abstract roles of Propbank [Kingsbury and

Palmer, 2002], with A0 roughly indicating agent, and A1 patient. The role classifier can only rely

on features that can be computed with information available at this stage of processing, which

means the words themselves, and number and order of arguments and predicates as predicted by the

previous step.

As input to our learner we use samples of child directed speech (CDS) from the CHILDES

corpora, described in section 3.1. In this chapter we used samples of parental speech to one child

(Adam; [Brown, 1973]) as training and test data, sections 01-20 (child age 2;3 - 3;1) for training,

and sections 21-23 for test. To simplify evaluation, we restricted training and testing to the subset

of sentences with a single predicate (over 85% of the sentences). Additionally we focus on noun

arguments in terms of identification, although this may miss some other semantic roles. The final

annotated sample contains about 2800 sentences, with 4778 noun arguments.

We want to be able to train this model in an online fashion where we present each sentence

along with some semantic constraints (feedback), and the classifier updates itself accordingly. In

the next section we will describe how we can train this model without direct supervision, and the

representations that are used.

5.3 Latent Training

We can phrase our problem of Semantic Role Labeling as learning a structured prediction task,

which depends on some latent structure (argument and predicate identification). As input we have

the sequence of words and HMM states for a given sentence, and the output is a role-labeled

predicate-argument structure. The goal in our structured prediction task is to learn a linear func-

tion fw : X → Y that maps from the input space X (sentences) to output space Y (role labeled

argument structure):

fw(x) = arg max
y∈Y

max
h∈H

w · Φ(x, h, y) (5.1)

HereH is a space of hidden latent structure that describes some connection betweenX and Y , Φ
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is a feature encoding for the completeX,H, Y example structure,w is the learned weight vector that

scores structures based on their feature encoding, and both w,Φ ∈ Rn. Conventionally this weight

vector w would be learned from a set of labeled training examples (xi, yi) ∈ X × Y , attempting

to maximize the difference between the score for true structures yi and all other structures for

every training example. In this chapter we present a learning algorithm that does not rely on fully

supervised examples (xi, yi) to train w, instead as feedback the learner recieves only constraints

on possible true output structures Yi ⊆ Y , along with constraints on possible hidden structures

Hi ⊆ H .

Because of the max over H in the definition of fw, the general optimization problem for finding

the best w (given a training set of {xi, yi}Mi=1 labeled examples) is non-convex1. Previously this has

been solved using some variant of latent structure optimization such as in [Chang et al., 2010; Yu

and Joachims, 2009]. Here we used an online approach and a modification of Collin’s Structured

Perceptron [Collins, 2002] with margin [Kazama and Torisawa, 2007]. This basic, purely latent

algorithm (Algorithm 3) uses an approximation employed in [Felzenszwalb et al., 2008; Cherry and

Quirk, 2008] where for each example the best h∗ is found (according to the current model and true

output structure) and then the classifier is updated using that fixed structure. In this algorithm αw

represents the learning rate and C is the margin.

Algorithm 3 Purely Latent Structure Perceptron
1: Initialize w0, t = 0
2: repeat
3: for all Sentences (xi, yi) do
4: h∗i ← arg maxh∈Hi

wt · Φw(xi, h, yi)
5: y′ ← arg maxy wt · Φw(xi, h

∗
i , y) + C ∗ 1[y 6= y∗i ]

6: wt+1 ← wt + αw(Φw(xi, h
∗
i , yi)− Φw(xi, h

∗
i , y
′))

7: t← t+ 1
8: end for
9: until Convergence

The intuition behind algorithm 3 is that for every sentence the learner knows the true meaning

of that sentence (has the true y), so it is able to find the arrangement of arguments and predicate

(h∗) that best fit that meaning according to what it has already learned (current weight vector wt).

Once we identify the latent arguments and predicate, we use this identification to update the weight
1The problem arises from attempting to minimize the maximum score on non-true structures.
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vector so the true role prediction yi will be more likely in the future.

An issue here is that h∗ is found and then forgotten for each x. If we are interested in h beyond

its application to learning w to predict y, say for generalizing between related x, or for use in other

examples/prediction problems, then we need a method to not lose this information. For example,

in the case of our Semantic Role Labeling system, we may want to use the identified predicates to

label verb states from the unsupervised parser, or predict arguments and predicates on new sentences

without doing full role labeling.

Instead, we can train a latent predicate and argument classifier along with the role classifier,

such that during the latent prediction for each sentence we find the structure that maximizes the

score of both role classification and structure prediction. In addition, the exact meaning yi may not

be available for every sentence, so we instead incorporate a looser notion of feedback in terms of

constraints on possible labels (Yi) into the latent prediction step. This algorithm is summarized in

algorithm 4. The end result is two classifiers, fu to predict hidden structure and fw to use hidden

structure for top level task, that have been trained to work together to minimize training error.

Algorithm 4 Online Latent Classifier Training
1: Initialize w0, u0, t = 0
2: repeat
3: for all Sentences (xi, Yi) do
4: (h∗i , y

∗
i )← arg maxh∈Hi,y∈Yi

wt · Φw(xi, h, y) + ut · Φu(xi, h)
// Update u to predict h∗

5: h′ ← arg maxh ut · Φu(xi, h) + C ∗ 1[h 6= h∗i ]
6: ut+1 ← ut + αu(Φu(xi, h

∗
i )− Φu(xi, h

′))
// Update w based on h∗ to predict y∗

7: y′ ← arg maxy wt · Φw(xi, h
∗
i , y) + C ∗ 1[y 6= y∗i ]

8: wt+1 ← wt + αw(Φw(xi, h
∗
i , y
∗
i )− Φw(xi, h

∗
i , y
′))

9: t← t+ 1
10: end for
11: until Convergence

The intuition for the online process in algorithm 4 is that for each sentence the learner finds

the best joint meaning and structure based on the current classifiers and semantic constraints (line

4), then seperately updates the latent structure fu and output structure fw classifiers given this

selection. In the case where we have perfect high level semantic feedback Yi = yi, the role classifier

will search for the argument structure that is most useful in predicting the correct labels (as in
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algorithm 3). More generally, partial feedback, which constrains the set of possible interpretations

but does not indicate the one true meaning, may be provided and used for both labeling Yi and

hidden structure Hi.

This learning model allows us to experiment with the trade-offs among different possible sources

of information for language acquisition. Given perfect or highly informative semantic feedback, our

constrained learner can fairly directly infer the true argument(s) for each sentence, and use this as

feedback to train the latent argument and predicate identification (what we might term semantic

bootstrapping). On the other hand, if the semantic role feedback is loosened considerably so as not

to provide information about the true number or identity of arguments in the sentence, the system

cannot learn in the same way. In this case, however, the system may still learn if further constraints

on the hidden syntactic structure are provided through another route, via a straight-forward imple-

mentation of the structure-mapping mechanism for early syntactic bootstrapping.

5.3.1 Argument, Predicate and Role Classification

For the latent structure training method to work, and for the hidden structure classifier to learn, the

high level classifier and feature set (fw andΦw respectively) must make use of the hidden structure

information h. In our case, the role classifier makes use of (and thus modifies during training)

the hidden argument and predicate identification in two ways. The first of these is quite direct:

semantic role predictions are made relative to specific arguments and predicates. Semantic-role

feedback therefore provides information about the identity of the nouns in the sentence. The second

way in which the role classifier makes use of the hidden argument and predicate structure is less

direct: The representations used by the SRL classifier determine which aspects of the predictions

of the argument and predicate latent classifier are particularly useful in semantic role labeling, and

therefore change via the learning permitted by indirect semantic-role feedback.

In the simplest case where we use the full set of correct role labels as feedback, we imple-

ment this by providing correct labels for each word in the input sentence that was selected by the

latent classifier as an argument. This feedback is provided only for each noun that is the head of

an argument-phrase. Thus the optimal prediction by the argument classifier will come to include

at least those words. The argument classifier will therefore learn to identify predicates so as to
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maximize the accuracy of SRL predictions. This is the case of semantically-driven learning where

veridical semantic feedback provides enough information to drive learning of both semantics and

syntax.

With more ambiguous semantic feedback, the hidden argument and predicate prediction is not

directed by straightforward matching of the full set of noun arguments identified via semantic feed-

back, but instead the drive is to select a hidden structure that allows the role classifier to provide

an interpretation that fits the given semantic constraints. Without further constraints on the hidden

structure itself, there may not be enough information to drive hidden structure learning.

Likewise, the hidden structure prediction of arguments and predicate depends on the words and

HMM states below it, both in terms of features for prediction and constraints on possible structures.

The hidden argument and predicate structure we are interested in labels each word in the sentence

as either an argument (noun), a predicate (verb), or neither. We used the function/content word state

split in the HMM to limit prediction of arguments and predicates to only those words identified as

content words. In generating the range of possible hidden structures over content words, the latent

structure classifier considers only those with exactly one predicate and one to four arguments.

As an example take the sentence “She likes yellow flowers.” There are four content words;

with the constraint that exactly one is a predicate, and at least one is an argument, there are 28

possible predicate/argument structures, including the correct assignment where ‘She’ and ‘flowers’

are arguments of the predicate ‘likes.’ The full semantic feedback would indicate that ‘She’ is an

agent and ‘flowers’ is a patient, so the latent score the SRL classifier predicts (line 4 in algorithm 4)

will be the sum of the score of assigning agent to ‘She’ and patient to ‘flowers’, assuming both

those words are selected as arguments in h. If a word does not have a semantic role (such as non-

argument-nouns ‘likes’ or ‘yellow’ here) then its predictions do not contribute to the score. Through

this mechanism the full semantic feedback strongly constrains the latent argument structure to select

the true argument nouns. Table 5.1 shows the two possible interpretations for “She likes yellow

flowers.” given full semantic feedback that identifies the roles of the correct arguments. Decisions

regarding ‘likes’ and ‘yellow’ must then depend on the representation used by both the latent-

structure predicate identifier and semantic semantic-role classifier.
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(a) Sentence She likes yellow flowers .
A0 A1Full Feedback

(b) Possible Interpretation 1 Possible Interpretation 2
Sentence she likes yellow flowers

N V N
Sentence she likes yellow flowers

N V NArgument Struct. Argument Struct.
(c) Feature Representation Feature Representation
Semantic Feat. she argument:she Semantic Feat. she argument:she
Φw(x, h, y) predicate:likes Φw(x, h, y) predicate:yellow

NPat: 1 of 2 NPat: 1 of 2
VPos:Before Verb VPos:Before Verb
w+1:likes w+1:likes

flowers argument:flowers flowers argument:flowers
predicate:likes predicate:yellow
NPat: 2 of 2 NPat: 2 of 2
VPos: After Verb VPos: After Verb
w-1:yellow w-1:yellow
w+1:. w+1:.

Structure Feat. she=N word:she Structure Feat. she=N word:she
Φu(x, h) hmm:35 Φu(x, h) hmm:35

verb:likes verb:yellow
w+1:likes w+1:likes
hmm+1:42 hmm+1:42
NPat: 1 of 2 NPat: 1 of 2

likes=V verb:likes yellow=V verb:yellow
hmm:42 hmm:57
w-1:she w-1:likes
hmm-1:35 hmm-1:42
w+1:yellow w+1:flowers
hmm+1:57 hmm+1:37
v:likes&2 args v:flowers&2 args
suffixes: s,es,kes suffixes: w,ow,low

Table 5.1: Example Sentence, showing (a) the full (gold standard) semantic feedback that provides
true roles for each argument, but no indication of the predicate, as well as (b) two possible hidden
structures given this level of feedback. The next rows show (c) the feature representations for
individual words. The Semantic Feature set shows the feature representation of each argument as
used in SRL classification; the Structure Feature set shows the feature representation of the first
argument and the predicate in each possible hidden structure. See text section section 5.3.1 for
further description of the features.

Features

In the SRL classifier we started with the same base BabySRL features developed in Connor et al.

[2008], simple structures that can be derived from a linear sequence of candidate nouns and verb.

These features include ‘noun pattern’ features indicating the position of each noun in the ordered

set of proposed in the sentence (e.g., first of three, second of two, etc; NPat in Table 5.1), and ‘verb

position’ features indicating the position of each noun relative to the proposed verb (before or after;

VPos in Table 5.1). In the above example, given the correct argument assignment these features

would specify that ‘She’ is the first of two nouns and ‘flowers’ is the second of two. No matter

whether ‘likes’ or ‘yellow’ is selected as a predicate, ‘She’ is before the verb and ‘flowers’ is after

it. In addition we use a more complicated feature set that includes NPat and VPos features along
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with commonly-used features such as the words surrounding each proposed noun argument, and

conjunctions of NPat and VPos features with the identified predicate (e.g., the proposed predicate is

‘likes’ and the target noun is before the verb) so that the role classifier is more dependent on correct

predicate identification.

For the argument and predicate structure classifiers the representation Φu(x, h) only depends

on words and the other arguments and predicates in the structure. We represent each word by its

word form, predicted HMM state, and the word before and after. In addition we specify additional

features specific to argument or predicate classification: the argument classifier uses noun pattern

(NPat in table 5.1, and the predicate representation uses the conjunction of the verb and number of

arguments and all suffixes of length up to three as a simple verb ending feature2.

It should be noted that both the purely latent (algorithm 3 and latent classifier we have been

discussing (algorithm 4) require finding the max over hidden structures and labelings according to

some set of constraints. As implemented with the sentences found in our child directed speech

sample, it is possible to search over all possible argument and predicate structures. In our set

of training sentences there were at most nine content words in any one sentence, which requires

searching over 1458 structures of exactly one predicate and at most four arguments. On average

there were only 3.5 content words a sentence. Once we move on to more complicated language an

alternative approximate search strategy will need to be employed.

In terms of actual implementation and parameter settings, we trained our latent structure per-

ceptron with a learning rate of 0.1 for role classifier, and 0.01 for latent structure classifiers, with

structure margin set at 1. For each experiment 10 rounds of training was run, with order of example

randomized between rounds, and the best result based on held out development set performance

was selected. During feature extraction over all possible structures in each of the test and training

sentences, all features seen in fewer than 2 of the training sentences were pruned.
2This roughly represents phonological/distribution information that might be useful for clustering verbs together (e.g.,

Monaghan et al. [2005]), but that is not exploited by our HMM because the HMM takes transcribed words as input.
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5.4 Experimental Evaluation

For evaluation, we are interested both in how well the final role classifier performs, and how ac-

curately the predicate and argument classifiers identify correct structure when trained with just

semantic feedback. Since there is only one true predicate per sentence we report the predicate

accuracy: the percentage of sentences with the correct predicate identified. For arguments where

there are multiple possible predictions per sentence we report the F1 of identifying arguments: the

harmonic mean of precision and recall in predicting true arguments. Likewise since there are many

possible role labels and words to label, we report the overall role F1 over all arguments and label

predictions3.

Note that unlike in previous chapters, in this chapter we only focus on evaluation of the semantic

role labeling and predicate/argument identification on the test set of the Adam corpus. Specifically,

Adam sections 01-20 were split into 2305 sentences for training and 257 sentences as held out

development, and sections 21-23 were used for testing.

Our first experiment tests online latent training with full semantic feedback. As an upper bound

comparison we train with perfect argument knowledge, so both classifiers are fully supervised. As

a lower bound of predicate-argument classification we also include the expected result of selecting

a random predicate/argument structure for each sentence.

Training Predicate % Argument F1 Role F1
Gold Arguments 0.9740 0.9238 0.6920
Purely Latent 0.5844 0.6992 0.5588
Latent Classifier 0.9263 0.8619 0.6623
Random Arguments 0.3126 0.4580 -

Table 5.2: Results on test set of SRL with argument/predicate as latent structure. With gold ar-
guments, both structure classifier and role classifier are trained with full knowledge of the correct
arguments for each sentence. Purely Latent does not use a latent argument and predicate classifier,
it selects a structure for each sentence that maximizes role classification of true labels during train-
ing, and tests using the structure and labels that maximize role classification, algorithm 3 . Latent
Classifier training trains an argument identifier using the structure that the role classifier considers
most likely to give the correct labeling (where we know correct labels for each noun argument),
algorithm 4.

Table 5.2 shows the performance of the two algorithms from section 5.3 compared to the previ-
3Since we focus on noun arguments, we miss those predicate arguments that do not include any nouns; the maximum

SRL role F1 with only noun arguments correct is 0.8255
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ously mentioned upper and lower bounds. All classifiers use the full feature sets from section 5.3.1.

The purely latent method (algorithm 3) does not use an intermediate latent structure classifier, so the

arguments and predicates it selects are only relative to maximizing the role classifier prediction. By

incorporating a latent classifier into the training (algorithm 4) we see a large boost in both argument

and predicate identification, as well as final role performance. The argument and predicate classifier

effectively generalizes the training signal provided by the latent semantic feedback to achieve nearly

the performance of being trained on the true arguments explicitly. Of special note is the predicate

identification performance; while the semantic feedback implicitly indicates true arguments, it says

nothing about the true predicates. The predicate classifier is able to extract this information solely

from what latent structures help the role classifier make the correct role predictions.

To investigate the interaction between the two classifier’s (hidden structure and SRL) represen-

tation choices, we test the latent classifier with the full argument and predicate feature sets when the

role classifier incorporates the four feature types: just words, noun pattern, verb position, and a full

model containing all these features as well as surrounding words and predicate conjunctions. As we

add feature complexity that depends on more accurate latent structure identification, we should see

improvement in both final role accuracy and argument and predicate identification.

Role Feat Predicate % Argument F1 Role F1
Words 0.6406 0.8108 0.6261
+NounPat 0.7296 0.8108 0.6154
+VPos 0.9328 0.8291 0.6530
+Surrounding words and
Predicate conjunctions

0.9263 0.8619 0.6623

Table 5.3: With the full role feedback and latent classifier training, the role classifier features interact
with the structure classifier. Better role classification through improved feature representation feeds-
back to allow for improved argument and predicate identification. The last two feature sets make
strong use of the identity of the predicate, which encourages the predicate classifier to accurately
identify the predicate.

Table 5.3 shows the increasing performance as the feature complexity increases. Most notable

is the large difference in predicate identification performance between the feature sets that heavily

depend on accurate predicate information and those that only use the word form of the identified

predicate as a feature (+VPos and the full feature set in Table 5.3). In contrast, the argument identifi-

cation performance varies much less across feature sets in this experiment, because the full semantic
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feedback always implicitly drives accurate argument identification. The increase in role classifica-

tion performance across feature sets can be attributed both to a useful increase in representations

used for SRL classification, and to the increased argument and predicate structure accuracy during

both SRL training and testing. The relatively high level of performance given the lexical features

alone in Table 5.3 reflects the repetitive character of the corpus from which our training and test

sentences were drawn: Given full semantic feedback, considerable success in role assignment can

be achieved based on the argument-role biases of the target nouns and the familiar verbs in our

corpus of child-directed speech.

5.4.1 Loosening Feedback

Feedback Pred Arg A0 A1 Role F1
Full Labels 0.94(0.02) 0.89(0.02) 0.85(0.02) 0.75(0.02) 0.64(0.02)
Set of Labels4 0.40(0.23) 0.62(0.14) 0.47(0.28) 0.38(0.17) 0.34(0.14)
Superset 0.35(0.20) 0.57(0.11) 0.46(0.27) 0.33(0.13) 0.29(0.11)
Superset + HMM Args 0.87(0.10) 0.88(0.01) 0.68(0.25) 0.54(0.16) 0.48(0.15)
Superset + HMM Args&Pred 0.79(0.02) 0.89(0.00) 0.73(0.23) 0.58(0.13) 0.51(0.14)
Superset + True Args 0.86(0.09) 0.92(0.01) 0.69(0.21) 0.61(0.13) 0.52(0.13)
Superset + True Args&Pred 0.97(0.00) 0.93(0.00) 0.68(0.19) 0.61(0.12) 0.52(0.11)
Random 0.31 0.46

Table 5.4: Results when the amount of semantic feedback is decreased. Each value represents the
mean over twenty training runs with shuffled sentence order, while the numbers in parenthesis are
the standard deviations. Full label feedback provides true role feedback for each noun argument,
which is unreasonable in the case of actual language learning. Set of Labels feedback only provides
the set of true labels as feedback for each sentence, so the learner must pick a structure and label
assignment from this set. Superset goes one step further and provides a super set of labels that
includes the true labels, so the learner does not even know how many or which roles are mentioned
in the sentence. With these ambiguous feedback schemes the classifiers are barely able to begin
interpreting correctly, and with superset the argument and predicate accuracy is only slightly bet-
ter than random. We introduce extra information through constraining the possible argument and
predicate structures for each training example using bottom-up knowledge, either from an HMM
based minimally supervised identifier or knowledge of true argument and predicate. Once extra
information about even just argument identity is introduced, whether true arguments or the HMM
identified arguments, the learner is able to make use of the superset feedback, and especially begin
to identify agent and patient roles (A0 and A1), and predicate.

The full semantic feedback used in the previous experiments, while less informative than abso-

lute gold knowledge of true arguments and predicates, is still an unreasonable amount of feedback to

expect for a child first learning language. Often in the real learning case the learner only has avail-
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able an understanding of the scene around her which may involve a number of possible objects,

relations and semantic roles, and a sentence without any indication of the true argument labels for

the sentence or even how many arguments are present.

We are able to mimic this level of feedback by modifying the constraining sets Hi and Yi used

in line 4 of algorithm 4. By loosening these sets we still provide feedback in terms of restricting the

search space, but not an exact labeling.

We test two levels of reduced role feedback. The first level uses the true role labels that are

present in the sentence, but does not indicate which words correspond to which role. In this case

Yi is just the set of all labellings that use exactly the true labels present, and Hi is constrained to

be only those argument structures with the correct number of arguments. This feedback scheme

represents a setting where the child knows the semantic relation involved, but either does not know

the nouns in the sentence, or doesn’t know whether the speaker means chase or flee (so can’t fix

role order). In our “She likes yellow flowers” example the feedback would be that there is an agent

and a patient, but no indication of order.

Even this feedback scheme includes the number of true arguments in the sentence, so we can go

a step further with a second level of feedback where for each sentence we supply a superset of the

true labels for the learner to select a labeling. In this case Yi includes the true labels, plus random

other labels such that for every sentence there are 4 labels to choose from, no matter the number of

true arguments. We are no longer constrained by the number of arguments, so we must search over

all argument structures and role labellings that come from some subset of the feedback set Yi. This

case corresponds to the setting that the learner must select a possible interpretation of the sentence

from the abundance of information provided by the world around them. For our ‘yellow flowers’

example the feedback would be a set of possible labels that include the correct agent and patient

roles, but also two unrelated roles such as recipient or location, and no indication of how many are

actually in the sentence.

As seen in table 5.4, the set and superset feedback schemes definitely degrade performance

compared to full labellings. With superset feedback the learner is not able to get a good foothold

to begin correctly identifying structure and interpreting sentences, so its argument and predicate
4In the original paper, [Connor et al., 2011], the unordered set feedback results were higher than reported here. Those

results were most likely due to non-shuffled ordering of sentences during training.
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identification accuracy is no better than random. This suggests that information about the number

and identity of arguments might be a necessary constraint in learning to understand sentences.

5.4.2 Recovering Argument Knowledge

In a sense, there’s something fundamentally unnatural about looking at semantic role labeling before

the learner knows the meanings of any nouns. Considerable psycholinguistic evidence suggests that

children do learn some nouns before they start to interpret multi-word sentences, and that this noun

knowledge therefore is available to scaffold the beginnings of sentence interpretation. If we can

incorporate this extra source of knowledge with the superset feedback then perhaps there will be

enough information on repeated sentence training for the system to improve.

Again taking inspiration from the ‘structure-mapping’ account of syntactic bootstrapping (de-

scribed in section 2.3), we incorporate a starting point by using the minimally-supervised argument

identification developed in section 4.1. In that case nouns are identified based on a seed set of con-

crete nouns combined with the clustering provided by an unsupervised HMM. Once some nouns

have been identified, the HMM states they are seen with are treated as potential argument states.

Predicates are identified by finding non-argument content words that are seen often in sentences

with a given number of arguments, and considered to be likely predicates that take that number of

arguments.

We can use this bottom-up identification system to constrain the argument search in the our

latent classifier training. During training, we restrict the true argument set (Hi in algorithm 4)

such that only those structures that agree with the HMM identification are considered, and the best

labeling from the superset of labels is selected for this structure. If we use both the argument

and predicate identified by HMM to essentially fix the latent structure during training, the learning

problem is then similar to the noisy argument identification BabySRL in section 4.1, except instead

of true feedback for those roles the learner must select from superset of possible labels. Additionally

we can only consider the arguments identified by the HMM, ignoring the predicate identified by

noun counting heuristic. In this case the latent inference must select both the identity of the predicate

and the argument labeling that is most consistent with previous training.

Table 5.4 shows that once we add the HMM bottom-up argument identification to the Super-

91



set feedback scheme the argument and predicate performance increases greatly (due to accuracy of

the HMM argument identification). Note in Table 5.4 that bottom-up HMM argument identifica-

tion is strong (0.88 F1 compared to 0.93 when trained with true arguments), and that this effective

argument-identification in turn permits strong performance on verb identification. Thus our proce-

dure for tagging some HMM classes as argument (noun) classes based on a seed set of concrete

nouns, combined with ambiguous Superset semantic feedback that does not indicate the number

identity of semantic arguments, yields enough information to begin learning to identify predicates

(verbs) in input sentences.

Looking at the final role classification performance of the Superset+argument constraint train-

ing schemes, we see the Role F1 increases over both straight Superset and unordered Set of Labels

feedback schemes. This increase is most dramatic for the more common A0 and A1 roles. This

represents one possible implementation of the structure-mapping procedure for early syntactic boot-

strapping. If we assume the learner can learn some nouns with no guidance from syntactic knowl-

edge (represented by our seed nouns), that noun knowledge can be combined with distributional

learning (represented by our HMM parser) to tag some word-classes as noun classes. Represent-

ing each sentence as containing some number of these nouns (HMM argument identification) then

permits the latent SRL to begin learning to assign semantic roles to those nouns in sentences given

highly ambiguous feedback, and also to use that ambiguous semantic feedback, combined with the

constraints provided by the set of identified nouns in the sentence, to improve the latent syntactic

representation, beginning to identify verbs in sentences.

This latent training method with ambiguous feedback works because it is seeking consistency in

the features of the structures it sees. At the start of training, or when encountering a novel sentence

with features not seen before, the latent inference will essentially choose a structure and labeling

at random (since all structures will have the same score of 0, and ties are broken randomly). From

this random labeling the classifier will increase connection strengths between lexical and structural

features in the input sentence, and the (at first randomly) selected semantic role labels. Assuming

that some number of random or quasi-random predictions are initially made, the learner can only

improve if some set of feature weights increase above the others and begin to dominate predictions,

both in the latent structure classifier and in the linked SRL classifier. This dominance can emerge
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only if there are structural features of sentences that frequently co-occur with frequent semantic

roles.

A0 and A1 roles are learnable with this latent SRL learner both because of their frequency in the

training data and their consistency with simple representation features that make use of the bottom-

up information provided by the HMM argument identification. If “She likes yellow flowers.” is

encountered early during latent training, the feedback may be the superset {A0, A1, A4, AM-

LOC}, where the true labels A0 and A1 are present along with two other random labels. With

the accurate argument identification of ‘she’ and ‘flowers’ from the HMM, we focus on only those

role labelings that use two of the four roles. When we look at a large enough number of different

sentences such as “She kicks the ball” (true labels are A0, A1), “She writes in her book” (A0, A2),

and “She sleeps” (A0), the most consistent labeling amongst the true and random labelings provided

by Superset feedback is that both ‘she’ and the first of two arguments are more likely to be labeled

as an A0. This consistent labeling is then propogated through the weights of the learner and used

for future predictions and learning.

Starting with a reasonable identification of the noun arguments in each input sentence, the la-

tent SRL trained with Superset feedback can use the consistency of certain roles’ appearance with

cues based on the identified arguments to boost their linking with specific words and structures.

Without the identified arguments, the chance of randomly assigning the correct arguments and roles

decreases dramatically and so the likelihood of encountering the correct interpretation enough for it

to dominate disappears. By limiting the search space of structures, the set of features is also focused

on those relevant to true structure and that may indicate true meaning.

5.5 Conclusion

In this chapter we showed that it is possible to train a semantic role classifier jointly with a simpli-

fied latent syntactic structure based solely on semantic feedback and simple linguistic constraints.

Even with highly ambiguous semantic feedback, our system was able to identify arguments and

predicates, and begin to interpret roles when primed with knowledge of a small set of nouns.

Of course in this chapter we used the high level semantic feedback to improve only part of the

intermediate representation. The current system is still held back by noise from lower unsupervised
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parse level, so it is natural to attempt to jointly improve all levels of representation. This brings up

some combinatorial challenges for implementation and feedback, but structural constraints can be

introduced to keep this process manageable.
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Chapter 6

Conclusions

In this thesis we demonstrated that it is possible to begin learning rules that map syntactic patterns

to verb-argument semantics from real language input starting only with knowledge of a small num-

ber of nouns. Nouns are easy to identify in the scene when they are referred to by the speaker, and

children’s early vocabulary are dominated by them. By assuming that children then use this noun

knowledge to form an “argument class”, and that sentences convey some semantic relation between

arguments, learning is able to proceed. The nature of child directed language allows for both ac-

curate identification of arguments starting with concrete nouns, and the robust learning of semantic

patterns from simple linear syntax of noun arguments.

Learning semantics cannot be solely handled by noun knowledge; some amount of feedback

from the world is necessary to match sentence structure with meaning. While we showed that it

is possible for background knowledge in terms of noun animacy may serve as a potential feedback

signal, we also experimented with other mechanisms for the scene to provide ambiguous semantic

feedback. The real world may convey the true meaning or interpretation of a sentence, but this

meaning may not be clear to a naive listener, without the sentence providing some guidance itself.

Our model was able to extract and learn helpful semantics and syntax jointly from ambiguous

feedback when it was initialized with some knowledge of noun arguments.

To support these claims we developed a machine learning model that incorporates explicit

psycholinguistic assumptions about a child’s language abilities. Furthermore, we developed and

demonstrated machine learning methods that successfully makes use of both incomplete knowl-

edge of input and ambiguous feedback, mirroring the difficulties that children face when learning

language. By exploring language learning the way children learn it, we may find more natural rep-

resentations and methods for allowing a computational learner to both understand language, and

better interact and deal with a noisy, ambiguous world.
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6.1 Future Work

The long term vision for this project is to build a system that grows and improves itself as a child

quickly is able to learn and handle more and more complex sentences. This work has demonstrated

that it is possible for a learner to get a foothold in understanding sentences starting with simple

representations and limited noun based knowledge. In the future we want to this system to serve as

a starting point for bootstrapping more complicated representations. There are a number of avenues

available to reach this goal.

Complex Arguments and Multiple Predicates More complicated sentences mean longer sen-

tences with both multiple predicates and complex arguments (more than just a single noun). Han-

dling multiple predicates represents a shift in basic assumptions, but in terms of machinery much

of the learning we have already demonstrated can be brought to bear. Additionally, if we assume

a separate argument identifier (for now not specifying where such knowledge would come from),

then when we identify more complicated arguments it may be possible to collapse them down to a

simpler form of a single head noun. Essentially an accurate latent predicate and argument identifier

can begin identifying multiple likely predicates per sentence, and simplify complex sentences to

a form that matches what our role classifier with simple representations expects and was trained

on. The questions now are how far can this approach take us, how much of the patterns learned on

simple, single predicate sentences can be passed on to simplified complex sentences, and are there

other ramifications of the shift of assumptions from single noun arguments and single predicate

sentences.

Generalize Syntax While the above direction accomplished moving to more complicated sen-

tences without a change in the basic syntactic representation, a separate but related direction would

be to generalize the latent syntax of our model. Instead of relying on a linear syntax of just nouns

and verbs, we would need to incorporate more structure that covers embedding of clauses and argu-

ments. Of course much of NLP and linguistics in general seek the hierarchical syntactic structures

that humans may use, but here we are constrained both by what can be learnable from latent feed-

back and what structures are actually required by real data. In our current model the role classifier
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depends on essentially tree path features in our simple representation as is, just the trees are re-

stricted to be strictly linear. This linear tree may serve as a starting point for structure, leading to

smooth transitions from our original BabySRL, allowing the current model to truly be a foothold

for bootstrapping.

Approximate Inference Of course with almost any change to the internal syntactic representa-

tion it will be necessary to revisit the inference procedure, especially in the joint learning setting.

With short sentences and simple linear structure it was entirely possible to enumerate and score all

possible structures for each sentence in a reasonable time, but this quickly becomes unfeasible with

almost any sort of added complexity. In a move for both efficiency and cognitive plausibility, such

structural inference can be made online, in a word by word manner, building representation as sen-

tence is processed. This can lead to exploration of such psycholinguistically relevant phenomena as

garden path and other sentence processing errors, while also further constraining possible syntactic

structures to be considered.

Feature Extraction One question that has not been somewhat brushed aside in this thesis is where

do the actual feature specifications come from. While we show that simple representations based on

a linear order of nouns and verbs can suffice when beginning to learn, the actual features we extract

from this representation, noun pattern and verb position, were manually specified to the classifier

as being important. We do not try to argue that these exact feature specifications or encodings are

biologically relevant, just that it is possible to use the information of the simple syntactic structure

for learning. But if we allow the system to improve its own internal syntactic representation due to

feedback and to handle growing complexity, it will also be necessary for it to extract new features

from this representation. This may be accomplished by using general tree features such as path

based features, of which the specific features we use can be viewed as one instantiation, but again

this represents a form of Universal Grammar on our part, instilling this assumption into the model.

It may be possible to grow such a feature extractor along with the internal representation, but this is

even less clear an objective.
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Training Order As we begin to incorporate growing complexity we will need to rely on more

language input. As the corpus size grows, and in theory sentence complexity increases as the model

“ages”, it will become necessary to look at sentence training order. As recently explored with Self-

Paced Learning [Kumar et al., 2010] or Curriculum Learning [Bengio et al., 2009], when training

large, possibly non-convex models, improvement is seen when ordering the training from easy to

hard examples. This makes even more intuitive sense with latent models because the initialization

and early direction of what hidden values are learned prove pivotal for the final performance (as

demonstrated by large variation in accuracy for the latent BabySRL experiments across different

runs), once the ball gets rolling its hard to change its direction so its best to get it rolling the

right direction early. In some sense the current training corpus represents almost entirely “easy

examples”, so it is hard to draw conclusions just yet on how helpful an improved ordering would

be, but it may be interesting to see how an optimal sentence ordering from latent training perspective

compares to the natural ordering that parents use with children.

We now have more data and computational resources available to us than ever before, yet chil-

dren’s abilities to learn language far outpace any other learning system currently available. By

mimicking a child’s ability to bootstrap itself, starting from natural assumptions about meaning and

structure, we may one day be able to let loose computer systems over fields of Internet text and

data, learning from noisy, unstructured and ambiguous text the same way a child handles its noisy,

unstructured and ambiguous parents.
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Appendix A

Word Lists

Table A.1 lists animate and inanimate nouns used to generate feedback in chapter 4.2. This list was

created by identifying the animacy or inanimacy of the 100 most frequent nouns across all three

children’s data. Only 84 nouns were considered to have clear animacy or inanimacy.

Table A.2 lists Lexical Development Norm nouns used to seed Minimally Supervised HMM

Argument Identification in chapter 4.1. We used lexical development norms [Dale and Fenson,

1996], selecting all words for things or people that were commonly produced by 20-month-olds

(over 50% reported), and that appeared at least 5 times in our training data. Because this list is of

words that children produce, it obviously represents a lower bound on the set of words that such a

child should comprehend or recognize. This yielded 71 words, including words for common ani-

mals (‘pig’, ‘kitty’, ‘puppy’), objects (‘truck’, ‘banana’, ‘telephone’), people (‘mommy’, ‘daddy’),

and some pronouns (‘me’ and ‘mine’). To this set we also added pronouns ‘you’ and ‘I’, as well as

given names ‘adam’, ’eve’ and ‘sarah’.

Tables A.3,A.4,A.5 list Animate nouns for each child used to create animate test sets used in

chapter 4. Each child’s test sentences created independently, creating a sentence for all pairs of

nouns. Included in the tables are frequency counts for occurences of the word in each child’s

training data, including role labels and when the word appears in two noun sentences if it more

often appears first or second.
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Word Animate? Frequency Word Animate? Frequency
you Yes 7920 it No 2855
i Yes 2441 what No 2155
he Yes 843 me Yes 752
ya Yes 748 she Yes 657
we Yes 651 can No 512
her Yes 446 him Yes 298
who Yes 263 back No 225
ursula Yes 162 daddy Yes 161
fraser Yes 134 baby Yes 124
something No 122 head No 116
chair No 114 lunch No 113
mommy Yes 110 bed No 108
kent Yes 103 book No 103
today No 100 way No 99
time No 95 cromer Yes 95
watch No 93 paper No 89
sarah Yes 88 pencil No 85
papa Yes 81 mouth No 81
water No 79 table No 78
coffee No 75 floor No 74
drink No 72 yourself Yes 71
night No 70 eve Yes 70
box No 69 ride No 69
milk No 69 minute No 66
anything No 63 mummy Yes 62
cream No 61 juice No 60
adam Yes 59 nose No 59
house No 59 yesterday No 59
story No 58 nana Yes 58
school No 56 hair No 56
day No 54 bite No 52
beach No 52 fingers No 51
cheese No 51 song No 51
room No 51 bath No 50
piece No 49 shoes No 49
hand No 49 cha Yes 48
finger No 48 money No 47
home No 46 stool No 43
courtney Yes 43 cup No 43
everything No 43 sandwich No 42
car No 42 tape No 42
while No 42
Total Animate 26 16488 Total Inanimate 57 9314

Table A.1: Animacy Training Noun list.
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Word Cumulative Distribution Word Cumulative Distribution
you 24.59% shoe 40.75%
i 32.17% cookie 40.82%
me 34.51% kitty 40.89%
daddy 35.01% boy 40.95%
baby 35.39% light 41.01%
chair 35.75% train 41.07%
mommy 36.09% bunny 41.12%
bed 36.42% mine 41.17%
book 36.74% bird 41.22%
sarah 37.02% tummy 41.26%
mouth 37.27% bottle 41.31%
eve 37.48% apple 41.35%
milk 37.70% boat 41.39%
dog 37.91% telephone 41.43%
juice 38.09% toe 41.47%
adam 38.28% bear 41.50%
nose 38.46% airplane 41.54%
hair 38.63% blanket 41.57%
cheese 38.79% ear 41.60%
hand 38.94% tooth 41.63%
cup 39.08% cow 41.66%
car 39.21% cat 41.69%
door 39.33% bicycle 41.71%
hat 39.45% pig 41.73%
toy 39.57% banana 41.75%
spoon 39.69% pool 41.76%
truck 39.79% balloon 41.78%
outside 39.89% duck 41.79%
diaper 39.99% clock 41.81%
tree 40.08% soap 41.82%
eye 40.18% rain 41.83%
button 40.27% block 41.84%
ball 40.36% puppy 41.85%
foot 40.44% keys 41.85%
cracker 40.52% sock 41.86%
doll 40.61% bubbles 41.86%
horse 40.68% flower 41.87%

Table A.2: Lexical Development Norms Noun List, with cumulative frequency distribution over
training data.
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Role Freq. Two Arg. Freq.
Word Frequency A0 A1 Other 1st 2nd
you 2305 1558 347 400 762 312
ursula 150 20 34 96 13 23
cromer 66 14 18 34 9 7
who 54 34 16 4 21 6
adam 53 28 14 11 21 10
mommy 47 22 16 9 9 5
daddy 31 17 7 7 5 3
cowboy 20 11 7 2 9 3
somebody 12 4 5 3 1 2
baby 11 4 5 2 4 1
paul 10 3 5 2 0 2
doctor 9 1 3 5 1 0
robin 9 3 2 4 1 0
anybody 7 0 4 3 1 2
man 6 2 4 0 0 2
david 6 1 1 4 0 2
boy 6 3 2 1 1 1
people 5 5 0 0 0 0
cowboys 4 3 1 0 0 1
joshua 4 1 1 2 1 0
nobody 4 3 0 1 2 0
fireman 4 1 1 2 1 1
bengy 3 1 0 2 0 0

Table A.3: Adam Animate Nouns
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Role Freq. Two Arg. Freq.
Word Frequency A0 A1 Other 1st 2nd
you 3479 2227 620 632 1162 458
i 1243 883 69 291 462 32
ya 724 465 100 159 199 148
who 165 99 39 27 84 11
daddy 121 53 33 35 34 23
baby 82 21 44 17 12 26
kent 80 21 14 45 24 12
mummy 60 35 10 15 22 5
nana 56 11 12 33 7 7
sarah 30 11 5 14 2 4
gloria 28 3 8 17 1 5
courtney 27 0 6 21 5 5
girl 25 6 7 12 3 4
babies 22 1 14 7 6 9
mike 22 5 12 5 5 8
mommy 21 14 3 4 3 1
donna 21 8 8 5 4 3
blanche 18 8 6 4 2 5
kids 18 8 7 3 4 3
mother 18 7 6 5 5 3
mumma 16 7 6 3 1 5
boy 12 4 5 3 2 3
man 11 5 5 1 3 1
mama 11 3 5 3 3 1
richard 11 0 6 5 0 1
grampy 10 2 5 3 1 2
father 10 3 3 4 1 4
sandra 9 5 1 3 2 2
momma 8 3 4 1 1 3
jo ann 8 2 1 5 0 1
brother 8 2 6 0 0 2
arthur 8 3 5 0 3 1
michael 8 2 4 2 0 4
aunt dot 8 0 3 5 0 6
doctor 7 2 2 3 2 3
people 7 3 2 2 2 3
teppy 7 3 2 2 2 1
ann marie 7 2 1 4 2 1
girls 6 2 3 1 1 0
everybody 6 5 1 0 3 0
chantilly 6 3 2 1 2 3
auntie 5 1 1 3 0 1

Table A.4: Sarah Animate Nouns
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Role Freq. Two Arg. Freq.
Word Frequency A0 A1 Other 1st 2nd
you 2077 1425 301 351 738 234
fraser 122 39 28 55 26 22
papa 81 31 16 34 22 10
eve 69 31 19 19 26 7
sarah 51 16 14 21 9 9
mommy 38 21 6 11 17 1
who 28 17 6 5 12 0
becky 28 6 7 15 4 4
cromer 25 10 9 6 8 2
man 21 12 7 2 10 3
mom 16 11 1 4 9 1
yourself 7 0 2 5 0 5
mama 6 2 0 4 3 0
baby 5 0 3 2 0 1
jerry 5 0 4 1 0 0
lady 5 4 1 0 2 0
jack 5 0 4 1 0 0
sheila 5 0 0 5 0 2

Table A.5: Eve Animate Nouns
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Marina Meilă. Comparing clusterings. Technical Report 418, University of Washington Statistics
Department, 2002.

Bernard Merialdo. Tagging text with a probabilistic model. Computational Linguistics, 20(2):
155–172, 1994.

P. Merlo and S. Stevenson. Automatic verb classification based on statistical distributions of argu-
ment structure. Computational Linguistics, 27:373–408, 2001.

Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to Computational Geometry.
The MIT Press, 1969.

T. Mintz. Frequent frames as a cue for grammatical categories in child directed speech. Cognition,
90:91–117, 2003.

P. Monaghan, N. Chater, and M.H. Christiansen. The differential role of phonological and distribu-
tional cues in grammatical categorisation. Cognition, 96:143–182, 2005.

Taesun Moon, Katrin Erk, and Jason Baldridge. Crouching dirichlet, hidden markov model: Unsu-
pervised POS tagging with context local tag generation. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing, 2010.

L. R. Naigles. Children use syntax to learn verb meanings. Journal of Child Language, 17:357–374,
1990.

K. Nelson. Structure and strategy in learning to talk. Monographs of the Society for Research in
Child Development, 38, 1973.

A. Novikoff. On convergence proofs for perceptrons. In Proceeding of the Symposium on the
Mathematical Theory of Automata, volume 12, pages 615–622, 1963.

D. Roth P. Koomen, V. Punyakanok and W. Yih. Generalized inference with multiple semantic role
labeling systems shared task paper. In Ido Dagan and Dan Gildea, editors, Proc. of the Annual
Conference on Computational Natural Language Learning (CoNLL), pages 181–184, 2005. URL
http://l2r.cs.uiuc.edu/˜danr/Papers/PunyakanokRoYi05a.pdf.

111



M. Palmer, D. Gildea, and P. Kingsbury. The Proposition Bank: An Annotated Corpus of Semantic
Roles. Computational Linguistics, 31(1):71–106, March 2005. URL http://dx.doi.org/
10.1162/0891201053630264.

S. Pinker. Language learnability and language development. Harvard University Press, Cambridge,
MA, 1984.

S. Pinker. Learnability and Cognition. Cambridge: MIT Press, 1989.

V. Punyakanok, D. Roth, and W. Yih. The necessity of syntactic parsing for semantic
role labeling. In Proc. of the International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1117–1123, 2005a. URL http://l2r.cs.uiuc.edu/˜danr/Papers/
PunyakanokRoYi05.pdf.

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. Learning and inference over constrained output. In
Proc. of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1124–1129,
2005b. URL http://l2r.cs.uiuc.edu/˜danr/Papers/PRYZ05.pdf.

V. Punyakanok, D. Roth, and W. Yih. The importance of syntactic parsing and inference in semantic
role labeling. Computational Linguistics, 34(2), 2008. URL http://l2r.cs.uiuc.edu/

˜danr/Papers/PunyakanokRoYi07.pdf.

L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–285, 1989.

L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recognition. In
Proc. of the Annual Conference on Computational Natural Language Learning (CoNLL), 6 2009.
URL http://l2r.cs.uiuc.edu/˜danr/Papers/RatinovRo09.pdf.

Sujith Ravi and Kevin Knight. Minimized models for unsupervised part-of-speech tagging. In Pro-
ceedings of the Joint Conferenceof the 47th Annual Meeting of the Association for Computational
Linguistics and the 4th International Joint Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing (ACL-IJCNLP), 2009.

R. Rifkin and A. Klautau. In defense of on-vs-all classification. Journal of Machine Learning
Research, 5, 2004.

D. Roland, F. Dick, and J. L. Elman. Frequency of basic english grammatical structures: A corpus
analysis. Journal of Memory and Language, 57:348–379, 2007.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain. Psych. Rev., 65:386–407, 1958. (Reprinted in Neurocomputing (MIT Press, 1988).).

J.R. Saffran, R.N. Aslin, and E.L. Newport. Statistical learning by 8-month-old infants. Science,
274:1926–1928, 1996.

S. Schulte im Walde. Experiments on the choice of features for learning verb classes. In EACL,
2003.

Yoav Seginer. Fast unsupervised incremental parsing. In ACL, pages 384–391, Prague, Czech Re-
public, June 2007. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/P/P07/P07-1049.

112



Dan Shen and Mirella Lapata. Using semantic roles to improve question answering. In Proceedings
of the 2007 Joint Conference of EMNLP-CoNLL, pages 12–21, 2007. URL http://www.
aclweb.org/anthology/D/D07/D07-1002.

Rushen Shi, James L. Morgan, and Paul Allopenna. Phonological and acoustic bases
for earliest grammatical category assignment: a cross-linguistic perspective. Journal
of Child Language, 25(01):169–201, 1998. doi: 10.1017/S0305000997003395. URL
http://journals.cambridge.org/action/displayAbstract?fromPage=
online&aid=36873&fulltextType=RA&fileId=S0305000997003395.

Rushen Shi, Janet F. Werker, and James L. Morgan. Newborn infants’ sensitiv-
ity to perceptual cues to lexical and grammatical words. Cognition, 72(2):B11 –
B21, 1999. ISSN 0010-0277. doi: DOI:10.1016/S0010-0277(99)00047-5. URL
http://www.sciencedirect.com/science/article/B6T24-3XM2T3P-6/
2/9ed3deb83dcb7b96c91e110065fc1563.

L.B. Smith and C. Yu. Infants rapidly learn word-referent mappings via cross-situational statistics.
Cognition, 106:1558–1568, 2008.

N. Smith and J. Eisner. Contrastive estimation: Training log-linear models on unlabeled data. In
ACL, 2005.

S. Stevenson and E. Joanis. Semi-supervised verb class discovery using noisy features. In Proc. of
the Annual Conference on Computational Natural Language Learning (CoNLL), 2003.

S. Stevenson and P. Merlo. Automatic verb classification using distribution of grammatical features.
In EACL, 1999.

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth. Using predicate-argument structures for
information extraction. In Proceedings of ACL 2003, pages 8–15, 2003.

Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluı́s Màrquez, and Joakim Nivre. The conll
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