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ABSTRACT

The neutron electric dipole moment (EDM) experiment has played a unique role in examining the violation

of fundamental symmetries and understanding the nature of electroweak and strong interaction. A

non-zero neutron EDM is one of direct evidence for CP and T violation and has the potential to reveal the

origin of CP violation and to explore physics beyond the Standard Model.

A new neutron EDM experiment will be built to improve a factor of 100 by using a novel technique of

ultra-cold neutrons(UCN) in superfluid 4He at the Spallation Neutron Source (SNS) at the Oak Ridge

National Laboratory (ORNL). In the experiment, 3He in the measurement cell will be used as a neutron

spin analyzer and a comagnetometer. The absorption between UCN and 3He atoms will emit scintillation

light in the superfluid 4He depending on the angle between nuclear spins of two particles. Consequently,

the neutron precession frequency can be derived by the scintillation light amplitude. Furthermore, the 3He

precession frequency can be measured by the superconducting quantum interference device (SQUID).

A dressed-spin technique will also be applied to measure the small precession frequency change due to a

non-zero neutron EDM. The dressed-spin technique is used to modify the effective precession frequencies of

neutrons and 3He atoms to make them equal by applying an oscillatory field (dressing field) that is

perpendicular to the static magnetic field. The phenomenon of the dressed spin for 3He in a cell should be

demonstrated before the proposed neutron EDM experiment. A successful measurement over a broad

range of the amplitude and frequency of the dressing field was done at the University of Illinois. The

observed effects can be explained by using quantum optics formalism. The formalism is diagonalized to

solve the solution and confirms the data.

In addition, the application of the dressed-spin technique was investigated. The modulation and the

feedback loop technique should be considered with the dressed-spin technique for the measurement of the

small EDM effect. The modulation of the dressing field arbitrarily changes the relative precession

frequency between UCN and 3He. Through the feedback loop, the effective neutron precession frequency

can be measured. The corresponding sensitivity of neutron EDM will be estimated. A future neutron

EDM experiment could be improved if the dressed-spin technique can be carefully considered and applied.
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CHAPTER 1

INTRODUCTION : THE DREAM BEYOND THE STANDARD

MODEL

The search for violation of fundamental symmetries is one of the most important methods in

understanding nature. Most notably, tests of the discrete symmetries, charge conjugation (C), parity (P),

and time reversal (T) have played a significant role in the development of the Standard Model. C, P and T

had been respectively considered to be good symmetries. In 1956 Lee and Yang [47] first proposed the

possibility of the P violation in the weak interaction and suggested some experiments to examine. Later in

1957, the first P violation was experimentally discovered by Wu et al. [87] in the β decay of 60Co while C

violation was also clearly observed in meson decays. However, the combination of C and P had been

considered to be invariant until 1964 when the first CP violation in the decays of neutral kaons was

discovered by Christenson, Cronin, Fitch and Turlay [16]. The result can be explained by the

Kobayashi-Maskawa mechanism [42] which directly motivated the experiments of the CP violation in the

B meson decay at Belle (at KEK, Japan)[1] and Babar (at SLAC, USA)[4].

One important reason to study CP violation is the matter-antimatter asymmetry in the Universe, the

so-called baryon asymmetry of the Universe (BAU). The asymmetry can be defined in terms of the

baryon-to-photon ratio η ≡ nB/nγ , where nB is the net baryon density and nγ is the photon density at

freeze-out. The Wilkinson Microwave Anisotropy Probe (WMAP) measurement of the cosmic microwave

background and Big Bang Nucleosynthesis (BBN) both determined η ∼ 10−10 [25]. In 1967 Sakharov [74]

pointed out the three key ingredients for the BAU: (1) a violation of baryon number (B) conservation; (2)

a violation of both C and CP symmetries; and (3) interactions under thermal non-equilibrium. Here the

second condition will be addressed. There must be new physics beyond the Standard Model (SM) to

account for the extra CP violation, since the BAU cannot be explained by the currently observed

CP -violating sources in the kaons and the B mesons.

If the CPT symmetry [10][46][76] is conserved, the evidence of the CP violation implies T violation.

The search for permanent electric dipole moment (EDM) becomes attractive since a non-zero EDM implies

T violation. Therefore, the discovery of permanent EDMs could indicate new sources of CP violation. Any

new physics beyond the SM has to pass the test of EDMs. Therefore, EDM searches remain compelling

even after the Large Hadron Collider (LHC) at CERN produces evidence for new physics beyond the

Standard Model.

In this chapter I will present the reason why EDM violates time reversal symmetry and the theoretical
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background of the neutron EDM.

1.1 Overview of electric dipole moment

If an elementary particle has a nonzero EDM, the EDM must be parallel to the spin direction, which is the

only direction available for describing the particle. The EDM ~d can be written as

~d ≡
∫

d3rρe(~r)~r =
d

|~S|
~S, (1.1)

where ~S is the spin and ρe(~r) is the charge distribution. Eq. 1.1 relates a vector ~d to an axial vector ~S.

Under the parity (P) transformation, the spin stays the same and ~d becomes −~d. Under time reversal (T )

transformation, the neutron spin ~S becomes −~S and ~d stays the same. Therefore, a nonzero EDM violates

both parity and time reversal symmetries.

The test of the parity symmetry was one of the purposes of EDM searching, suggested first by Purcell

and Ramsey [65] in 1950 and again by Lee and Yang [47] in 1956. However, after Smith et al. [84]

published the upper limit of the neutron EDM, a puzzle arose as to why EDMs are so small while parity

violation is huge in the weak interaction. Later, Landau [45] pointed out that a non-zero EDM also

violates the time reversal symmetry. If the CPT symmetry is conserved, the T violation implies CP

violation. CP violation is known to be very small; therefore, it is reasonable to have such small values of

EDMs even if the parity violation is huge.

A permanent EDM can exist in a composite system such as a molecule due to its internal structure. It

is important to understand why these EDMs do not violate time reversal symmetry. We consider a

diatomic molecular consisting of two different atomic species. Two atoms can have an EDM along the axis

linking two atoms. Meanwhile, the rotational angular momentum of the diatomic molecular is

perpendicular to this axis. Therefore, ~d is perpendicular to ~S, and it does not violate T symmetry.

1.2 Neutron EDM (nEDM) in Standard Model

There are two sources of CP violation in Standard Model (SM) which can generate EDMs, the strong

interaction and the electroweak interaction. For the strong interaction, a nontrivial structure of vacuum in

Quantum Chromodynamics (QCD)[6] allows a term in the QCD Lagrangian, called θ-term, which violates

both P and CP symmetries. For the electroweak interaction, the complex phase in the

Cabibbo-Kobayashi-Maskawa (CKM) matrix[42] can also generate CP violation leading to non-zero EDMs.

The total QCD Lagrangian can be divided into two distinct parts: L = L0 + Lθ where the first term,

L0, describes the quarks and gluons together with their interactions. The second term, called the θ-term, is
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given by

Lθ = θ
g2

32π2
GµνG̃

µν . (1.2)

Gµν is the gluonic field strength tensor analogous to the electromagnetic field tensor Fµν and the dual field

tensor is defined by G̃µν = 1
2ǫµναβG

αβ . The GµνG̃
µν term is analogous to Fµν F̃

µν in quantum

electrodynamics (QED) which is proportional to ~E · ~B in electromagnetism. Since ~E · ~B is CP -odd, this

term violates CP symmetry. However, the term Fµν F̃
µν is a total four-divergence so that it generates no

observable effects in electromagnetism. In QCD, however, unlike the QED, the GµνG̃
µν term has nonzero

net contribution to the QCD Lagrangian because of contribution from the interactions of the gluon.

The magnitude of the parameter θ is unknown; it seems natural to choose θ = 0 as it cannot be

determined by the theory itself. However, when the Higgs field acquires its vacuum expectation value, the

Yukawa couplings with fermions produce the quark mass matrices. The diagonalization of these matrices

produces a shift in θ, yielding

θ̄ = θ −ArgDet[Mq] (1.3)

where M is the original (nondiagonal) mass matrix. The effective θ̄ term can generate a neutron EDM at

the order of θ̄ × 10−15 e cm[6][23]. The upper limit of the neutron EDM of |dn| < 2.9× 10−26 e cm [5]

implies |θ̄| < 10−10. This extremely small value requires a huge fine tuning of a pure QCD angle θ and the

phases of the quark mass matrices. This is the strong CP problem [14]. There are two main ideas to solve

the problem: relaxation and cancellation. Peccei and Quinn proposed a solution involving an additional

symmetry[58][59] to “relax” the angle to zero. This symmetry, however, predicts the existence of a light

pseudoscalar, called axion, which has been sought after extensively without success for many years [89][90].

Another proposal by Nelson [54][55]and Barr [7][8] is to choose an appropriate quark mass matrix with a

real value determinant. Because of the cancellation of the phases from the quark mass matrices, one can

take the original QCD vacuum angle θ = 0. Both Peccei-Quinn and Nelson-Barr’s ideas can be extended in

supersymmetric models. The strong CP problem remains a considerable enigma of the SM.

In the electroweak interaction of the SM, the single complex phase in the Cabibbo-Kobayashi-Maskawa

(CKM) matrix[13][42] can also contribute to the neutron EDM. The neutron is composed of three valence

quarks u, d and d, which can have non-zero EDMs. However, the single-quark EDM can only come from

diagrams involving at least three-loop due to the unitarity of the CKM matrix [79]. This brings the quark

contribution down to ∼ 10−34 e cm. One could also consider all three quarks simultaneously instead of

dealing with a single quark. The diquark moments were analyzed by Nanopoulos et al. [52]. They obtained

a larger numerical estimate for the neutron EDM at ∼ 10−31 e cm since the two-loop diagrams can now

contribute to the EDM when two quarks are involved. This value is six orders of magnitude below the
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experimental upper limit [5].

1.3 Physics beyond the Standard Model

One advantage of using EDMs as a probe for new physics beyond the SM is that any signal of an EDM at

a level greater than the SM prediction can be identified as a signal of physics beyond SM. Therefore,

EDMs have been searched for in various systems extensively. The physical systems include point particles

like e, µ, τ , nucleons like neutron, proton, atoms like Hg, Xe, Ti, Cs, Rn, Ra and molecules like TiF, YbF,

PbO, etc., where each object has its own particular advantages[39]. The SM predictions for the magnitude

of EDMs are far below the sensitivity of present measurements. However, several theories can induce larger

EDMs through different mechanisms or a combination of them for fundamental particles and composite

systems. Fig. 1.1[39] shows the relation between theoretical models and observed EDMs in various systems.

The benefit of using neutrons is that the neutron is neutral and relatively simple, containing the

information of quark and strong CP violation. Together with lepton experiments, which have dominant

contributions from the electroweak, one may determine the origins of the EDM. The full set of EDM

studies provides a powerful tool for understanding CP violation. Together with LHC studies, EDM

searches may reveal the mystery of BAU.

One example of new theories is the minimal supersymmetric Standard Model (MSSM) of which the

mass parameter space is shown in Fig. 1.2. The red region has been excluded by the Large Electron

Positron Collider(LEP) at CERN, while the light blue region is ruled out by existing limits on the electron

EDM. Black hashed regions are those that would lead to the observed BAU in the MSSM. The region that

the LHC and the neutron EDM experiments can respectively access are also displayed. Consequently, the

absence of the MSSM signal at the LHC would not exclude the possibility of MSSM. The destiny of MSSM

could still be determined by future precise EDM experiments.
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CHAPTER 2

EXPERIMENTAL TECHNIQUES FOR NEUTRON EDM

Almost all electric dipole moment (EDM) experiments detect EDM via the tiny Stark splitting [85] linearly

induced by an electric field. The electric field (E0) is either parallel or antiparallel to the constant

magnetic field (B0). The Hamiltonian of the system is

H = −(µ~B0 + d ~E0) ·
~S

|~S|
, (2.1)

where d and µ are the electric and magnetic dipole moments, and ~S is the angular momentum of the

particle. For the ordinary magnetic Zeeman effect, an energy splitting due to the magnetic dipole moment

and the magnetic field in the different directions ( ~B0 ‖ ~S or ~B0 ‖ −~S) can cause a resonant frequency

(Larmor precession frequency) at ω0 = 2µ
~
B0 ≡ γB0, where γ is the gyromagnetic ratio. A change in the

Larmor precession frequency due to the electric field can reveal the EDM value. The resonant frequency is

given by

ωres =
2

~
(µB0 ± dE0). (2.2)

The difference in the precession frequencies of neutrons placed in a strong ~E0 field parallel or antiparallel

to B0 is ∆ωres = 4 dE0

~
, so that the value of the EDM is given by

d =
~∆ωres

4E0
. (2.3)

For a typical experiment, a number of polarized particles (N) are stored in a cell and uniform magnetic

and electric fields (E0) are applied. The particle will precess for a certain amount of time (T ). Using the

uncertainty principle 1, the statistical uncertainty of the EDM, δd, is given by

δd =
~

2E0T
√
mN

(2.4)

where m represents the number of separate complete measurements [40]. Therefore, the goal of all

experiments is to measure a small change in the Larmor frequency due to EDM and to reduce the

systematic uncertainties such as the coupling of the magnetic dipole moment to the magnetic field.

1See Appendix A.
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The neutron EDM has been sought after for more than half a century. Purcell and Ramsey first

pointed out the possibility of EDM [65] and used the data of Havens, Rabi and Rainwater’s neutron

scattering experiment [37] to get an upper limit of neutron EDM at 3× 10−18e cm. Seven years later,

Smith, Purcell and Ramsey [84] published the improved upper limit of neutron EDM at 5× 10−20e cm by

using a neutron-beam magnetic resonance method which was invented by Alvarez and Bloch [3]. The

precession frequency can be accurately measured by using the technique of the separated oscillatory field

developed by Ramsey [67][72]. Since then, several neutron EDM experiments have been done and have

improved the upper limit of neutron EDM significantly. For example, Shull and Nathan obtained an upper

limit of 5× 10−22 e cm by using the method of Bragg diffraction of polarized neutrons off a CdS

crystal [82]. Most later experiments used the neutron-beam magnetic resonance technique until the

ultra-cold neutrons were introduced. The historical development is shown in Fig. 2.1 and the experiments

are described in [62]. This chapter will review the main features of experimental techniques of the neutron

EDM experiment proposed at the Spallation Neutron Source(SNS) at Oak Ridge National Laboratory.
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Figure 2.1: Upper limits of neutron EDM as a function of year of publication.

2.1 Separated oscillatory fields

Smith, Purcell and Ramsey’s pioneering neutron EDM experiment [84] used the Separated Oscillatory

Fields technique [68][69][70] to free neutrons. The idea apparently arose when Ramsey was teaching

undergraduates about the Michelson interferometer [60]. The technique is like a two-slit experiment with
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the slits separated in time rather than in space [36].

The technique can be treated semiclassically. First, we discuss the π/2 pulse. Imagine a neutron with

its magnetic moment (parallel to the spin) aligned parallel to a static homogeneous magnetic field, ~B0, in

the longitudinal direction ẑ. A transverse oscillatory field ~B1(t) = B1 cos (ωt) x̂ is applied to the system.

Then the total field is

~B = B0 ẑ +B1 cos (ωt) x̂. (2.5)

Ramsey solved the dynamics of the spin by using the semiclassical approach [83]. ~B1 can be decomposed

into two rotating components, one rotating clockwise and the other counterclockwise, denoted in two

equations:

~BR =
B1

2
(cosωt x̂+ sinωt ŷ), (2.6)

~BL =
B1

2
(cosωt x̂− sinωt ŷ). (2.7)

By using Bloch equations [11],

d~µ

dt
= ~µ× γ[B0 ẑ +B1 cosωt x̂]

= ~µ× γ[B0 ẑ +
B1

2
(cosωt x̂+ sinωt ŷ) +

B1

2
(cosωt x̂− sinωt ŷ)], (2.8)

where ~µ is the magnetic moment and γ is the gyromagnetic ratio, the equation of motion of ~µ is obtained.

If the system is transformed from the lab frame into the rotating frame at a frequency, ω, the equation

becomes

d~µ

dt
= ~µ× γ[(B0 −

ω

γ
) ẑ′ +

B1

2
x̂′ +

B1

2
(cos 2ωt x̂′ − sin 2ωt ŷ′)]. (2.9)

In the situation B1 ≪ B0, the counterclockwise field at 2ω is ignored in the “rotating wave approximation”

(RWA), which ignores the high frequency term. Then

d~µ

dt
= ~µ× γ[(B0 −

ω

γ
) ẑ′ +

B1

2
x̂′] ≡ ~µ× γ ~Beff . (2.10)

If B1(t) is at the resonance of the Larmor frequency , i.e., ω = ω0 ≡ γB0 , the effective field is simply

B1

2 x̂′. The neutron in the rotating frame will see a fixed horizontal field and begin to precess about it. A

magnetic moment at ẑ′-axis would precess in the ŷ′ − ẑ′ plane about x̂′-axis at frequency γB1/2 in the

rotating frame. A π/2 pulse, which is applied for a period of time τ given by

γB1

2
τ =

π

2
−→ τ =

π

γB1
, (2.11)
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can rotate the magnetic moment by 90◦ from the ẑ-axis to the x̂− ŷ plane.
 

4. 

3. 

2. 

1. 

Free 
precession... 

90o spin-flip 
pulse applied... 

“Spin up” 
neutron... 

Second 90o 
spin-flip pulse 

Figure 2.2: Ramsey’s technique of separated oscillatory fields [36].

After the introduction on the principle of the π/2 pulse, we can discuss next the separated oscillatory

fields technique. Following Fig. 2.2 [36], let us imagine a polarized neutron with a magnetic moment along

ẑ enters a region of static homogeneous magnetic field B0 ẑ. At the entrance, a π/2 pulse is applied, and

the magnetic moment starts to spiral. Once the magnetic moment is reoriented to x̂− ŷ plane (−ŷ′-axis in
the rotating frame), the oscillatory field ~B1 would be turned off. The magnetic moment starts to freely

precess about the static field B0 ẑ for some time T ≫ τ before a second π/2 pulse is applied, which is

coherent with the first one. If the frequency of the oscillatory fields matches the neutron’s precession

frequency (Larmor frequency), the second pulse will completely flip the magnetic moment of the neutron

by another π/2 so that the magnetic moment will be aligned antiparallel to ẑ-axis.

If the frequency of the oscillatory fields and the Larmor frequency are slightly different, the magnetic

moment will be off the −ẑ-axis in the end. Following the discussion in [40], one can derive that the

9



magnetic moment will precess about the effective field in the rotating frame:

~Beff = (B0 −
ω

γ
)ẑ′ +

B1

2
x̂′ = ∆Bẑ′ +

B1

2
x̂′,

| ~Beff | =
√

(∆B)2 + (
B1

2
)2. (2.12)

If ∆B ≪ B1, the first π/2 pulse still can rotate the magnetic moment roughly from ẑ-axis to x̂− ŷ plane.

After the ~B1(t) is turned off, the effective field in the rotating frame is

~Beff = ∆Bẑ′, (2.13)

and the magnetic moment will precess about the ẑ′-axis at frequency γ∆B. For a time period T , a phase

difference φ ≈ γ∆BT will be accumulated. Therefore, the magnetic moment would not be perpendicular to

the transverse field along x̂′ in the rotating frame. The magnetic moment vector will be

~µ = µ(− cosφŷ′ + sinφx̂′). (2.14)

After the second π/2 pulse, only the component at −ŷ′-axis of the magnetic moment can be rotated from

x′-y′ plane to −ẑ′-axis. The projection of the magnetic moment along the −ẑ′-axis will be −µ cosφ. At the
end of the second π/2 pulse, a spin analyzer for the ẑ-component of the magnetic moment is applied. Thus

we can determine the precession frequency relative to the oscillatory fields by measuring the final

polarization of the neutrons.

For a real measurement, a polarized neutron beam with a velocity ~v passes through two oscillatory

fields, generated by RF coils separated by a distance L. The frequency of the two oscillatory fields is

varied. Only when the frequency matches the Larmor frequency of the neutron, the flip of the magnetic

moment of neutron is π or 180◦, i.e., two π/2 pulses. Once the frequency is off the resonance frequency, the

projection of the magnetic moment along the ẑ-axis is proportional to cosφ as described before. Fig. 2.3

shows an example of an actual measurement. The oscillations are called fringes in analogy to an

interferometer. The phase difference between two fringe peaks is ∆φ = 2π. The frequency difference would

correspond to ∆ω · T = 2π and T is the time period for neutrons passing between two oscillatory fields,

given by T = L/v. It shows that better frequency determination can be obtained,

∆fRF =
∆ω

2π
=

1

T
=
v

L
, (2.15)

if the neutron is slower. When ∆B > B1 where ∆B = B0 − ω
γ , the π/2 pulse is no longer effective. The

initial spin-flip probability will be reduced and then the oscillation fades. More details would require

quantum mechanics calculation of the transition probability [66][69][70].
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Figure 2.3: The number of neutrons remaining with their spins unflipped after application of Ramsey
separated oscillatory fields, as a function of the frequency [33].

Following the inaugural work done by Smith, Purcell and Ramsey [84], several experiments had been

done by using the separated oscillatory fields for decades [62]. The upper limits were pushed by researchers

minimizing the statistical and systematic errors. The statistical uncertainty in dn is

δdn ∝ v̄

E0LP
√
φnT

(2.16)

where v̄ is the average velocity, T is the running time, E0 is the electric field, L is the distance between RF

coils, P is the polarization of the neutrons, and φn is the neutron flux. Additionally, several systematic

errors have been identified . One of dominant systematic errors is ~v × ~E, called the motion field effect,

which will cause an additional magnetic field ~Bm = 1
c~v × ~E viewed in the neutron rest frame, where ~v is

the neutron velocity in the lab frame. If ~E is not perfectly parallel to ~B0, the consequent ~Bm will have a

nonzero component along the ~B0 which will mimic the EDM effect. To overcome this issue, the use of the

ultra-cold neutrons(UCN) is essential.

2.2 Ultra-cold Neutrons(UCN)

Enrico Fermi first realized that neutrons with very low energy can be stored in bottles. For ultra low

energy neutrons with large de Broglie wavelengths, the effective potential, called Fermi potential UF , of

many materials, is repulsive. Therefore, the neutrons can totally reflect from the material’s surface.
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Consequently, neutrons with very low energy can be stored in the bottle. Those very low energy neutrons

are called ultra-cold neutrons (UCU). UCN have the Fermi potential UF ∼ 200 neV , velocities of order of

5 m/sec, wavelengths of order 500 Å and an effective temperature of order 2 mK [40].

There are two dominant limitations in the neutron EDM searches using thermal or cold neutron

beams–the motion field effect, ~v × ~E, and the relatively short transit time (T ) of neutron beams between

two RF coils. In 1968, Shapiro [80] proposed the use of UCN to search for neutron EDM. The much lower

velocity of UCN will highly suppress the effect of ~v × ~E and increase the coherence time T of UCN in a

storage bottle to the order of 102 − 103 sec. The increasing of T and the suppression of ~v × ~E can improve

the sensitivity for EDM signals a factor of 104 − 105 related to both the statistic and systematic errors.

However, the trade-off is the low flux of UCN relative to the flux of cold neutron beams. In this section, we

will discuss the production of UCN and the effort of increasing the density of UCN.

The energy spectrum of the neutrons in thermal equilibrium with the moderator follows the

Maxwell-Boltzmann distribution. The density distribution between velocity v and v + dv can be written as

ρ(v)dv =
2Φ0

α

v2

α2
exp (− v2

α2
)
dv

α
, (2.17)

where Φ0 is the total thermal flux of neutrons, α = (2kBTn/m)
1
2 and Tn is the neutron temperature [32].

The relative fraction of UCN in the Maxwell-Boltzmann distribution is tiny. Using E = 1
2mv

2, the density

distribution, Eq. 2.17, is integrated up to energy E = UF and, for v ≪ α, the density of neutrons with

E ≤ UF is

ρUCN =
2

3

Φ0

α
(
UF

kBTn
)

3
2 . (2.18)

For Tn = 300 K, α = 2.2× 105cm s−1 and UF = 2.5× 10−7 eV for Beryllium,

ρUCN = 10−13Φ0 cm
−3. (2.19)

For reactor-based sources, the neutron flux Φ0 = 1015 n/(cm2 s) gives a maximum UCN density of

102 cm−3.

The UCN density in the momentum phase space can be increased by using various devices such as

neutron turbines. However, the Liouville’s theorem dictates that the neutron density is a constant within a

closed system. In order to overcome this limitation, the system has to be allowed to interact with another

system inelastically. In 1975, Golub and Pendlebury pointed out that higher density of UCN can be

obtained by using inelastic down-scattering process in specific materials [30]. The idea is to bombard a

high intensity cold neutron beam on a suitable material such that the neutron energy is almost completely

exhausted via an inelastic scattering process. An ideal material is superfluid 4He [31]. As shown in

Fig. 2.4, the energy-momentum dispersion curves for a free neutron and for a superfluid 4He cross at the
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wavelength λ = 2π
k = 8.9Å. A neutron of incident momentum ~k̄i is inelastically scattered off superfluid

4He to a momentum of ~~kf and excites a phonon with energy E in superfluid 4He. With energy and

momentum conservation,

~Q = ~ki − ~kf , (2.20)

~
2k2i
2m

=
~
2k2f
2m

+ E(Q), (2.21)

while ~Q is the momentum transfer and E(Q) is the energy-momentum dispersion relation for superfluid

4He (Landau-Feynman dispersion curve). At a certain beam momentum, the incident neutron can transfer

practically all its momentum and energy to the phonon of the superfluid 4He and emerge as an ultra-cold

neutron. This occurs at ki = 0.7038 Å−1 (λ = 2π
k = 8.928Å), the critical momentum kc. We use a linear

dispersion relation for the superfluid 4He elementary excitations, E(Q) = ~ω = ~cQ, where c is the phonon

sound velocity (c ≈ 2.383× 104 cm/sec). If the neutron beam is limited in the region, ki = kc + kUCN + δk

where kUCN ≈ 200 neV and kc = 2 mc/~, energy conservation shows that

~

2m

[

k2i − k2f
]

= c
∣

∣

∣

~ki − ~kf

∣

∣

∣ ,

=
c

kc

[

(~kc + ~kUCN + δ~k)2 − k2UCN

]

= c
∣

∣

∣

~kc + ~kUCN + δ~k − ~kUCN

∣

∣

∣

≈ c

kc

[

(kc + δk)2 ± 2kUCN (kc + δk)
]

= c
∣

∣

∣

~kc + δ~k
∣

∣

∣

→ 1

kc
[kc + δk ± 2kUCN ] = 1

→δk = ±2kUCN . (2.22)

In reality, the angle between ~ki and ~kf should be considered. Numerical calculation shows a very

narrow region to produce UCN with energy less than 200 neV and the production is angle-dependent. At

θ = 0◦, kf is always equal to ki, corresponding to an elastic scattering. For ki > kc, all scattering angles

are allowed and for ki < kc, only θ < 90◦ is allowed. For ki < 0.3777Å−1, no inelastic scattering is allowed

and the neutron beam will traverse the superfluid 4He without attenuation. The group velocity dω/dk for

free neutrons is equal to ki = 0.3777Å−1 and below this momentum, phonons travel faster than neutrons.

Even when the neutron beam is at the critical momentum, from the detailed calculation [12], only around

0.07% of the scattered neutrons eventually become the UCN. The rest of the neutrons would not stay in

the bottle because their energy is higher than the potential of the wall.
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Figure 2.4: Dispersion curves for superfluid 4He and for free neutron.

2.3 Comagnetometer

One important systematic error originates from the drift of the magnetic field, B0. In Eq. 2.2, if the

magnetic field B0 has a fluctuation, the effect could cause a frequency shift mimicking the neutron EDM.

One way to reduce this systematic error is to add a comagnetometer, which monitors the magnetic field

fluctuations. A comagnetometer is usually a polarized atomic species, having much smaller EDM(or smaller

upper limits) than the neutron. The nuclear magnetic resonance of the atoms can be measured at the same

time and in the same region as the UCN. By measuring the polarization or precession frequency of the

atoms, one can monitor the magnetic field experienced by the atoms and correct for neutron measurement.

Lamoreaux [43] suggested the use of 199Hg as a comagnetometer and Pendlebury [61] later implemented

it. First, the experimental upper limit of 199Hg EDM [34] was much better than the level of the sensitivity

of the neutron EDM. Besides, 199Hg can be optically pumped and its polarization can be optically detected

with 254 nm resonance radiation.

Subsequently, the ILL experiment [5] demonstrated the effectiveness of 199Hg as a comagnetometer. In

Fig. 2.5, the raw data in blue dots can be corrected to red dots by using the comagnetometer data. The

electric field is around 10 kV/cm and the magnetic field is around 10 mG. Each cycle yielded about 14000

UCN counts. The density of 199Hg is 3× 1010 atoms/cm3 and γn/γHg = −3.842. By comparing the

precession frequencies of neutron and 199Hg, the ILL group published the result of the room-temperature

EDM experiment in 2006 and pushed the upper limit to |dn| < 2.9× 10−26 e cm [5].

The use of 3He as a comagnetometer was first mentioned by Ramsey in 1984 [71]. However, the
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Figure 2.5: Neutron resonant frequency, measured over a 26 hour period, before and after magnetic field
drift corrections [33]. The frequency shift is about 10−3 Hz while the magnetic field drift is around
5× 10−4 mG. After the correction, the frequency shift can be reduced to 10−4 Hz.

difficulty measuring the polarization of 3He prevented its implementation. Nevertheless, 3He was proposed

by Golub and Lamoreaux [29] as a comagnetometer for the new neutron EDM experiment at SNS [12].

The precession of 3He atoms can be determined directly by using SQUID magnetometers sensitive to the

changing magnetic field caused by the rotating magnetization of the 3He. Another advantage of this

method is that it can overcome the technical difficulty in the extraction of UCN from the bath. A dilute

admixture of polarized 3He atoms in the superfluid 4He bath will be applied. The fractional density of 3He

x = N(3He)/N(4He) ≈ 10−10 will be used in the future neutron EDM experiment at the SNS. The

following sections will focus on the experiment at SNS.

2.4 Measurement of the neutron precession frequency at SNS

Some interesting characteristics of 3He atoms allow them to be used to analyze neutron precession

frequency. First, UCN can be detected through the following reaction

n+ 3He→ p+ 3H + 764KeV. (2.23)

The charged particles, proton and triton, produced in this reaction will interact with liquid helium to

produce scintillation light (∼ 80nm) [57]. If the measurement cells are coated with a wavelength shifter,

deuterated tetraphenyl butadinene (dTPB), the scintillation light is converted to blue light which can be

detected by photomultiplier tubes (PMT).
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A crucial feature of the n+3He absorption is that the reaction only occurs when the total spin of

neutron and 3He is equal to 0 (J = 0). At UCN energy, the absorption cross section can be written as

σ = σ0
1− cos θn3

2
, (2.24)

where σ0 = 11.0 barns and θn3 is the angle between neutron spin and the 3He spin. Consequently, the

observed rate of scintillation depends on the relative angle between the neutron and 3He spins and is

proportional to

1− P3Pn cos[(γ3 − γn)B0t]. (2.25)

where P3 and Pn are the polarizations of the 3He and the neutrons respectively, and γ3 and γn are the

gyromagnetic ratios of the 3He and the neutrons respectively. Together with the information of the 3He

precession, the precession of neutron can be exquisitely measured.

Instead of using “SQUID” to monitor the precession of 3He, an alternative method, called “the dressed

spin technique”, was also proposed to search for the neutron EDM by Golub and Lamoreaux [29]. The

main reason to use the technique is to reduce the systematic error from the magnetic field B0. The

scintillation light depends on the angle between neutron and 3He, i.e., θn3 = (γ3 − γn)B0t, where B0 can

have a significant drift. If γ3 − γn can be minimized, the error from B0 drift will also be minimized. To

reach this goal, a RF field, called “dressing field,” can be applied to modify the magnetic moment of a

particle. The particle is then “dressed,” yielding an effective gyromagnetic ratio given by

γ′ = γJ0(
γBd

ωd
) (2.26)

where Bd and ωd are the amplitude and the frequency of the RF field, and J0 is the zeroth order Bessel

function. Neutron and 3He can be made to precess at the same precession frequency by applying a proper

dressing field so that

γnJ0(
γnBd

ωd
) = γ3J0(

γ3Bd

ωd
). (2.27)

This situation is called “critical dressing.” How to apply this property when searching for the neutron

EDM will be the subject of this thesis. More details will be discussed in later chapters.

2.5 Measurement cycle at SNS

Following Fig. 2.6 [38], the proposed measurement cycle at SNS will now be summarized. The duration of

each step remains to be optimized to reach the maximal sensitivity.
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The conceptual design of the proposed apparatus is shown in Fig 2.7 [38]. The apparatus is divided

into two parts: the lower cryostat for the measurement and the upper cryostat for the 3He injecting into

the cells and removing from the cells. Both lower and upper cryostats are surrounded by four layers of

µ-metal magnetic shields to shield the apparatus from the ambient magnetic field and its temporal change.

The cutaway view of the lower cryostat is shown in Fig. 2.8 [38]. Two measurement cells are placed in

the gaps between the high voltage(HV, 50 kV/cm) system and ground electrodes in opposite directions.

Each cell is a rectangular acrylic tube of a dimension of 7.62cm× 10.16cm× 50cm. The inner walls are

coated with deuterated polystyrene to minimize neutron absorption by hydrogen. The deuterated

polystyrene is loaded with deuterated tetraphenyl butadinene(dTPB) which serves as the wavelength

shifter for the scintillation light from the neutron absorption of 3He. The converted light is guided through

the light guides and detected by PMTs.

The measurement cells, the light guides, the electrodes, and the variable capacitor are all immersed in a

1200 liter bath of superfluid 4He. Any heat sources in the measurement cell can induce phonons

generating a non-uniformity in 3He concentration. The superfluid 4He bath can keep the temperature

across the cells uniform and eliminate potential heat sources.

The measurement cells are initially filled with isotopically pure superfluid 4He at 300 mK. Polarized

3He atoms are accumulated and dissolved in the 4He cell at a concentration of 10−10 [86]. The expected

density of 3He will be 1012/cm3. After the transmission, the 3He polarization is kept along the B0

magnetic field direction in the measurement cells(Polarization 99%).

Polarized 8.9 Å cold neutron beam will be injected into the superfluid 4He cell to produce polarized

UCN [12]. The production rate of UCN is expected to be 0.3 UCN/cc/sec. If the storage time in the cell is

500 sec, the expected density will be 150/cm3 and the total UCN number will be at the order of 106. The

UCN are polarized parallel to the B0 field(Polarization 96%). The goal for the mean life of neutrons in the

cell is about 500 sec as a result of β decay, wall interactions and 3He capture, etc [53].

A π/2 pulse 2 is applied to simultaneously rotate the neutron and 3He spins into the plane

perpendicular to the B0 field [2]. The difference in the precession frequencies of neutron and 3He atoms is

measured by detecting the scintillation light (the spectrum is centered at 80 nm from the spin-dependent

UCN-3He capture process). Two methods can be used to overcome the drift of B0. The precession

frequency of 3He can be monitored by the SQUID pickup loop. In addition, an alternative method of the

dressed spin technique will be considered.

After the precession measurement, the depolarized 3He atoms due to the spin relaxation are removed

from the measurement cells. The electric field will be flipped periodically. Then the measurement cycle will

be repeated.

The goal of the neutron EDM experiment at SNS is to search for the neutron EDM with a sensitivity

two orders of magnitude better than the present limit. Various R&D studies have been pursued to

2A detailed calculation is performed in Appendix B.
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Figure 2.6: Illustrative description of a proposed measurement cycle. The duration of each step remains to
be optimized to achieve maximal sensitivity. [38].

Figure 2.7: The schematic overview of the full detector apparatus [38]. The upper cryostat includes the
3He system and the dilution refrigerator. The lower cryostat is the main part of the measurement,
including the measurement cells, the neutron guides, the high-voltage, and the magnetic coils, etc.
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Figure 2.8: The central region of the detector illustrating the measurement cells, electrodes, light guides,
HV generator and magnetic shields [38]. The SQUID magnetometers are mounted on the ground plates.

optimize the final design of the experiment. The purpose of the dressed spin technique is to reduce the

systematic error of the magnetic field drift. If this method can be shown to be feasible, the neutron EDM

experiment could significantly benefit from it. Therefore, careful studies of the sensitivity for the dressed

spin technique are necessary and will be described in this thesis.

19



CHAPTER 3

MEASUREMENT OF THE DRESSED SPIN IN A 3HE CELL

The dressed spin has been studied in several earlier experiments. Muskat et al. [51] used a polarized

neutron beam and Esler et al. [26] used a polarized 3He beam with the Ramsey separated oscillatory

(SOF) field method [68][69][70]. Both measurements demonstrated that in the weak field limit, when the

Larmor frequency is much smaller than the dressing field frequency, the modified effective gyromagnetic

ratio becomes γ′ = γJ0(x) where J0 is the zeroth-order Bessel function of the first kind. Esler et al. [26]

also observed the deviation from the Bessel function once the Larmor frequency was not so small

comparing it with the dressing frequency.

The dressed spin technique is an important element for the neutron EDM experiment at SNS [29].

Since the EDM experiment will involve 3He and neutron in a superfluid 4He cell, it would be interesting to

study the dressed spin phenomenon in a 3He cell instead of using a 3He beam, as in the experiment by

Esler et al. [26]. An experiment has been carried out at UIUC to study dressed spin phenomenon using

polarized 3He in a room temperature cell. In this chapter, I will describe the experimental setup, the

data-taking, the data analysis, and the results. The results will be compared with theoretical calculation

presented in Chap. 4. A paper reporting the results of this study has been published [17].

3.1 Experimental method

The experimental setup is shown schematically in Fig. 3.1. A cylindrical Pyrex cell of 2.5 cm radius and

5.7 cm length, filled with 3He gas of ∼ 1torr [48], is located in a uniform magnetic field B0 along the

ẑ-axis. The magnetic field is provided by a Helmholtz coil of 50.8 cm radius. Another Helmholtz coil along

the x̂-axis provides a homogeneous static magnetic field, Bq, to compensate the Earth vertical field. The

parameters of both coils are shown in Tab. 3.1. Four 80-turns rectangular pickup coils of 5.08 cm× 6.35 cm

Radius[M] Distance[M] Turns R[Ω] Amplitude[mG]
B0 0.508 0.5207 15 1 261.5×I
Bq 0.254 0.244 6 0.8 212.4×I

Table 3.1: Geometric parameters of homogeneous static magnetic field coils. I is the input current with
the unit of Amp.
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Figure 3.1: Schematic plot of the apparatus used for measuring the 3He precession frequency.

Figure 3.2: A schematics for the metastability exchange optical pumping of 3He. The left diagram shows
the nine optical transitions between the 23S and 23P states of 3He. Top-right: The optical pumping
scheme of metastable 3He atoms with impinging right-handed (σ+) circular polarized light for the C9

transition. Bottom-right: The height of the light (dark) shaded columns indicate the distributions of the
mF levels for a nuclear polarization P=0.50 (0.33). The plots are from [64].
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Figure 3.3: The laser frequency tuning. The temperature of the laser grating is varied to tune the laser
frequencies. The peaks correspond to transitions from 23S states to 23P states. The first peak from the left
is the C9 transition and the second peak is C8, and so on.

in the x̂− ẑ plane surround the cell.

The 3He gas is polarized using the optical pumping and the metastability spin exchange method [64, 22]

with a circularly polarized laser light entering the cell along the holding magnetic field axis, ẑ. The GaAs

semiconductor laser diode (Eagleyard photonics TO-3) delivers light at a wavelength near 1083 nm with

maximum output power of 100 mW . The left plot of Fig. 3.2 shows nine transitions of 3He atoms from the

metastable states 23S1 to excited states 23P . The C9 transition, which was used for the optical pumping,

can be pumped by the laser from the metastable 23S1 (F = 3
2 ) state to the 23P (F = 1

2 ) state, where F is

the sum of the total angular momentum of atoms and nucleus. As shown in the right-top plot of Fig. 3.2,

the right-handed circularly polarized light (σ+) can only excite the transition of ∆mF = +1 for

23S1 → 23P , where mF is the z component of F . In contrast, the de-excitation is distributed uniformly

over all transitions of 23P → 23S1. Therefore, repeating the process can depopulate the lower mF levels so

that the population distribution is shifted towards the higher mF levels, as shown in the right-bottom plot

of Fig. 3.2. Subsequently, through the so-called metastability exchange collisions via the process,

3−→He⋆ +3 He→3 −→
He+3 He⋆ (3.1)

where the arrow means the polarized 3He and the star means the excited state (metastable state) of 3He,

the polarization of the metastable atoms is transferred to the nuclear spin of the ground state atoms.

Consequently, the nuclear spin of 3He can be polarized. A polarization of 20 % of 3He can be achieved in
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our setup [56].

An RF electric field, applied to two electrodes on the outside surface of the cell, can generate a weak

electrical discharge exciting 3He atoms from the ground state to the metastable states. The frequency of

RF is around 10∼20 MHz. The amplitude of RF should be kept within a proper range with the output

power around -20∼-25 dBm, depending on temperature and other environmental situation. It cannot be so

large as to destroy the pumping process, nor so small as to cease the optical pumping. Besides, the

amplitude is modulated at a 40% level with a 670 Hz frequency for optical signal measurements. The RF

is turned off during the NMR measurements.

An optical signal of a wavelength around 1083 nm is produced via the 23P → 23S de-excitation

process. The optical signal is modulated at the RF modulation frequency so that the signal can be

measured using a lock-in amplifier. A photo diode is installed beside the cell to detect the modulated

optical signal. The signal decreases if 3He atoms are polarized along the laser polarization direction

because polarized atoms can no longer interact with the circularly-polarized laser light [48]. Before doing

the NMR measurements, laser tuning and Larmor frequency scan were carried out using the optical

signals. Fig. 3.3 shows that various transitions can be observed depending on the laser frequency, which

can be tuned by varying the temperature of the laser [64]. The first peak from left is the C9 transition and

the second is the C8 transition. The rest are C7 − C1 transitions which have very similar energies. The

scanning range of temperature for transitions of 23S1 → 23P is around 25− 36◦C and the C9 transition is

located at ∼ 29− 31◦C.

A pair of coils for an oscillatory magnetic field, B1 cos(ωt)x̂, is placed near the 3He cell and along

x̂-axis. At the nuclear Larmor frequency ω = ω0 = γB0, the macroscopic nuclear magnetization precessing

about the oscillatory magnetic field becomes alternatively parallel and antiparallel to the light beam,

ẑ-axis. Therefore the oscillatory magnetic field modulates the relative metastable level populations and the

optical signal intensity at the frequency γB1. The optical signal amplitude will be maximal when the

frequency, ω, is at the Larmor frequency since more 3He atoms can be optically pumped. Therefore, by

varying the frequency, ω, the Larmor frequency can be determined. The oscillatory optical signal can also

be used to calibrate B1. The calibration of B1 will be discussed in Sec. 3.4.

Once the Larmor frequency is determined, a nuclear magnetic resonance (NMR) measurement can be

performed. If B1 cos(ω0t)x̂ is applied for a duration τ , the magnetization vector rotates by an angle γB1

2 τ .

Therefore, by applying a π
2 pulse for τ = π

γB1

1, the polarization of 3He atoms can be rotated from ẑ-axis to

x̂− ŷ plane. 3He atoms then precess at the Larmor frequency ω0 = γB0 in the x̂− ŷ plane. The precessing

magnetization induces a current in the pickup coils, and the 3He precession frequency can be determined

by analyzing signals of the pickup coils via a lock-in amplifier. The output signal from the lock-in amplifier

decays exponentially with a time constant T2, the transverse relaxation time, as shown in Fig. 3.4.a 2. The

1The number of cycles is n = τ ·
ω0
2π

= ω0
2γB1

= B0
2B1

.
2The data of T2 are listed in Appendix C. The magnitude of NMR signals is estimated in Appendix D.
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Figure 3.4: (a) Output of the lock-in amplifier averaging over 5 measurements. The dash line is the fitted
curve. The parameter “A” corresponds to the amplitude of the signal which decays exponentially with
time. (b) Pickup coils signal amplitude (A) vs. reference frequency. The resonance frequency shifts with
the magnitude of the dressing field Bd (x = γBd/ωd). For these data B0 = 387.7mG, ω0/2π = 1257Hz,
and ωd/2π = 7152.5Hz (y = 0.176).

lock-in reference frequency is varied until maximal signal amplitude is found. This occurs when the

reference frequency of the lock-in amplifier is the same as the 3He precession frequency. The widths of the

signal peaks in Fig. 3.4.b are mainly due to the bandwidth of the lock-in amplifier 3. Another pair of coils

providing a dressing field, Bd cos(ωdt)x̂, is placed near the 3He cell and along the x̂-axis. When the

dressing field is applied, the 3He precession frequency shifts to a different value, as demonstrated in

Fig. 3.4.b. From these measurements, the effect of the dressing field can be detected.

We now will summarize the NMR measurement procedure. The holding field B0 is always on. The

optical pumping and metastability exchange are run for about 30-40 seconds to polarize the nuclear spin of

3He atoms. After 3He atoms are polarized, the RF is turned off. Then the π
2 pulse is applied to rotate the

3He polarization from ẑ-axis to x̂− ŷ plane. The duration of B1 depends on the amplitude and the Larmor

frequency. After the π
2 pulse, 3He atoms precess freely for 1 second until the RF quiets down. Subsequently,

the dressing field Bd cosωdtx̂ and the data-taking are both turned on. Data-taking takes 10 seconds due to

the limitation of the relaxation time, T2. The data from the pickup signal are stored in a computer through

the PC DAQ board and await further analysis. Then the next measurement cycle is ready to start. The

signals of the pickup coils are averaged several times(around 10 times) in order to reduce the noise.
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Figure 3.5: Block diagram of the NMR electronics.

3.2 Electronics

We briefly will describe the electronics we used. The laser temperature is controlled by Laser Diode

Temperature Controller ITC 502. The holding field is provided by the Agilent N6702A Low Profile

Modular Power System Mainframe, 1200W. The Earth compensating field is provided by the power supply

HP - Agilent 6253A. Wavetek 2410 1100 MHz RF Signal Generator is used to generate RF signals and

amplified by the Amplifier Research 50A220. Both B1 and Bd are controlled by the Agilent 33220A

Function/Arbitrary Waveform Generators and Bd is amplified using the PV 900 Watt Stereo power

amplifier. The lock-in amplifier is the Stanford Research System SR830 Lock-in Amplifier. The electronics

diagram is shown in Fig. 3.5.

3.3 Data

Measurements are performed at different B0, and the dressing field frequencies ωd and magnitudes Bd as

shown in Tab. 3.2. At each dressing field frequency, the magnitude of the dressing field is varied over a

broad range. Two dimensionless parameters which characterize various dressing field configuration are

3See Appendix E.
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Figure 3.6: Effective precession frequency ratio vs. x for (a) y < 1 (b) y > 1. The dashed curves are
numerical calculations described in Sec. 4.6

y ω0

2π [Hz] ωd

2π [Hz] y ω0

2π [Hz]
ωd

2π [Hz]
0.15 1271 8473 1.1 1267 1151.8
0.3 1272 4240 1.5 1267 844.7
0.5 1267 2540 2.5 1267 506.8
0.8 1271 1588 4.5 1267 281.5
0.9 1271 1412 7.5 1270 169.33

Table 3.2: List of ω0, ωd, and y = ω0/ωd for all sets of measurement. Bd and x = γBd/ωd are varied over a
broad range for each set.

defined as

x =
γBd

ωd
(3.2)

and

y =
γB0

ωd
. (3.3)

The results of our measurements are shown in Fig. 3.6 as functions of x and y. When y is close to 0, the

effective precession frequency follows the Bessel function of x; however, as y increases, the deviation from

Bessel function is clearly observed. When the dressing field frequencies are higher than the Larmor

frequency, i.e., y < 1, the effective precession frequencies (ωeff ) are smaller than the Larmor frequency

(ω0) as shown in Fig. 3.6.a. The reverse is true for y > 1, where ωeff becomes larger than ω0, as shown in

Fig. 3.6.b. All dashed lines are numerical calculations to be described in the next chapter.
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Figure 3.7: Optical signal while applying B1(t). top) ω0/2π = 7153 Hz. bottom) ω0/2π = 2950 Hz.

3.4 Calibration

The optical signal can be used to calibrate oscillatory magnetic fields. The optical signal maximizes when

an RF pulse is applied to orient the magnetization of 3He antiparallel to the B0 axis, making the optical

pumping maximally efficient. Several oscillatory optical signals in different setups are shown in Fig. 3.7.

The amplitude of the oscillation damps as 3He depolarizes. The separation in time between adjacent peaks

is equal to

∆t =
2π

γB1/2
=

4π

γB1
(3.4)

By measuring ∆t in Fig. 3.7 and listed in Tab. 3.3, the magnetic field can be obtained via the equation

B1 =
4π

γ∆t
. (3.5)

The relations between B1 and the function generator voltage Vpp are obtained as

B1 = (19.809± 0.1162)× Vpp mG for ω0/2π = 7153 Hz and B1 = (21.898± 0.1943)× Vpp mG for

ω0/2π = 2950 Hz, as shown in Fig. 3.8. The calibration of B1 does not impact on the dressed spin

measurement. It determines the exact angular solution for the π
2 pulse and affects the amplitude of NMR

signal, but does not affect the frequency shift due to the dressing field.

Using similar method, we can calibrate the dressing coils Bd. To reach larger values of Bd, an amplifier

is added between the function generator and the dressing coils. However, the response of the amplifier is

not as linear as the function generator. We measure the relation between the optical signal, which is

related to Bd, and the corresponding current through a 5Ω resistor connected to the dressing coils. In the

range shown in Fig. 3.10 and Tab. 3.4, the relation between Vpp and the current I is still linear so that we

can get Bd = (837.167± 9.244)× I mG. During the NMR measurement, we also measure the current
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f0 = 7153[Hz] f0 = 2950[Hz]
Vpp[V] ∆t [sec] B1 ∆t [sec] B1

0.5 0.0607842 10.14911381 0.056209 10.97514
0.6 0.0503265 12.25807007 0.046405 13.293989
0.7 0.0431371 14.3010486 0.040385 15.27577
0.8 0.0392157 15.73109146 0.034615 17.82171
0.9 0.0339869 18.15128074 0.03013 20.4748
1 0.0317308 19.44185975 0.026923 22.91371
1.1 0.0294117 20.9748421 0.025 24.67623
1.2 0.026282 23.47255777 0.024039 25.66324
1.3 0.0237179 26.01013426 0.021795 28.30518
1.4 0.0217949 28.30505134 0.020192 30.55154
1.5 0.0211539 29.16274367 0.017308 35.64363
1.6 0.0192307 32.07921518 0.01859 33.18535
1.7 0.0192307 32.07921518 0.017308 35.64343
1.8 0.0173076 35.64363421 0.015385 40.09865
1.9 0.0160256 38.49501818 0.015064 40.95205
2 0.0153846 40.09891472 0.014103 43.74412

Table 3.3: The calibration data of B1. Vpp is the voltage of function generator output. For f0 = 7153 Hz,
fitting Vpp and B1 gives the relation B1 = (19.809± 0.1162)× Vpp [mG]. For f0 = 2950 Hz, fitting Vpp and
B1 gives the relation B1 = (21.898± 0.1943)× Vpp [mG]
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Vpp[V] I[A] ∆t [sec] Bd[mG]
0.01 0.016 0.048739998 12.65707405
0.02 0.0312 0.025079999 24.59751953
0.03 0.0464 0.01668 36.984759
0.04 0.0608 0.012579999 49.03861643
0.05 0.076 0.01014 60.83883306
0.06 0.0912 0.008300002 74.32597849
0.07 0.1056 0.006979999 88.38192955
0.08 0.1216 0.006037998 102.1705753
0.09 0.1304 0.005417999 113.8622967

Table 3.4: The calibration data of Bd using optical signal. For f0 = 1257 Hz, Bd = (837.167± 9.244)× I
mG. The amplifier is set at 32 dBm.

Vpp[V] I[A] n Bd[mG]
0.05 0.076 70 63.03464
0.1 0.1504 34 129.7772

Table 3.5: The calibration data of Bd using NMR signal at f0 = 7152.51 Hz. The amplifier is set at 32
dBm.

through the resistor to get the value of Bd, which is the dominant uncertainty of our measurement.

We can also use NMR signal for calibration. The dressing coil is used as a π
2 coil to rotate

magnetization of 3He. Using different pulse duration τ for Bd, the NMR signal amplitude (A) will be

different so that we can fit A vs. τ to obtain the oscillation period. The period Td is related to the Bd as

Bd =
4π

γTd
(3.6)

Combining results from the above two methods, we obtain Bd = (842.969± 7.782)× I mG.

3.5 Systematic uncertainties

Many possible sources should be considered as systematic uncertainties. The left plot of Fig. 3.4 shows a 2

Hz measurement step. It gives ∼ 1 Hz error for measuring the effective precession frequency, which is

around 1000 Hz. It will contribute a 0.1% error. The drift of B0 will contribute 0.5% error due to the

power supply current stability limitation which has noise of ∼ 4.5 mV compared with the operating

voltage 1 V . The drift of Bd amplitude and frequency due to a function generator can be ignored here.

The error of Bd due to the calibration is set at 1% by fitting the calibration data in Fig. 3.10. The total

error is about 2%. Adding 2% error for x and 0.5% for the ratios, the results are shown in Fig. 3.6.
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Figure 3.9: A vs. n
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Systematic uncertainty(%)
feff 0.1%

B0 drift 0.5%
Bd calibration 1%

total 1.12%

Table 3.6: Systematic uncertainties.
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CHAPTER 4

THEORY OF THE DRESSED SPIN

The dressed spin system was first studied by Cohen-Tannoudji et al. [19][20][21][35][63]. If a particle with a

spin S = 1
2 is placed in a uniform field B0 and an RF field Bd that is perpendicular to B0, the precession

frequency will be modified by the RF field, i.e., the “dressing field”. A spin with the modified precession

frequency is called “the dressed spin”. The spin is “dressed” since its precession frequency is modified. In

this chapter, first we use a classical picture to explain the dressed spin – a larger or a smaller modified

precession frequency. Then a quantum mechanical approach will be presented [19][20][21][63], in which the

Hamiltonian can be written in terms of creation and annihilation operators of photon and other

terms [81][88]. The eigenvalues can be calculated numerically for given B0 and Bd. The modified precession

frequency will then be obtained from the set of eigenvalues and compared with the experimental data.

4.1 Classical treatment

If a particle has a spin ~S, its magnetic dipole moment ~µ is proportional to ~S,

~µ = γ~S, (4.1)

where the proportionality constant γ is called the gyromagnetic ratio. When this particle is placed in a

magnetic field ~B, it experiences a torque, ~µ× ~B. Therefore, the motion of a spin can be treated

classically [83] as

d~S

dt
= ~S × (γ ~B(t)). (4.2)

If the particle is in a uniform magnetic field B0ẑ, the transverse component of the spin precesses about B0

at the Larmor frequency ω0 = γB0. Adding an RF field,

Bd cos (ωdt)x̂, (4.3)
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the precession frequency of the spin will be modified, which is called the “dressed spin”. The RF field can

be seen as a linear combination of a right-handed and a left-handed rotating fields,

Bd cos (ωdt)x̂ =
1

2
[Bd(cosωdtx̂+ sinωdtŷ) +Bd(cosωdtx̂− sinωdtŷ)]. (4.4)

In the frame rotating along ẑ at the frequency ωd, the RF field becomes

1

2
[Bd +Bd(cos 2ωdtx̂

′ − sin 2ωdtŷ
′)]. (4.5)

By using the rotating wave approximation, the second term can be ignored due to its high frequency. The

total magnetic field becomes a static field (B0 − ωd

γ )ẑ + Bd

2 x̂
′ in the rotating frame. Two parameters are

defined as x = γBd/ωd and y = γB0/ωd. The spin in this rotating frame precesses at a frequency

γ

√

(B0 −
ωd

γ
)2 + (

Bd

2
)2 = ωd

√

(y − 1)2 + (
x

2
)2. (4.6)

Going back to the lab frame, if (x/2)/(y − 1) ≪ 1, the precession frequency becomes

ωeff ≈ ωd + ωd

√

(y − 1)2 + (
x

2
)2 ≈ ωd + ωd[(y − 1) +

x2

8(y − 1)
] = ω0 + γBd

x

8(y − 1)
. (4.7)

Eq. 4.7 shows that when y > 1 (y < 1), the effective ωeff is bigger (smaller) than ω0.

Numerical calculation using Eq. B.1 for different dressing field conditions have been carried out. The

calculation will help us to visualize the behavior of spin in response to the dressing field. The

corresponding Monte Carlo study will be described in Chap. 5.

4.2 Quantum mechanical approach

An RF field, Bd(t), will be applied to the system of a uniform holding field ~B0. The quantized vector

potential [21, 75] of the RF field can be written as

~A =
∑

k,ξ

α√
k
[a~k,ξ~ǫξe

i~k·~r + a†~k,ξ
~ǫ∗ξe

−i~k·~r], (4.8)

where ~ǫξ, the photon polarization vector, is a unit vector whose direction depends on the propagation

direction ~k and ξ = 1, 2 is the polarization index parameter. For a given ~k, ~ǫ1 and ~ǫ2 can be chosen so that

(~ǫ1,~ǫ2, ~k/|~k|) form a right-handed set of orthonormal unit vectors. a~k,ξ and a†~k,ξ are annihilation and
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creation operators. α is a constant proportional to the strength of the RF field. Thus the magnetic field is

~Bd = ∇× ~A = −i
∑

k

∑

ξ

α√
k
[a~k,ξ~ǫξ × ~kei

~k·~r − a†~k,ξ
~ǫ∗ξ × ~ke−i~k·~r]. (4.9)

If only a single mode of the field is present (only one ~k), the polarization ~ǫξ × ~k is equal to ~ǫ and the

module is the wave vector |~k| = ωd

c . Summing over ξ, the magnetic field can be simplified to

~Bd =
α√
k
[a~ǫei

~k·~ρ + a† ~ǫ∗e−i~k·~ρ], (4.10)

(To eliminate the imaginary i, set ~r = ~r0 + ~ρ and kr0 = π
2 .) Since atomic dimensions are much smaller

than the wavelength of the RF field, we can set ei
~k·~ρ = 1 and the magnetic field can be written as

~Bd =
α√
k
[a~ǫ+ a† ~ǫ∗]. (4.11)

Coupling the magnetic dipole moment ~µ = γ~~S to the magnetic field ~B, the classical interaction potential

is Vcl = −~µ · ~B = −γ~~S · ~Bd(t), which can be quantized as

V = λ~~S · [a~ǫ+ a† ~ǫ∗], (4.12)

where λ = − γα√
k
. For the polarization of ~ǫ = x̂, the potential can be written as

Vσx
= λ~Ŝx[a+ a†] =

λ~

2
[aŜ+ + a†Ŝ−] +

λ~

2
[aŜ− + a†Ŝ+] ≡

1√
2
[Vσ+ + Vσ−]. (4.13)

V is the sum of two terms, corresponding to right-hand and left-hand circular by polarized photons

respectively.

4.3 Uniform magnetic field as a perturbation

In 1965, Polonsky and Cohen-Tannoudji[63] derived the analytical solution when y is close to 0, which

means the holding field can be treated as a perturbation. We will summarize their derivation in this

section.

If a spin- 12 particle with the gyromagnetic ratio γ is located in a uniform magnetic field B0ẑ and an RF

field as Eq. 4.3, the Hamiltonian is written as

H = ωd~a
†a+ ω0~Ŝz + λ~Ŝx(a+ a†), (4.14)

where the magnetic dipole moment coupling to the uniform field B0 is ~µ · ~B0 = γ~ŜzB0 = ω0~Ŝz, the
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photon energy from the RF field is ωd~a
†a and the magnetic dipole moment coupling to the RF field is

Vσx
= λ~Ŝx(a+ a†) where λ is a coupling constant related to the strength of the RF field. If the quantum

state is set as a coherent state α for the RF field [28], then

a |α〉 = α |α〉 , and [a, a†] = 1, (4.15)

The parameter α is simply related to the average number, n̄≫ 1, of the RF photons,

n̄ = 〈α| a†a |α〉 = α2. (4.16)

The interaction term is related to the RF field such that

λ 〈α| a† + a |α〉 = 2λα = 2λ
√
n̄ = γBd (4.17)

Consequently, λ = γBd/2
√
n̄. The creation and the annihilation operators can be expressed in terms of the

normalized position and momentum operators, X̂ and P̂ , as

a ≡ X̂ + iP̂ /2, a† ≡ X̂ − iP̂ /2. (4.18)

Then the Hamiltonian can be written as

H = ωd~(X̂
2 + P̂ 2/4) + λ~Ŝx(2X̂) + ω0~Ŝz = ωd~P̂

2/4 + ωd~(X̂
2 +

2λ

ωd
ŜxX̂) + ω0~Ŝz

= ωd~P̂
2/4 + ωd~(X̂ +

λ

ωd
Ŝx)

2 + ω0~Ŝz −
~

ωd
(λŜx)

2. (4.19)

Two new operators are defined as

b ≡ X̂ +
λ

ωd
Ŝx + iP̂ /2 = a+

λ

ωd
Ŝx (4.20)

b† ≡ X̂ +
λ

ωd
Ŝx − iP̂ /2 = a† +

λ

ωd
Ŝx (4.21)

so that the Hamiltonian can be rewritten as

H = ωd~b
†b+ ω0~Ŝz −

~

ωd
(λŜx)

2. (4.22)

The last term only depends on Ŝx and a constant for eigenstates of b (or a). The eigenstates of the first

term are |nb〉; however, what we really want is the eigenstates of a. A unitary transformation of b to a is

needed so that we can treat it as the translation from X̂ to X̂ + λ
ωd
Ŝx. We assume a unitary operator
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U(χ) = eχ(a
†−a) = e−iχ·P̂ so that

f(χ) ≡ U †(χ)a†U(χ) = b† (4.23)

The derivative of f(χ) with respect to χ is

df(χ)

dχ
= U †(χ)((iP̂ )a† − a†(iP̂ ))U(χ) = U †(χ)((a − a†)a† − a†(a− a†))U(χ)

= U †(χ)(aa† − a†a)U(χ) = U †(χ)([a, a†])U(χ) = 1 (4.24)

Thus f(χ) = χ+ constant and f(0) = a† = constant. Therefore χ can be solved by using

f(χ) = χ+ a† = b† = a† +
λ

ωd
Ŝx ⇒ χ =

λ

ωd
Ŝx (4.25)

Consequently, the unitary transformation operator is exp[ λ
ωd
Ŝx(a

† − a)].

If we treat the ω0~Ŝz term as a perturbation (B0 ≪ Bd)[20], the unperturbed eigenstates are

|n,mx〉 = |na〉 |mx〉 = U †(χ) |nb〉 |mx〉

= exp[− λ

ωd
Ŝx(a

† − a)] |nb〉 |mx〉 = exp[−λmx

ωd
(a† − a)] |nb〉 |mx〉

= |nmx
〉 |mx〉 . (4.26)

The eigenvalues of energy are

E = nωd~− ~(λŜx)
2/ωd = nωd~− ~(λmx)

2/ωd (4.27)

so that the states mx = ± 1
2 are degenerate. The eigenstates |nmx

〉 satisfy

fq(2χ, n) ≡
〈

n+ ~

2
|(n− q)− ~

2

〉

=
〈

n
∣

∣exp[2χ(a† − a)]
∣

∣n− q
〉

(4.28)

dfq(2χ, n)

d(2χ)
=

〈

n
∣

∣exp[2χ(a† − a)](a† − a)
∣

∣n− q
〉

=
〈

n
∣

∣

∣
exp[2χ(a† − a)]

√

n− q + 1
∣

∣

∣
n− q + 1

〉

−
〈

n
∣

∣exp[2χ(a† − a)]
√
n− q

∣

∣n− q − 1
〉

=
√

n− q + 1fq−1(2χ, n)−
√
n− qfq+1(2χ, n) (4.29)

where 2χ ≡ λ/ωd.

The solution is obtained by expanding the exponential operator in a series which is equivalent to the

expansion of the Bessel function Jq(2λ
√
n/ωd) in the case when n, n− q ≫ x where γBd = 2λ

√
n. The
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definition of the Bessel function of the first kind is

Jq(x) =

∞
∑

s=0

(−1)s

s!(q + s)!
(
x

2
)q+2s, (4.30)

J0(x) =

∞
∑

s=0

(−1)s

s!(s)!
(
x

2
)2s = 1− (

x2

4
) +

x4

32
+ · · · , (4.31)

J0(2x
√
n) = 1− x2n+

x4n2

2
+ · · · . (4.32)

Since

eAeB = eA+B+ 1
2 [A,B] (4.33)

exp[
λ

ωd
(a† − a)] = exp[

λ

ωd
a†] exp[− λ

ωd
a] exp[− λ2

2ω2
d

], (4.34)

we can get

〈

n

∣

∣

∣

∣

exp[
λ

ωd
(a† − a)]

∣

∣

∣

∣

(n− q)

〉

=

〈

n

∣

∣

∣

∣

exp[
λ

ωd
a†] exp[− λ

ωd
a] exp[− λ2

2ω2
d

∣

∣

∣

∣

n− q

〉

= exp[− λ2

2ω2
d

]

〈

n

∣

∣

∣

∣

∣

[
∑

m

(
λa†

ωd
)m

1

m!
][
∑

s

(−λa
ωd

)s
1

s!
]

∣

∣

∣

∣

∣

n− q

〉

. (4.35)

We need
〈

n
∣

∣(a†)mas
∣

∣n− q
〉

6= 0 so that n−m = n− q − s which implies m = q + s so that

exp[− λ2

2ω2
d

]
∑

s

〈

n

∣

∣

∣

∣

(−1)s(
λ

ωd
)q+2s (a

†)q+s(a)s

(q + s)!s!

∣

∣

∣

∣

n− q

〉

=exp[− λ2

2ω2
d

]
∑

s

(−1)s
√

n(n− 1) · · · (n− q − s)
√

(n− q)(n− q − 1) · · · (n− q − s)

(q + s)!s!
(
λ

ωd
)q+2s

≈
∑

s

(−1)s(
λ
√
n

ωd
)q+2s 1

(q + s)!s!

=Jq(2λ
√
n/ωd), (4.36)

if n≫ x⇒ exp[− λ2

2ω2
d

] → 1 where γBd ≡ 2λ
√
n and x ≡ γBd/ωd.

Since the states are degenerate for a fixed n, we calculate the effect of the perturbation ω0~Ŝz by

calculating its matrix elements

〈n′ ,m′

x|ω0~Ŝz|n,mx〉 =
〈

m
′

x

∣

∣

∣Ŝz

∣

∣

∣mx

〉〈

n
′

m′
x

|nmx

〉

ω0

=
〈

m
′

x

∣

∣

∣Ŝz

∣

∣

∣mx

〉〈

n
′
∣

∣

∣exp[(m
′

x −mx)(λ/ωd)(a
† − a)]

∣

∣

∣n
〉

ω0

=
〈

m
′

x

∣

∣

∣Ŝz

∣

∣

∣mx

〉

Jn′−n((m
′

x −mx)(x))ω0. (4.37)

37



Since
∣

∣

∣

∣

mx = +
1

2

〉

=





1

0



 ,

∣

∣

∣

∣

mx = −1

2

〉

=





0

1



 (4.38)

and

σ̂x =





1 0

0 −1



 , σ̂y =





0 1

1 0



 , σ̂z =





0 −i
i 0



 (4.39)

in our |mx〉 representation, the off-diagonal terms are
〈

±|Ŝz|∓
〉

= ∓i 12 .
Only m

′

x = mx ± 1 is available because of the selection rules on Ŝz. Since J0(x) = J0(−x), for the first

order perturbation, the correction term of the Hamiltonian can be written as

V (1)
n =





0 −iω0~

2 J0(x)

+iω0~

2 J0(−x) 0



 , (4.40)

which can be diagonalized by transforming the eigenstates of Ŝx, |mx〉, to the eigenstates of Ŝz, |mz〉. The
first order energy shift will be

E(1)
n = ω0~J0(x)mz , (4.41)

where mz = ± 1
2 and the factor J0(x) represents the modification of the magnetic moment by the dressing

field. In the presence of an EDM interaction, ω0 will be replaced by ω0 + 2dE/~. The eigenstates in |mz〉
basis can be written as

|n,mz〉 =
1√
2
(|n+〉

∣

∣

∣

∣

mx = +
1

2

〉

+ im|n−〉
∣

∣

∣

∣

mx = −1

2

〉

), (4.42)

with energy given by nωd~+mzω0~J0(x) − ~(λmx)
2/ωd. For the second order perturbation, the second

order energy shift is

E(2)
n =

∑

s6=n,m′
x−mx=±1

∣

∣

∣

〈

m
′

x, s
∣

∣

∣
ω0~Ŝz |mx, n〉

∣

∣

∣

2

E0
s − E0

n

=
∑

s6=n,m′
x−mx=±1

(∓i 12Js−n(±x)ω0~)
2

(s− n)ωd~

=
1

2

(ω0~)
2

ωd~

∑

s−n=q 6=0

J2
q (x)

q
=

1

2

(ω0~)
2

ωd~

∑

q>0

J2
q (x)

q
+
J2
−q(x)

−q = 0. (4.43)

The energy shift in the third order is proportional to ω0~(ω0/ωd)
2 which is extremely small if ω0/ωd ≪ 1.

4.4 Matrix elements

Eq. 4.14 shows the Hamiltonian in the uniform magnetic field and the RF field is

H = ωd~a
†a+ ω0~Ŝz + Vσx

= H0 + Vσx
. (4.44)
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To find the eigenvalues of the Hamiltonian, the matrix elements will be calculated first. |n,±〉 are the set

of eigenstates of H0 where n signifies the oscillating quanta of the dressing field and +/− denotes the spin

up/down state. The eigenvalues of H0 are given by:

〈n,±|H0 |n,±〉 = 〈n,±|ωd~a
†a+ ω0~Ŝz |n,±〉 = ωd~n± ω0~

2
. (4.45)

The spin operators, the creation and the annihilation operators can be applied to eigenstates so that

Ŝ± |∓〉 =
√

(
1

2
)(
3

2
)− (∓1

2
)(±1

2
) |±〉 = |±〉 , (4.46)

a† |n〉 =
√
n+ 1 |n+ 1〉 , (4.47)

a |n〉 =
√
n |n− 1〉 . (4.48)

For the linear oscillatory field perpendicular to B0, using Eq. 4.13, the matrix elements will be

〈n+ 1,∓|Vσx
|n,±〉 = 1√

2
(〈n+ 1,∓|Vσ+ |n,±〉+ 〈n+ 1,∓|Vσ− |n,±〉) = λ~

2

√
n+ 1, (4.49)

〈n− 1,∓|Vσx
|n,±〉 = 1√

2
(〈n− 1,∓|Vσ+ |n,±〉+ 〈n− 1,∓|Vσ− |n,±〉) = λ~

2

√
n (4.50)

in the basis of








































...

|n+ 1,+〉
|n+ 1,−〉
|n,+〉
|n,−〉

|n− 1,+〉
|n− 1,−〉

...









































. (4.51)

Using

λ ≡ γBd

2
√
n
, (4.52)

two dressing parameters are defined as x ≡ γBd

ωd
and y ≡ γB0

ωd
as well as Eq. 3.2 and Eq. 3.3. The

Hamiltonian can be written as matrices so that H0 is
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H0 = ~ωd









































· · · · · · · ·
· (n+ 1) + y

2 0 0 0 0 0 ·
· 0 (n+ 1)− y

2 0 0 0 0 ·
· 0 0 (n) + y

2 0 0 0 ·
· 0 0 0 (n)− y

2 0 0 ·
· 0 0 0 0 (n− 1) + y

2 0 ·
· 0 0 0 0 0 (n− 1)− y

2 ·
· · · · · · · ·









































(4.53)

and Vσx
is

Vσx
= ~ωd





















































· · · · · · · · · ·
· 0 x

4 0 0 0 0 0 0 ·
· x

4 0 0 0 x
4 0 0 0 ·

· 0 0 0 x
4 0 0 0 0 ·

· 0 0 x
4 0 0 0 x

4 0 ·
· 0 x

4 0 0 0 x
4 0 0 ·

· 0 0 0 0 x
4 0 0 0 ·

· 0 0 0 x
4 0 0 0 x

4 ·
· 0 0 0 0 0 0 x

4 0 ·
· · · · · · · · · ·





















































. (4.54)

where
√

n+1
n → 1 if n≫ 1. Therefore, eigenvalues can be obtained by diagonalizing the matrix of the

Hamiltonian.

Using the perturbation theory, the first order of the energy shift is zero and the second order of the

energy shift is

E(2)
n,mz

=
∑

s6=n,m′
z−mz=±1

| 〈s,m′
z|V |n,mz〉 |2

En,mz
− Es,m′

z

=
|~ωdx/4|2

En,mz
− En+1,−mz

+
|~ωdx/4|2

En,mz
− En−1,−mz

= |~ωd
x

4
|2( 1

2mzω0~− ωd~
+

1

2mzω0~+ ωd~
) = ~γBd

x

16
(

1

2mzy − 1
+

1

2mzy + 1
). (4.55)

The precession frequency is proportional to the energy difference ∆E = E+ − E− between the spin up and

spin down states. Therefore, the frequency shift becomes

∆ωeff =
1

~
(E

(2)
n,+ −∆E

(2)
n,−) = γBd

x

8
(

1

y − 1
+

1

y + 1
) (4.56)
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Figure 4.1: Energy diagrams for different x, i.e., different Bd.

which is compatible with Eq. 4.7.

4.5 Eigenvalues of the matrices

A 122−by−122 matrix with maximum ∆n = 30 was formed by inserting the elements of the matrices in

Sec. 4.4. The matrix is then diagonalized to obtain the eigenvalues of different x and y. One example of

the spectrum of eigenvalues is shown in Fig. 4.1. The red solid curves show the eigenvalues with the RF

field Bd and the green dashed curves show the eigenvalues without the RF field, which is just the Zeeman

splitting diagram.

4.6 Precession frequency calculation

How can one determine the precession frequency of particles in the dressing field? Fig. 4.2 shows an

example of the spectrum of the energy eigenvalues E as a function of y = γB0/ωd for x = γBd/ωd = 1.57.

The energy difference ∆E = E+ − E− defines the effective precession frequency, ωeff = ∆E/~. It shows

how the Zeeman splitting in the uniform field(green dashed lines) is modified by the presence of the

dressing field (red solid lines). Without the dressing field, the gyromagnetic ratio for the Zeeman splitting

is given by γ = ∆E/~B0 which is just a constant independent of B0, and the precession frequency is equal
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Figure 4.2: Sample energy diagram of the dressed spin system calculated as a function of y, for dressing
parameter x = 1.57. Dashed lines indicate the Zeeman splittings in the undressed system (E0 = ± 1

2ωd~).
The energy scale is given in units of the dressing field photon energy ~ωd.

to the Larmor frequency, ω0 = γB0. Adding the dressing field, Fig. 4.2 shows that E is changed to E′ and

γ now becomes γ′ = ∆E′/~B0; the new effective precession, ωeff , is defined by the new energy slitting

∆E′ such that ∆E′/∆E = ωeff/ω0. It is interesting to note that for y < 1,∆E′ < ∆E and γ′ is smaller

than γ. In contrast, for y > 1, ∆E′ > ∆E and γ′ is now greater than γ. Fig. 4.3 shows ωeff/ω0 as a

function of x for different y. If y is close to 0, the effective precession frequency is following the Bessel

function as the result in Sec. 4.3. Now we can compare the precession frequency of the data with the

prediction. The dashed curves in Fig. 3.6 are the calculations for ωeff/ω0 = γ′/γ using the quantum

mechanical method. The good agreement between the data and the calculation shows that the observed

deviation can be quantitatively described in this quantum mechanical approach.

4.7 Critical dressing between UCN and 3He

One motivation to study the dressed spin for the neutron EDM experiment is to determine the optimal

setting for the dressing field. Using the quantum mechanical approach, we show some examples of the

effective precession frequencies for UCN and 3He in various regions (for y < 1 in Fig. 4.4 left and for y > 1

in Fig. 4.4 right). Fig. 4.4 shows that critical dressing, where ωeff for 3He and neutron are identical, can

occur for various values of y and is not limited to the weak field (y ≪ 1) condition. Fig. 4.5.a shows the

first critical points, xc, as a function of y = γB0/ωd. Fig. 4.5.b shows the corresponding values of ωeff/ω0

42



-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

 0  1  2  3  4  5

ωef
f /ω

0

x

y=0.1
y=0.3
y=0.5
y=0.7
y=0.9
J0(x)
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ωeff/ω0 = 1 show neutron’s effective precession frequency ratios and the curves with the initial value of
ωeff/ω0 ∼ 1.112 show 3He’s.

at the first critical point xc. To determine the optimal setting for the dressing field, we need to consider

various issues such as the power dissipation, spin relaxation, the stability of the critical point, and the

implication on the systematic errors. Fixing B0 = 10 mG, Fig. 4.6 shows the corresponding Bd and ωd for

the first critical point. Fixing ωd = 3000 mG, Fig. 4.7 shows the corresponding Bd and B0 for the first

critical point.
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 0

 1000

 2000

 3000

 4000

 5000

 6000

 500  1000  1500  2000  2500  3000  3500  4000

B
d[

m
G

]

B0[mG]

ωd= 3000[Hz]

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 500  1000  1500  2000  2500  3000  3500  4000

ω
ef

f /ω
0

B0[mG]

ωd= 3000[Hz]

Figure 4.7: Fix ωd = 3000 Hz. (a) The first critical points Bd vs. B0 (b) The effective precession frequency
ratio at the first critical point xc vs. B0.

44



CHAPTER 5

SIMULATION OF THE DRESSED SPIN TECHNIQUE

The dressed spin technique for the nEDM experiment was first introduced by Golub and Lamoreaux in

1994 [29]. Precession frequencies of neutron and 3He can be modified to become identical by applying an

RF “dressing” field. In this chapter, we will discuss the simulation of the dressed spin technique. First, the

EDM effective field and the pseudomagnetic field will be discussed. Second, some simulation tools will be

described. Third, a simple review of the dressed spin technique in [29] will be given. The corresponding

Monte Carlo will be generated using the parameters in the proposed neutron EDM experiment at the

Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory (ORNL) [12]. The difference

between the idea in [29] and the proposed experiment [12] will be addressed. The statistic sensitivity will

be estimated using the Monte Carlo. In the end, some possible systematic errors for the dressed spin

technique will be discussed.

5.1 Electric dipole moment

In the presence of parallel (antiparallel) magnetic (B0) and electric (E0) fields, the Hamiltonian of a

particle is defined as

H = −(~µ · ~B0 ± ~d · ~E0) = −(γ~~S · ~B0 ± d
~S

S
· ~E0) = −γ~~S · ( ~B0 ±

d

γ~S
~E0) (5.1)

where µ and d are the magnetic and electric dipole moments (EDM). An effective magnetic field due to

EDM, called Be, is defined as

~Be =
d

γ~S
~E0 =

2d

γ~
~E0. (5.2)

A shift in the precession frequency due to EDM will be

ωe = γBe =
2dE0

~
. (5.3)
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For a neutron EDM experiment with E0 = 50 KV/cm and γ = γn = −2π × 2.91647 Hz/mG, the effective

magnetic field for d = dn = 10−26 e cm is

B̃e =
2× 10−26 e cm× 50 KV cm−1

−2.91656954× 2π s−1 mG−1 × 6.58211915× 10−19 KeV s
= −8.29053× 10−8 mG, (5.4)

and the frequency shift is

ωe = γnB̃e = 1.51927 µHz. (5.5)

5.2 Pseudomagnetic field

The pseudomagnetic field could lead to some systematic errors for the neutron EDM experiment. This field

will mimic a small but non-negligible magnetic field along the spin orientation of 3He. We will first

estimate the magnitude of the pseudomagnetic field in this section. The effect of the pseudomagnetic field

will be included in the n+3He simulation described later.

The pseudomagnetic field is originated from the real part of the spin-dependent scattering length. The

scattering of a neutron by a single nucleus can be described by the Born approximation, and the Fermi

pseudopotential is

VF =
2π~2

m
bδ(r), (5.6)

where r is the position of the neutron relative to the nucleus, m is the neutron mass, and b is the bound

scattering length 1 which is in general complex b = b
′ − ib

′′

[78]. The effective scattering length between a

neutron and a nucleus includes various interactions [77].

The neutron has a spin ~S and the nucleus has a spin ~I. The Fermi pseudopotential is generally

spin-dependent so that the most general expression for b is

b = bc +
2bi

√

I(I + 1)
~S · ~I, (5.7)

where bc and bi are called the bound coherent and incoherent scattering lengths [91]. Since the neutron

spin is S = 1
2 , the total spin of neutron and nucleus is J = I ± 1

2 . The corresponding scattering lengths are

b+ and b−, given as [91]

b− = bc −
√

I + 1

I
bi, b+ = bc +

√

I

I + 1
bi. (5.8)

1The relation to the scattering length a of a nucleus free to recoil is b = A+1

A
a, where A is the nucleus/neutron mass

ratio [41].
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If we consider the propagation of slow neutrons through a macroscopic sample, the non-absorptive part

of VF is given by

VF =
2π~2

m
ρb

′

c +
2π~2

m
ρ

2b
′

i
√

I(I + 1)
~S · ~I − ~µ · ~B. (5.9)

where b
′

c is the real part of bc, b
′

i is the real part of bi, ρ is the number density of the nuclei and m is the

neutron mass [91]. The first term is due to the spin-independent neutron-nucleus scattering. The third

term is due to the neutron magnetic moment ~µ. The second term, the pseudomagnetic term, can be

rewritten as

VF,pm =
2π~2

m
ρ
2b

′

i

γ

√

I

I + 1
(γ~S) ·

~I

I
= −(γ~~S) · [−2π~

mγ
ρb

′

i

√

I

I + 1

~I

I
]

= −~µ · [−2π~

mγ
ρb

′

i

√

I

I + 1
~P ]

= −~µ · ~Ba (5.10)

where the neutron magnetic moment ~µ = γ~~S 2, the nuclear polarization ~P =
~I
I and the pesudomagnetic

field

~Ba = −2π~

mγ
ρb

′

i

√

I

I + 1
~P . (5.11)

I = 1
2 for the 3He nucleus. Using data in [78], the bound scattering lengths in unit fm are

bc = 5.74− 1.483i, bi = −2.5 + 2.568i. (5.12)

The pseudomagnetic field is

~Ba = −(2.15885× 1022 fm2 mG)ρ(−2.5 fm)

√

1/2

3/2
~P = (3.11603× 1022 fm3)ρ~P . (5.13)

For a 3He density 3 of ρ = ρ3 = 1.653× 10−27 fm−3 and P = P3 = 1, the magnitude of ~Ba is

B̃a = 5.15× 10−5 mG. The corresponding precession frequency is ωa = γnB̃a = 2π× 0.1502 mHz ∼ 1mHz.

5.3 Simulation tools

Detailed simulation has been performed to understand the roles of the dressing field for the nEDM

experiment. We will describe how to simulate the spin dynamics in a time-dependent magnetic fields.

2γ = γn = −2.91656954 × 2π Hz/mG.
3Use the equation, 1/τ3 = ρ3σ0vn, in Sec.3.3 of [29], where τ3 = 500 sec, σ0 = 5.5×103 barns is the average absorption cross

section of neutron and 3He when neutron velocity is vn = 2200 m/s. The density of 3He is ρ3 = 1/(τ3σ0vn) = 1.653×1012 cm−3.
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Several techniques are used in this study, including the numerical method for solving differential equation,

and the Monte Carlo method.

5.3.1 Bloch equation

The Bloch equation,

d~S(t)

dt
= γ~S(t)× ~B(t), (5.14)

is used to simulate the spin dynamics in a time-dependent magnetic field. The Bloch equation can be

solved numerically to obtain the time-dependences of the three spin components. In Eq. B.1, the

gyromagnetic ratio, γ, of neutron (n) and 3He (3) are

γn/2π = −2.91647 Hz/mG (5.15)

γ3/2π = −3.24341 Hz/mG (5.16)

given by CODATA 4. ~B(t) is a time-dependent magnetic field including:

• The constant holding field, B0ẑ,

• The dressing field, Bd cosωdtx̂,

• The modulation field of the dressing field, BmSign(cosωmt) cosωdtx̂,

• The time-dependent pseudomagnetic field, ~Ba(t) ‖ ~S3(t),

• The EDM effective field, Beẑ.

The modulation field may have other forms. Therefore, the expression for ~B(t) is

Bx = (Bd + BmSign(cosωmt)) cos (ωdt) +Ba,x(t)

By = Ba,y(t)

Bz = B0 ±Be +Ba,z(t). (5.17)

The relative angle between neutron and 3He is defined as

cos θn3 =
〈

Ŝn · Ŝ3

〉

. (5.18)

4http://physics.nist.gov/cuu/Constants/index.html
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5.3.2 Runge-Kutta method

A popular method to solve a differential equation is the fourth-order Runge-Kutta method, which evolved

from the simple Euler method. In the Euler method,

yn+1 = yn + hf
′

(xn, yn) (5.19)

which advances a solution from xn to xn+1 = xn + h. The fourth-order Runge-Kutta formula is

k1 = hf
′

(xn, yn)

k2 = hf
′

(xn +
h

2
, yn +

k1
2
)

k3 = hf
′

(xn +
h

2
, yn +

k2
2
)

k4 = hf
′

(xn + h, yn + k3). (5.20)

and the value of yn+1 at xn+1 is

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4). (5.21)

The Runge-Kutta method was applied to solve the Bloch’s equation. The procedure is

~k1 = ∆t γ ~Sn × ~B(t)

~k2 = ∆t γ (~Sn +
~k1
2
)× ~B(t+

∆t

2
)

~k3 = ∆t γ (~Sn +
~k2
2
)× ~B(t+

∆t

2
)

~k4 = ∆t γ (~Sn + ~k3)× ~B(t+∆t), (5.22)

and the value ~Sn+1 is given as

~Sn+1 = ~Sn +
1

6
(~k1 + 2~k2 + 2~k3 + ~k4) (5.23)

where we use a time step ∆t = 10−6 sec.

5.3.3 Scintillation light rate

The interaction between neutrons and 3He atoms will emit scintillation light in liquid 4He, through the

reaction in Eq. 2.23. The scintillation light signal depends on the relative angle between the polarizations

of neutron and 3He, ~Pn and ~P3. To obtain the distribution function of the scintillation light, the UCN loss
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is written as

dNUCN

dt
= −(

dNwall

dt
+
dNsin,weak

dt
+
dNsin,abs

dt
), (5.24)

where NUCN is the UCN number, Nwall is the number of neutrons absorbed by the wall, Nsin,weak is the

number of scintillation light signals due to the weak decay of neutrons (known as β decay) and Nsin,abs is

the number of the scintillation light signals due to the absorption of 3He. Various terms in Eq. 5.24 are

dNwall

dt
=

1

τwall
NUCN (t), (5.25)

dNsin,weak

dt
=

1

τβ
NUCN (t), (5.26)

dNsin,abs

dt
=

1

τ3
NUCN(t)(1 − P (t) cos θn3(t)), (5.27)

where τ ’s are decay constants for various effects, P (t) is the product of the polarizations of neutron and

3He as a function of time. The total loss of UCN becomes

dNUCN

dt
= −NUCN (

1

τwall
+

1

τβ
+

1

τ3
(1− P (t) cos θn3(t))) (5.28)

and the number of UCN is

NUCN = N0 exp [−(
1

τwall
+

1

τβ
+

1

τ3
)t+

1

τ3

∫ t

dτP (τ) cos θn3(τ)] (5.29)

where N0 is the initial number of UCN. The scintillation light rate is

dΦ

dt
=
dNsin

dt
=
dNsin,weak

dt
+
dNsin,abs

dt

= N0 exp [−(
1

τwall
+

1

τβ
+

1

τ3
)t+

1

τ3

∫ t

0

dτP (τ) cos θn3(τ)]×

(
1

τβ
+

1

τ3
(1 − P (t) cos θn3(t)))

= N0 exp [−Γavet+
1

τ3

∫ t

0

dτP (τ) cos θn3(τ)](
1

τβ
+

1

τ3
(1− P (t) cos θn3(t))), (5.30)

where Γave is defined as

Γave =
1

τβ
+

1

τ3
+

1

τwall
. (5.31)

Eq. 5.30 will be used as the distribution function to generate Monte Carlo. Besides, the corresponding

cos θn3 will be calculated using the Bloch equation. The scintillation signal will be simulated for different

magnetic field setups.
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5.4 Free case (without the dressing field)

In a uniform magnetic field B0, neutron and 3He precess at their Larmor frequencies, ωn = γnB0 and

ω3 = γ3B0. The relative precession frequency is

ωl ≡ 2πfl ≡ ωn − ω3 = (γn − γ3)B0 = 2π × 0.327(Hz/mG)×B0 (5.32)

and the relative angle will be

θn3(t) = ωlt+ θ0, (5.33)

where θ0 is the initial phase difference between the polarizations of neutron and 3He. To simplify the

equation of the scintillation light rate in Eq. 5.30, the polarizations of both neutron and 3He are set to one

(P (t) = 1). Then, the scintillation light rate becomes

dΦ

dt
= N0 exp [−Γavet+

1

τ3ωl
((cosωlt− 1) sin θ0 + sinωlt cos θ0)](

1

τβ
+

1

τ3
(1− cos (ωlt+ θ0))). (5.34)

If the initial relative angle is zero (θ0 = 0), the scintillation light rate will be simplified as

dΦ

dt
= N0 exp [−Γavet+

sinωlt

τ3ωl
](

1

τβ
+

1

τ3
(1− cosωlt)). (5.35)

For a fast precession ωl, for example B0 = 10 mG and ωl ∼ 20.7 Hz, the term

∣

∣

∣

∣

sin(ωlt)

ωlτ3

∣

∣

∣

∣

< 0.0001 (5.36)

can be ignored. Therefore, the scintillation light rate becomes

dΦ

dt
∼ N0e

−Γavet(
1

τβ
+

1

τ3
(1− cosωlt)), (5.37)

where N0 = 1.68× 106, τβ = 885 sec, τ3 = 500 sec and τcell = 1150 sec for the Monte Carlo [9].

5.4.1 Monte Carlo simulation of the free case

Monte Carlo of 10 runs are respectively generated for two cells placed in opposite electric field directions.

The result will be compared with the sensitivity estimated using the method in [15].

The generating function is Eq. 5.30 where the term 1
τ3

∫ t

0 dτP (τ) cos θn3(τ) is also integrated step by

step. An EDM effective field Beẑ was added so that the relative precession frequency in cell 1 (cell 2)

becomes ωl − ωe (ωl + ωe) where ωe = 100 µHz. The Bloch equation simulation will be applied to obtain
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cos ((ωl ± ωe)t). The generated Monte Carlo can be fitted by using the function

f(t) = e−p0t[p1 − p2 cos (2π(p3 + p4)t+ p5)] + p6 (5.38)

where p0 is the total decay constant, p1 and p2 are related to the product of the total neutron number and

the decay constants, p3 is fixed as the relative precession frequency fl, p4 is the relative precession

frequency shift, p5 is the initial relative phase shift and p6 is the constant background. The standard

deviation of p4 is related to the statistical sensitivity of EDM. One example of the fitting is shown in

Fig. 5.1 and the fitted parameters are listed in Table. 5.1. Fig. 5.2 shows that the standard deviation of p4

is around 2.7 µHz for N0 = 1.68× 106 5.
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Figure 5.1: Fitting of the Monte Carlo. The fitted parameters of f(t) are shown in Table 5.1. The right
figures show the fits in a smaller time window.

5In fact, since only the time window t = [0, 500] sec is used, the total neutron number is around 1.2× 106.

Table 5.1: The fitted parameters of f(t) for one Monte Carlo run.

Cell1 Cell 2
pi error

p0 0.00397632 1.37748×10−5

p1 262.844 0.430667
p2 159.853 0.502974
p3 3.26941 fixed
p4 9.87702×10−6 2.46506×10−6

p5 1.02947 0.00337528
p6 -1.36403 0.297069

pi error
p0 0.00400904 1.37388×10−5

p1 262.432 0.430569
p2 161.682 0.504257
p3 3.26941 fixed
p4 -1.28949×10−5 2.45966×10−6

p5 1.02576 0.00334389
p6 -0.710624 0.292453
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Figure 5.2: The distribution of p4. The total RMS of 20 runs is 2.594× 10−6 Hz which is consistent with
the estimation of Eq. 5.39. The mean difference is ∆ω = 197.1 µHz.

Using the analytical expression by Chibane et al. [15], the frequency variance can be estimated [9] as

σ2
f =

6

π2
(
τ3
T
)2Γave

1

1− e−ΓaveT
(
1

τ3
+

1

τβ
) (5.39)

where T is the period of the measurement for a single run. Using τβ = 885, τ3 = 500, τwall = 1150 and

T = 500, σf = 2.97× 10−3 Hz which is consistent with the sensitivity obtained from our Monte Carlo

study(N0 ≈ 1.2× 106 so that σf/
√
N0 = 2.7× 10−6 Hz).

Different pseudomagnetic fields are also examined in simulation. Fig. 5.3 shows pseudomagnetic fields

at level of 10−4 mG will cause a frequency shift at order of 10−8 Hz, which is much smaller than the

sensitivity at order of 10−6 Hz. Besides, the effect of the pseudomagnetic field is independent of the

direction of electric fields. The effect will be further suppressed from a comparison between the two cells.
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Figure 5.3: Pseudomagnetic field versus frequency shift. The slope is about 3.2× 10−8 Hz.

5.5 Dressed spin

Here we briefly will review the dressed spin technique for the neutron EDM experiment. A particle with a

spin S = 1
2 in a constant magnetic field B0ẑ, called the holding field, will precess at the Larmor frequency

ω0 = γB0. Then, an oscillatory RF field like Bd(t) = Bd cosωdtx̂ in Eq. 4.3, called the dressing field, is
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added to the system perpendicular to the holding field where Bd is the dressing field amplitude and ωd is

the dressing field frequency. Two dressing parameters are defined as x ≡ γnBd

ωd
and y ≡ γnB0

ωd
as well as

Eq. 3.2 and Eq. 3.3 where γn is the gyromagnetic ratio of neutrons. The precession frequencies of neutron

and 3He can be modified by tuning these two parameters. If the dressing field frequency ωd is high enough

comparing with ωn (y = ωn/ωd << 1), Fig. 5.4 shows the precession frequency is modified following the

Bessel function [19]

ωd
n = ωnJ0(

γnBd

ωd
), ωd

3 = ω3J0(
γ3Bd

ωd
). (5.40)

The relative precession frequency between neutron and 3He will be

ωγ = ωd
n − ωd

3 = γnB0J0(
γnBd

ωd
)− γ3B0J0(

γ3Bd

ωd
). (5.41)

There are critical points of x and y where neutron and 3He precess at the same frequencies, called the

critical dressing, i.e.,

ωγ = ωd
n − ωd

3 = 0. (5.42)

Solving γnB0J0(
γnBd

ωd
) = γ3B0J0(

γ3Bd

ωd
), the solution of the lowest critical point is at xc =

γnBd,c

ωd
∼ 1.189,

where Bd,c is the critical dressing field. The advantage of applying the dressed spin technique is to

eliminate the systematic error from a drift of B0. If ωγ is close to zero, the systematic error due to the

drift of B0 will be strongly suppressed 6.

The dressing parameters are set at y = 0.01 and x = 1.189 and B0 = 10 mG for the neutron EDM

experiment at the SNS. However, in reality, there is always a finite offset of the relative precession

frequency. For example, for x = 1.189, ωγ is

ωγ = γnB0J0(1.189)− γ3B0J0(
γ3
γn

1.189) = 3.14547× 10−5 Hz (5.43)

which is not zero. It is impossible to sit precisely at the critical dressing point in the real experiment.

Nevertheless, the offset of the dressing field can be dealt with by applying a feedback scheme which can

adjust the dressing field to correct for the offset.

5.5.1 Analytic solution of the dressed spin

Now we can consider the time dependence of 〈~σ〉. We take an initial state with 〈~σ〉 pointing along the x̂

axis in the presence of the dressing field Bd. The matrix elements of σ̂x, σ̂y, σ̂z in the basis of the

6The necessary uniformity of the magnetic fields is described in Appendix F.
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ωd

n

ωn
= J0(x) and

ωd
3

ωn
= γ3

γn
J0(

γ3

γn
x). ωn is defined by ωn = γnB0. It shows that the effective

precession frequencies of neutron and 3He can cross at several places. Usually we use the first point at
xc ∼ 1.189 as the dressing point.

eigenstates Eq. 4.42 can be calculated. For σ̂x, we have

exp [−i(n′

ωd +
1

2
mω0J0(x))t]〈n′ ,m′ |σ̂x|n,m〉 exp [i(nωd +

1

2
mω0J0(x))t]

=
1

2
[
〈

n
′

+|n+

〉

− (im
′

)(im)(−1)
〈

n
′

−|n−
〉

] exp [i((n− n
′

)ωd +
1

2
(m−m

′

)ω0J0(x))t]

=δn,n′
1

2
(1 −mm

′

) exp [
1

2
(m−m

′

)ω0J0(x)t]

=







0, m = m
′

δn,n′ exp [ i2 (m−m
′

)ω0J0(x)t], m 6= m
′







,

For σ̂y, we have

exp [−i(n′

ωd +
1

2
m

′

ω0J0(x))t]〈n′ ,m′ |σ̂y|n,m〉 exp [i(nωd +
1

2
mω0J0(x))t]

=
1

2
[
〈

n
′

+|n−
〉

im−
〈

n
′

−|n+

〉

im
′

] exp [i((n− n
′

)ωd +
1

2
(m−m

′

)ω0J0(x))t]

=
1

2
[Jn′−n(x)im− Jn′−n(−x)im

′

] exp [i((n− n
′

)ωd +
1

2
(m−m

′

)ω0J0(x))t]

=
1

2
[J−q(x)im− J−q(−x)im

′

] exp [i(qωd +
1

2
(m−m

′

)ω0J0(x))t]

=
1

2
[J−q(x)im− (−1)qJ−q(x)im

′

] exp [i(qωd +
1

2
(m−m

′

)ω0J0(x))t]

=
1

2
J−q(x)i[m−m

′

(−1)q] exp [i(qωd +
1

2
(m−m

′

)ω0J0(x))t] (5.44)
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and finally, for σ̂z , we have

exp [−i(n′

ωd +
1

2
m

′

ω0J0(x))t]〈n′ ,m′ |σ̂z |n,m〉 exp [i(nωd +
1

2
mω0J0(x))t]

=
1

2
[
〈

n
′

+|n−
〉

m+
〈

n
′

−|n+

〉

m
′

] exp [i((n− n
′

)ωd +
1

2
(m−m

′

)ω0J0(x))t]

=
1

2
[Jn′−n(x)m+ Jn′−n(−x)m

′

] exp [i((n− n
′

)ωd +
1

2
(m−m

′

)ω0J0(x))t]

=
1

2
[J−q(x)m+ (−1)qJ−q(x)m

′

] exp [i(qωd +
1

2
(m−m

′

)ω0J0(x))t]

=
1

2
J−q(x)[m+m

′

(−1)q] exp [i(qωd +
1

2
(m−m

′

)ω0J0(x))t]. (5.45)

If the initial state is set as a coherent state with spin along the +x axis,

ψ(t) =
∑

n,m=±
an

1√
2
|n,m〉 exp [i(nωd +

1

2
mω0J0(x))t], (5.46)

the time dependence of the expectation value of σ̂x is

〈ψ(t)| σ̂x |ψ(t)〉 = 〈σ̂x(t)〉

=
∑

n,n′

a∗
n′anδn,n′ cos (ω0J0(x)t) =

∑

n

|an|2 cos (ω0J0(x)t) = cos (ω0J0(x)t), (5.47)

the expectation value of σ̂y is

〈ψ(t)| σ̂y |ψ(t)〉 = 〈σ̂y(t)〉

=
∑

n,n′ ,m,m′

1

2
a∗
n′an

1

2
J−q(x)i[m−m

′

(−1)q] exp [i(qωd +
1

2
(m−m

′

)ω0J0(x))t]

=
∑

n,q=even

a∗n−qan
1

4
J−q(x)i[2 exp [i(qωd + ω0J0(x))t] − 2 exp [i(qωd − ω0J0(x))t]]

=
∑

n,q=even

a∗n−qanJ−q(x)i exp [iqωdt]i sin (ω0J0(x)t)

=− J0(x) sin (ω0J0(x)t)−
∑

n,q>0,even

a∗n−qanJq(x) cos (qωdt) sin (ω0J0(x)t), (5.48)
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and the expectation value of σ̂z is

〈ψ(t)| σ̂z |ψ(t)〉 = 〈σ̂z(t)〉

=
∑

n,n′ ,m,m′

1

2
a∗
n′an

1

2
J−q(x)[m+m

′

(−1)q] exp [i(qωd +
1

2
(m−m

′

)ω0J0(x))t]

=
∑

n,q=odd

a∗n−qanJ−q(x) exp [i(qωd)t]i sin (ω0J0(x)t)

=
∑

n,q>0,odd

a∗n−qanJq(x)(−i sin (qωdt))i sin (ω0J0(x)t)

=
∑

n,q>0,odd

a∗n−qanJq(x) sin (qωdt) sin (ω0J0(x)t) (5.49)

For the SNS nEDM experiment, the absorption scintillation rate is related to the polarization of two

particles, given by
1

τabs
=

1

τ3
(1− ~Pn · ~P3), (5.50)

where 1/τ3 = N3σ0vn, N3 is 3He number density (for τ3 = τβ/10, N3 ≈ 1013/cm3 is required), and τβ is

the effect of wall loss and β decay, vn is the neutron velocity and σ0 is the 3He absorption cross section

(σ0 = 5.5× 103 b, vn = 2200m/s and both the neutron and 3He are unpolarized). Eq. 5.50 shows that the

absorption rate depends on the expectation value of σ̂n · σ̂3.
Using Eqs. 5.47—5.49, the time dependence of ~σn · ~σ3 can be calculated as

〈σnxσ3x〉 = cos (ωnt) cos (ω3t), (5.51)

〈σnyσ3y〉 =
∑

n,q≥0,even

∑

n′ ,q′≥0,even

(a∗n−qan)UCN (a∗
n′−q′

an′ )HeJq(xn)Jq′ (x3)

cos (qωdt) cos (q
′

ωdt) sin (ωnt) sin (ω3t), (5.52)

〈σnzσ3z〉 =
∑

n,q≥0,odd

∑

n′ ,q′≥0,odd

(a∗n−qan)UCN (a∗
n′−q′

an′ )HeJq(xn)Jq′ (x3)

sin (qωdt) sin (q
′

ωdt) sin (ωnt) sin (ω3t). (5.53)

where xn = γnB0/ωd and x3 = γ3B0/ωd. Using q ≪ n,
∑

n |an|2 = 1 where an is a slowly varying function

of n, Eq. 5.52 and Eq. 5.53 can be simplified to

〈σnyσ3y〉 =
∑

q,q′≥0,even

Jq(xn)Jq′ (x3) cos (qωdt) cos (q
′

ωdt) sin (ωnt) sin (ω3t) (5.54)

〈σnzσ3z〉 =
∑

q,q′≥0,odd

Jq(xn)Jq′ (x3) sin (qωdt) sin (q
′

ωdt) sin (ωnt) sin (ω3t). (5.55)
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Averaging over the fast frequency qωd(q ≥ 1), then eventually

〈σnyσ3y〉 ≈ sin (ωnt) sin (ω3t)× (J0(xn)J0(x3) + 2
∑

q≥0,even

Jq(xn)Jq(x3)) (5.56)

〈σnzσ3z〉 ≈ sin (ωnt) sin (ω3t)× 2
∑

q≥0,odd

Jq(xn)Jq(x3). (5.57)

Therefore the dot product of the spin of two particles will be

〈~σn · ~σ3〉 = 〈σnx · σ3x〉+ 〈σny · σ3y〉+ 〈σnz · σ3z〉

= cos (ωnt) cos (ω3t) + sin (ωnt) sin (ω3t)J0(xn − x3),

=
1

2
[cos (ωn + ω3)t+ cos (ωn − ω3)t]−

1

2
[cos (ωn + ω3)t− cos (ωn − ω3)t]J0(xn − x3)

=
1

2
[1− J0(xn − x3)] cos (ωn + ω3)t+

1

2
[1 + J0(xn − x3)] cos (ωn − ω3)t. (5.58)

where xn At the critical dressing, xn ∼ 1.189, x3 ∼ 1.32229, ωn = ω3 ∼ 12.3985B0 and

J0(xn − x3) = 0.995563. 〈~σn · ~σ3〉 is very close to one since J0(xn − x3) is very close to 1.

5.5.2 Bloch equation simulation of the dressed spin

The Bloch equation simulation has been performed to calculate cos θn3. The result of the simulation is

shown as the black curves in Fig. 5.5. The red curve corresponds to the calculation using Eq. 5.58. The

oscillatory pattern of the red curve is from the first term of Eq. 5.58. It is interesting to note that neutron

and 3He do not precess exactly together even at the critical dressing; in fact, they precess forward and

backward within a small angle. The angle is related to the amplitude of the oscillatory red curve,

1− J0(xn − x3), so that the small angle is equal to Cos−1(J0(xn − x3)) = 5.4◦. Besides, the simulation also

shows another oscillatory pattern at a high frequency equal to the dressing frequency, as shown in the

bottom plot of Fig. 5.5. It requires extremely high timing resolution of the scintillation light signal to

observe this effect. A film of the dressed spin dynamics of neutron and 3He has been made and can be

viewed at http://www.youtube.com/watch?v=xBL_jDjtojc. It shows that the spin is wobbling vertically

such that the time average of the precession in the x-y plane becomes slower when the dressing field is

applied.

5.5.3 Extraction of the neutron EDM in the dressed spin system

For an extremely small ωγ , the initial phase θ0, which is the angle between the UCN and 3He spin, is a

dominant factor affecting the sensitivity. This can be explained by considering the signal and background
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Figure 5.5: Simulation of cos θn3(t). B0 = 10 mG, y = 0.01 and x = 1.189. Black curve is Bloch equation
simulation and red curve is Eq. 5.58. The simulation also shows another oscillatory pattern at a high
frequency equal to the dressing frequency.

ratio when θ0 = 0, the background function fB(t) and the signal function fS(t, ωγ) can be defined as

fB(t) = e
−( 1

τβ
+ 1

τwall
)t 1

τβ
, (5.59)

fS(t, ωγ) = e
−( 1

τβ
+ 1

τwall
)t 1

τ3
(1− cos (ωγt)). (5.60)

fB(t) and fS(t, ωγ) are plotted for different ωγ ’s in Fig. 5.7. The integrations of the background and the

signal over the measurement period t = [0, 500] sec are defined as

B ≡
∫ 500

0

fB(t)dt, (5.61)

S(ωγ) ≡
∫ 500

0

fS(t, ωγ)dt. (5.62)

The ratio of S(ωγ)/B is plotted in Fig. 5.8. We can see a turning point once fγ is smaller than 1000µHz,

which reflects the poor sensitivity at smaller frequencies.

How can one observe EDM signal if the dressing field is applied? Inspired by [24] and [44], the neutron
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Figure 5.6: Simulation of dressed spin dynamics. The film is at
http://www.youtube.com/watch?v=xBL_jDjtojc.
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Figure 5.7: fB(t) and fS(t, ωγ) for ωγ=1,100,1000, 10000µHz.

EDM signal can be derived from the number of scintillation signals integrated over the measurement

period T [18]. The initial phase θ0 is considered for a small ωγ so that Eq. 5.34 becomes

dΦ

dt
≈ N0 exp [−Γavet+

t

τ3
cos θ0](

1

τβ
+

1

τ3
(1− cos θ0 + ωγt sin θ0))

≡ N0 exp [−At](B + Cωγt), (5.63)

where A = Γave − cos θ0
τ3

, B = 1
τβ

+ 1
τ3
(1− cos θ0) and C = sin θ0

τ3
. The number of scintillator signals

integrated over the measurement period T is

Φ(T, ωγ) =

∫ T

0

dΦ

dt
dt = N0[

B

A
(1− e−AT ) + ωγ

C

A2
(1 − (1 +AT )e−AT )]. (5.64)

If an EDM effective field is added, cell 1 (cell 2) has the relative precession frequency: ωγ +ωd
e (ωγ −ωd

e) so
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Figure 5.8: S(fγ)/B and S(fγ)/S(fγ) +B vs. fγ

that the total event number difference between two cells is proportional to ωd
e :

∆Φ = ωd
e · 2N0

C

A2
(1 − (1 +AT )e−AT ). (5.65)

A parameter is defined as S = Φ
N0

which is independent of the initial neutron number N0. The frequency

variance can be calculated as

σ2
f =

σ2
ω

(2π)2
=

σ2
S

(2π)2
[
dS

dωd
e

]−2 =
S

(2π)2
[
dS

dωd
e

]−2 =
1

(2π)2
B

A
(1− e−AT )/(

C

A2
(1− (1 +AT )e−AT ))2. (5.66)

Using τβ = 885 sec, τ3 = 500 sec, τwall = 1150 sec and T = 500 sec, Fig. 5.9 shows dS
dωd

e
and σf as a

function of θ0. Comparing with Eq. 5.39, the dressed spin technique can compete with the free case if the

initial angle is tuned. Here we do not consider other parameters, like the continuous background, the

polarization of neutron and 3He, the efficiency of the PMTs, etc. Those parameters should be optimized to

achieve the maximum sensitivity.

5.5.4 Monte Carlo simulation of the dressed spin system with an initial relative angle
θ0 = 90◦

In order to check the validity of Eq. 5.66, we have carried out Monte Carlo simulation. Monte Carlo are

generated for the parameters of θ0 = 90◦, τβ = 885 sec, τ3 = 500 sec, τwall = 1150 sec, T = 500 sec,

N0 = 1.68× 106 and x = 1.189, y = 0.01. The Bloch equation is applied to calculate cos θn3 in the cell 1

(cell 2) with the frequency ωγ + ωd
e (ωγ − ωd

e ), where ω
d
e = 10−6 × J0(1.189) Hz. The integration of the

function Eq. 5.30 over the measurement period is

N± =

∫ 500

0

dΦ(ωγ ± ωd
e )

dt
dt. (5.67)
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Figure 5.9: Left) dS
dωd

e
and Right) σf versus θ0 which is in radian. The black curve is Eq. 5.66 and the red

curve is Eq. 5.39.

For each run, the number of event will be randomly given by using the Poisson distribution. Fig. 5.10

shows the distribution of the total event number of 10 runs for cell 1 and cell 2 within t = [0, 500] sec and

the standard deviation is σΦ ≈ 1146. From Eq. 5.64, the standard deviation of Φ is

σΦ = σωd
e

∂Φ

∂ωd
e

= (σωe
× J0(1.189)) · 2.22× 108 ≈ 1146 (5.68)

and the value of σωe
is around 7.63 µHz for the initial neutron number N0 = 1.68× 106. The calculation

using Eq. 5.66 is σωe
= 5.2 µHz. The discrepancy is due to the offset of the dressing field shown in

Eq. 5.43. The offset would cause a significant variation for the total event number.
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Figure 5.10: Event number for cell 1 and cell 2. The mean difference is 495 so that the frequency difference
is ∆ωe ∼ 3.3 µHz.

The sensitivity of the dressed spin technique is comparable to the free case if the initial angle θ0 is not

close to zero. However, for the method utilizing the total event number described above, it will not be easy

to determine ωe directly from the data without knowing precisely the distribution function of the data and
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other parameters, like neutron density, etc. In the next sections other methods will be introduced to

overcome the difficulty.

5.6 Modulated dressing field

It is clear that when the system is at the critical dressing where neutron and 3He have the same precession

frequency with θ0 = 0◦, there is no absorption signal. This problem can be solved by modulating the

dressing field so that x can deviate from the critical point xc and the relative angle θn3 between neutron

and 3He is varied periodically. The variation of θn3 will affect the rate of the scintillation light. The

difference of the scintillation light signal between the first and the second half cycles will reveal a non-zero

EDM plus an offset from the critical point xc.

Upon the application of a square-wave modulation field, the dressing field becomes

Bd(t) = [Bd,c +BmSign(cos(ωmt))] cosωdt, (5.69)

where Bd,c is the critical dressing field, Bm is the modulation field and ωm = 2πfm = 2π/τm is the

modulation frequency. A modulation parameter is defined as

xm ≡ γnBm

ωd
. (5.70)

The relative precession frequency at the positive modulation field is

ω+
z,0 = ωn[J0(xc + xm)− aJ0(a(xc + xm))], (5.71)

and at the negative modulation field is

ω−
z,0 = ωn[J0(xc − xm)− aJ0(a(xc − xm))]. (5.72)

Fig. 5.11 shows an example of the relative precession frequency and the relative angle as a function of time.

The sequence of a single cycle of the modulation is as follow: first, the Bm is applied for a duration 1
4τm,

then −Bm is applied for a duration 1
2τm and finally, Bm is applied for another 1

4τm. The cycle is then

repeated. The corresponding angle θm between neutron and 3He is shown in Fig. 5.11. We can see the

modulated angle increasing and decreasing as a function of t. For a small modulation (θm ≪ 1), the

scintillation rate dΦ/dt ∝ 1− cos θn3 ≈ 1− (1− θ2
n3

2 ) ≈ 1
2θ

2
n3.
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The relative precession frequency for a small modulation xm is around

|ω+
z,0| ≈ |ω−

z,0| ≈ |ωn|[J0(x)− aJ0(ax)]| = |ωn[J0(xc + xm)− aJ0(a(xc + xm))]|

≈ |ωn|[J
′

0(xc)xm − aJ
′

0(axc)xm]| = |ωn[−J1(xc) + a2J1(axc)]xm|

= |ωn × 0.156077× xm|, (5.73)

where a ≡ γ3/γn. If the system is at the critical dressing point, the relative angle between neutron and 3He

varies equally in the positive and negative modulation. However, if there is an offset ∆x from the critical

point, then |ω+
z,0| is not equal to |ω−

z,0|. For example, the relative precession frequency ωγ as a function of

∆x is

ωγ(∆x) = ωn[J0(x +∆x)− aJ0(a(x+∆x))] (5.74)

and then adding a modulation xm = 0.05, the frequency is

ω±
z,0(∆x) = ωn[J0(x+∆x± xm)− aJ0(a(x+∆x± xm))]; (5.75)

At ∆x = 0, ∆ωγ ≡ |ω+
z,0| − |ω−

z,0| ≈ 0 which means x is still close to the critical dressing. However, if

∆x = 0.05, then ∆ωγ/2π ≈ 0.45 which means there is a phase difference ∆ωγτm/2 after a cycle of the

modulation. This difference is related to an EDM effective field or an offset of the dressing field. Both ωγ

and ∆ωγ are shown in Fig. 5.12 as a function of ∆x.
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Figure 5.11: ωγ and θm for the modulation field of the cosine square wave. Bm = 0.05Bd,c = 59.45mG,
fm = 1 Hz, B0 = 10 mG, y = 0.01 and x = 1.189.

5.6.1 Effect of the neutron EDM with the modulated dressing field

An alternative idea to derive a neutron EDM is to use the modulation signal. The modulation signal with

an offset is a linearly increasing first harmonic signal. If there is an offset of ωe, the relative precession
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Figure 5.12: Left)The red curve is ωγ versus ∆x and the green curve is θMax ≡ ωγ × τm/4 where
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term 0.0017485 is from the offset for x = 1.189.

frequency for cell 1 becomes

ω±
z,0(∆x) = ωn[J0(x± xm)− aJ0(a(x± xm))] + ωe (5.76)

and for cell 2 it becomes

ω±
z,0(∆x) = ωn[J0(x± xm)− aJ0(a(x± xm))]− ωe (5.77)

as shown in Fig. 5.13. The offset of the ωe will accumulate a phase difference between two cells. Since the

scintillation light is proportional to cos θn3, the difference of cos θn3 between two cells is shown in Fig. 5.14

where the oscillation frequency depends on the modulation frequency. It shows that the scintillation signal

is a linearly increasing first harmonic wave with the slope proportional to EDM (ωeτm). Fig. 5.15 shows the

difference of cos θn3 between two cells for different modulation frequencies. Therefore, the slope of signal is

related to the value of EDM. However, the real scintillation signal is not linearly increasing because of the

neutron decays. We will apply the time evolution operator to describe the modulation signal in Sec. 5.6.2.

5.6.2 Time evolution of the UCN spin with the modulated dressing

One approach to treat the dressed spin is to use a density matrix formulation. Here we summarize the

calculation in [29]. The pseudomagnetic field of 3He will also be addressed 7. Since the number of 3He in

the system is always much greater than UCN, the polarization of 3He can be taken along the x̂ axis in the

3He rotating frame. In addition, the modulation field in the ±ẑ direction is ±ωz,0 as mentioned in Eq. 5.73.

7The calculation without considering the neutron EDM is described in Appendix G.
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Figure 5.13: ωγ and θn3 for cell 1 and cell 2 with ωe = 0.1 Hz.
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Figure 5.14: cos θn3,cell1 − cos θn3,cell2 for different ωe with τm = 1 sec.

The Hamiltonian for the interaction of neutron and 3He in the 3He rotating frame [29] can be written as

H± = −i~Γ
2
+ VF,pm ± ωz,0~Ŝz + ωd

e~Ŝz = −i~
2
[
1

τ0
− P3

τ3
σ̂x] + ωa~Ŝx ± ωz,0~Ŝz + ωd

e~Ŝz, (5.78)

where 1
τ0

= 1
τβ

+ 1
τ3
, ωd

e = ωeJ0(xc) and ωa = γBaP3. The Pauli matrices σ̂i are

σ̂x =





0 1

1 0



 , σ̂y =





0 −i
i 0



 , σ̂z =





1 0

0 −1



 (5.79)

and Ŝi =
1
2 σ̂i. The matrix representation of the interaction Hamiltonian is written as

H± = −i~
2

1

τ0





1 0

0 1



+
~

2





±(ωz,0 ± ωd
e) ω′

a

ω′
a ∓(ωz,0 ± ωd

e )



 , (5.80)

ω′
a ≡ ωa + i

P3

τ3
= γBaP3 + i

P3

τ3
, (5.81)

66



Time(sec)
0 2 4 6 8 10

2θ
-Co

s
1θ

Co
s

-15

-10

-5

0

5

10

15

-610×
 = 1 secmτ
 = 2 secmτ
 = 4 secmτ

Figure 5.15: cos θn3,cell1 − cos θn3,cell2 for different τm with ωe = 1 µ Hz.

where τ3 is roughly 500 sec and 2π/γBa ∼ 2π/γB̃a = 1/(0.3× 10−3) = 3333 sec. Then, using

exp (−iφ~σ · n̂) = Î cosφ− i~σ · n̂ sinφ, (5.82)

the time-evolution operator is

U±(t) = exp (−iH±
~
t) = exp (−1

2

t

τ0
)[Î cosV±t− i~σ ·

~V±
V±

sinV±t],

= exp (−1

2

t

τ0
)





cosV t∓ i 12
ωz,0±ωd

e

V±
sinV±t −i 12

ω′
a

V±
sinV±t

−i 12
ω′

a

V±
sinV±t cosV±t± i 12

ωz,0±ωd
e

V±
sinV±t



 , (5.83)

~V± = ±1

2
(ωz,0 ± ωd

e)ẑ +
1

2
ω′
ax̂, (5.84)

V± =
1

2

√

(ωz,0 ± ωd
e)

2 + (ω′
a)

2 ≈ 1

2

√

ω2
z,0 + (ω′

a)
2 ± 2ωz,0ωd

e . (5.85)

Using S± ≡ sinV±t
V±

, Eq. 5.83 becomes

U± = exp (−iH±
~
t) ≈ exp (−1

2

t

τ0
)





exp (∓i 12 (ωz,0 ± ωd
e)t) −i 12ω′

aS±

−i 12ω′
aS± exp (±i 12 (ωz,0 ± ωd

e)t)



 . (5.86)
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Thus U−+(2τ) = U−U+ is

U−+(2τ) = exp (− τ

τ0
)





e−iωd
eτ − ω′

a
2
S−S+ −i 12ω′

ae
i 12ωz,0τ (S+e

−i 12ω
d
eτ + S−ei

1
2ω

d
eτ )

−i 12ω′
ae

−i 12ωz,0τ (S−e−i 12ω
d
eτ + S+e

i 1
2ω

d
eτ ) eiω

d
eτ − ω′

a
2
S−S+





≈ exp (− τ

τ0
)





e−iωd
eτ bei

1
2ωz,0τ

be−i 12ωz,0τ eiω
d
eτ



 ≈ exp (− τ

τ0
)





1− iωd
eτ bei

1
2ωz,0τ

be−i 12ωz,0τ 1 + iωd
eτ





= exp (− τ

τ0
)(





1 0

0 1



+





−iωd
eτ bei

1
2ωz,0τ

be−i 12ωz,0τ iωd
eτ



)

= exp (− τ

τ0
)[Î + ~B · ~σ], (5.87)

where

b ≡ −i2 ω
′
a

ωz,0
sin(

1

2
ωz,0τ), (5.88)

~B · ~σ = b cos
1

2
ωz,0τσ̂x − b sin

1

2
ωz,0τσ̂y − iωd

eτσ̂z (5.89)

B =
√

b2 + (ωd
eτ)

2 ≈ b and σ̂B =
~σ · ~B
B

≈ ~σ · ~B
b

=





−iωd
eτ/b ei

1
2ωz,0τ

e−i 12ωz,0τ iωd
eτ/b



 . (5.90)

Now

Un = exp (−nτ
τ0

)[Î +Bσ̂B]
n ≈ exp (−nτ

τ0
)[Î + bσ̂B]

n

= exp (−nτ
τ0

)(Î
1

2
[(1 + b)n + (1− b)n] + σ̂B

1

2
[(1 + b)n − (1− b)n])

=
1

2
exp (− T

2τ0
)





F+ − F−iωd
eτ/b F− exp (i 12ωz,0τ)

F− exp (−i 12ωz,0τ) F+ + F−iωd
eτ/b



 , (5.91)

where

F± ≡ exp (−iα)± exp (iα). (5.92)

The cosine square-wave modulation is applied so that the total time-evolution operator becomes

Utot(T ) = Un exp (−i
H−
~

τ

2
)

≈ 1

2
exp (− T

2τ0
)





F+e
(i 14ωz,0τ) + F−

ωd
ee

(i 1
4
ωz,0τ)

ω′
aδ

F−e(i
1
4ωz,0τ)

F−e(−i 14ωz,0τ) F+e
(−i 14ωz,0τ) − F−

ωd
ee

(−i 1
4
ωz,0τ)

ω′
aδ



 . (5.93)
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The final state is

ψ±(T ) = Utot(T )ψ±(0) =
1

2
√
2
exp (− T

2τ0
)((F+ ± F−)





exp (i 14ωz,0τ)

± exp (−i 14ωz,0τ)





+F−
ωd
e

ω′
aδ





exp (i 14ωz,0τ)

∓ exp (−i 14ωz,0τ)



). (5.94)

The expected value of σx is

〈σx〉± = ψ†
±σxψ±

=
1

8
exp (− T

τ0
)[(F+ ± F−)

2(±2 cos
1

2
ωz,0τ)

+ (F+ ± F−)
⋆(F−

ωd
e

ω′
aδ

)(±2i sin
1

2
ωz,0τ) + (F+ ± F−)(F−

ωd
e

ω′
aδ

)⋆(±2i sin
1

2
ωz,0τ)

⋆]

= ±e−
T
τ0 [cos(

1

2
ωz,0τ)e

±γT ± ωd
eTη± sin

1

2
ωz,0τ ] (5.95)

where

η± ≡ γ(e±γT − cosΩT )± Ω sinΩT

(Ω2 + γ2)T
. (5.96)

Fig. 5.16 shows how η± and the coefficient of ωd
e are affected by the pseudomagnetic field. The EDM signal

will be diluted by the strong pseudomagnetic field. If the pseudomagnetic field becomes zero, i.e., Ω = 0,

η± =
e±γT − 1

γT
. (5.97)

The coefficient of ωd
e becomes e

− T
τ0

(e±γT−1)
γ sin 1

2ωz,0τ and the signal will linearly increase. The absorption

rate for UCN in the state with σx = ± is

R± =
N0(t)

τabs
=
N0(t)

τ3
[1− ~Pn · ~P3]

=
N0

τ3
e
− T

τ0 [e±γT (1∓ P3 cos
1

2
ωz,0τ) + P3ω

d
eTη± sin

1

2
ωz,0τ ]. (5.98)

The scintillation rate S for an initial UCN polarization Pn is

S =
1

2
(1 + Pn)R+ +

1

2
(1− Pn)R−

=
1

2

N0

τ3
e
− T

τ0 [(1− P3Pn cos
1

2
ωz,0τ)(e

γT + e−γT ) + (Pn − P3 cos
1

2
ωz,0τ)(e

γT − e−γT )

+ P3ω
d
eT sin

1

2
ωz,0τ(η+ + η− + Pn(η+ − η−))], (5.99)
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where

η+ + η− =
γ(eγT + e−γT − 2 cosΩT )

(Ω2 + γ2)T
≈ γT (5.100)

η+ − η− =
γ(eγT − e−γT ) + 2Ω sinΩT

(Ω2 + γ2)T
≈ 2 (5.101)

if T → 0. It shows that the EDM signal will appear even if the polarization is zero, i.e., Pn = 0, because

the spin-dependent neutron capture makes the neutron polarized during the measurement. The ωd
e term is

proportional to γT 2 + 2PnT . Ignoring T
2 term, the EDM signal, the ωd

e term of the scintillation light rate,

becomes

Sedm =
N0

τ3
e−

T
τ0 P3Pn sin

1

2
ωz,0τ · ωd

eT. (5.102)

In the next section, we will show how to use it as the input for the feedback loop and as the monitor of the

linearly increasing signal in the other cell.
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Figure 5.16: η± and e−
T
τ0 η±T sin 1

2ωz,0τ . P3 = 1, ωa = aγB̃a, where a = 0, 1, 10, 100 and τ3 = 500 sec and

ωz,0 = 2π × 0.1 Hz, τm = 1 sec so that
sin( 1

2ωz,0τ)
1
2ωz,0τ

= 0.996.
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5.7 Feedback method

The idea of the feedback loop is to keep the linearly increasing term in Eq. 5.99, i.e., Eq. 5.102, zero by

adjusting the dressing parameters. If a system is at the critical dressing, the relative angle between

neutron and 3He will be varied equally by the modulation, i.e., |ω+
z,0| = |ω−

z,0|. However, if |ω+
z,0| 6= |ω−

z,0|,
the variation won’t be the same in different modulation directions. The difference will be used as the input

to the feedback loop. The modulation cycle will be repeated with the modified dressing field. After one

more cycle, the new angular difference will be used as a new input. The cycle will be repeated until the

system becomes stable. For a real experiment, it is not easy to measure the relative angle directly. What

we can measure is the number of events (scintillation lights) detected in each half cycle. The details will be

simulated in Sec. 5.7.3.

By measuring the dressing parameters as a function of the electric field, the neutron EDM can be

determined. Since the applied field ~E determines the relative angle, the UCN-3He system is

mathematically equivalent to a voltage-controlled oscillator of a phase-locked-loop(PLL), which can be

referred in [27], with the first harmonic signal equivalent to the voltage output of the PLL phase detector.

The PLL technique can be applied to the neutron EDM search [29].

One point should be emphasized for the two-cell system. Since the two cells share the same dressing

coils but have different electric field directions, the dressing field for both cells will be modified at the same

time so that only one cell will be kept at the critical dressing. The signal in another cell will have the

increasing term as Eq. 5.102, which is proportional to 2ωd
e . Here we apply the feedback to cell 1 and use

cell 2 as a monitor.

5.7.1 Systematic uncertainties in the feedback system

The linearly increasing term in Eq. 5.99 and Eq. 5.102 is proportional to the EDM effective field, ωd
e .

Theoretically, the measurement of the linearly increasing signal, like Fig. 5.16, should be enough to

determine the EDM value. However, there are two dominant systematic errors affecting the final result.

First, the pseudomagnetic field will change the slope of the increasing signal or even dilute the signal as

shown in Fig. 5.16. The angle between neutron and 3He cannot be controlled better than 10−3 rad. If the

pseudomagnetic field has a component along ẑ at an order of 0.1%, the frequency shift will be at the level

of 10−6 Hz which is at the level of 10−26e cm 8. Second, the offset of the dressing field will create a

frequency shift between two particles which is described in Eq. 5.43 and Sec. 5.5. However, it is

independent of the electric field direction and should be able to be cured by the feedback. Here we focus on

the discussion of the pseudomagnetic field.

In the ideal situation, the applied correcting field ωc should be able to cancel ωd
e so that ωz ≡ ωd

e − ωc

8In Sec. 5.2, the pseudomagnetic field is around Ba ∼ 5× 10−5 mG so that the possible frequency shift due to the vertical
component of Ba is ∆ω = γBa × 10−3

∼ 1 µHz.
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becomes zero and ωc = ωd
e is the EDM signal. However, the pseudomagnetic field and the offset of dressing

field will bias the measurement. How can one estimate the systematic error? First, let us consider a system

of the critical dressing in the 3He rotating frame (the frame rotates at ωd
3 = γ3B0J0(axc) around ẑ). The

pseudomagnetic field Ba is along x̂ and initially the residual field along the ẑ-axis is the EDM effective field

Be. The corresponding frequency is ωa = γnBa and ωd
e = γnBeJ0(xc). ω

′
n is the effective frequency of the

neutron in the rotating frame and ψn is the angle between the direction of the total B field,

~Btot = Bax̂+BeJ0(xc)ẑ, and x̂-axis so that

ω′
n =

√

ω2
a + (ωd

e)
2 ≈ ωa and tanψn =

ωd
e

ωa
. (5.103)

A new coordinate can be defined such that











x̂′

ŷ′

ẑ′











=











cosψn 0 sinψn

0 1 0

− sinψn 0 cosψn





















x̂

ŷ

ẑ











. (5.104)

The spin orientation of the neutron is initially along the x̂-axis and

~S(t = 0) = ~S‖(t = 0) + ~S⊥(t = 0), (5.105)

where ~S‖(t) is along ~Btot and independent of time,

~S‖(t = 0) = |~S| cosψnx̂
′ and ~S⊥(t = 0) = −|~S| sinψnẑ

′ (5.106)

where we set |~S| = 1 for convenience. ~S⊥ will rotate along ~Btot so that

~S⊥(t) = (−|~S| sinψn)(cos (ω
′
nt)ẑ

′ − sin (ω′
nt)ŷ

′) (5.107)

The total spin is

~S(t) = ~S‖(t) + ~S⊥(t) = |~S| cosψnx̂
′ − (|~S| sinψn)(cos (ω

′
nt)ẑ

′ − sin (ω′
nt)ŷ

′)

= |~S| cosψn(cosψnx̂+ sinψnẑ)− (|~S| sinψn)(cos (ω
′
nt)(− sinψnx̂+ cosψnẑ)− sin (ω′

nt)ŷ)

= |~S|[(cos2 ψn + sin2 ψn cosω
′
nt)x̂+ sinψn sinω

′
ntŷ + (sinψn cosψn(1 − cosω′

nt)ẑ]. (5.108)

For a duration τL (the loop response time), the spin projection along the ẑ-axis is

Sz = ~S(τL) · ẑ = |~S|(sinψn cosψn(1 − cosω′
nτL)) ≈ 1 · ω

d
e

ω′
n

ωa

ω′
n

(1− (1− (ω′
nτL)

2

2
)) =

1

2
ωd
eωaτ

2
L, (5.109)
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which is Eq. 5.37 in [29]. The ŷ projection of ~S(τL) is

Sy = ~S(τL) · ŷ = |~S|(sinψn sinω
′
nτL) ≈ 1 · ω

d
e

ω′
n

(ω′
nτL) = ωd

eτL. (5.110)

For the feedback loop system in an equilibrium state, the initial situation ωz = ωd
e would become

ωz = ωd
e − ωc where ωz is the residual field, i.e., the EDM effective field minus the correction field, along ẑ

The final spin will lie along the net field

~S ‖ ωax̂+ ωz ẑ (5.111)

so that

Sz ≈ |~S|ωz

ωa
=

1

2
ωd
eωaτ

2
L, and ωz =

1

2
ωd
eω

2
aτ

2
L. (5.112)

The EDM signal ωc = ωd
e (1− 1

2ω
2
aτ

2
L) will have an error δωc =

1
2ω

d
eω

2
aτ

2
L. It represents an error in the

feedback signal due to the pseudomagnetic field. However, it is very small. If ωd
e ∼ 10−6 Hz,

ωa ∼ 10−3 Hz and τL ∼ 10 sec, then δωc ≈ 10−10 Hz which can be ignored in the measurement. On the

other hand, if the pseudomagnetic field has a vertical component at order of 10−3 rad, it will directly make

a frequency shift 10−3ωa. Fortunately, it is independent of the electric field direction. A possible solution is

to compare signals between two runs with different electric field directions.

5.7.2 Density matrix simulation of the feedback system

It won’t be easy to analytically solve the feedback loop. A better method is to simulate the feedback loop.

One quick method is to apply the time-evolution operator discussed in Sec. 5.6.2. Instead of using the

calculation in Sec. 5.6.2, however, the simulation can be simplified by using the secular approximation

method which is mentioned in Sec.5.3 of [29]. The density matrix ρ(t) can be numerically calculated by

using the time-evolution operator U(t) = exp(−i 〈H〉
~
t), where 〈H〉 is the time average of the

Hamiltonian(the secular approximation). The density matrix at t = 0 is

ρ(0) =





1
2 (1 + Pn) 0

0 1
2 (1− Pn)



 . (5.113)

The time dependence of the density matrix is

ρ(t) = U †(t)ρ(0)U(t). (5.114)
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The “secular approximation” will be applied to get 9

〈

~Sn · ~S3

〉

= 〈cos θn3〉 (5.115)

and then Eq. 5.78 becomes

〈H〉± = −~

2
i[
1

τ0
− P3

τ3
〈cos θn3〉 σ̂x] +

1

2
ωa~ 〈cos θn3〉 σ̂x ± 1

2
ωz,0~σ̂z +

1

2
ωz~σ̂z , (5.116)

where ωz,0 is defined in Eq. 5.73 , ωz ≡ ωd
e − ωc and ωc is the correction field. Using the secular

approximation, the only important factor is the average value of cos θn3. Thus we can use any type of

modulation, like sinusoidal, square wave, etc.

A feedback loop is designed as follow:

• Initially, ωc = ω0
c = 0.

• ωz = ωd
e − ωc. The ωz is equal to the difference between ωd

e and ωc.

• ρ(t+ τ) = U †
+(τ)ρ(t)U+(τ). Use the new ωz to rotate spin of neutron in positive modulation direction.

• 〈sx〉+ = Tr[ρ(t+ τ)σx]. Get the spin projection in x̂-axis.

• ρ(t+ 2τ) = U †
−(τ)ρ(t + τ)U−(τ). Use the new ωz to rotate spin of neutron in negative modulation

direction.

• 〈sx〉− = Tr[ρ(t+ 2τ)σx]. Get the spin projection in x̂-axis.

• θ(t) = 〈sx〉+ − 〈sx〉−. The difference between these two spin projections will be used as the feedback

input.

• ωα
c = ω0

c + α(〈sx〉+ − 〈sx〉−). The α term is the integrated feedback for the whole measurement.

• ωβ
c = β(〈sx〉+ − 〈sx〉−) . The β term is the instantaneous feedback based on a single cycle.

• ωc = ωα
c + ωβ

c . Two terms should be considered together. The optimal values of α and β should be

determined by simulation.

• ω0
c = ωα

c . Reset the value of ω0
c , the integrated value of ωc.

• ωz = ωd
e − ωc. The new value of ωz.

• Continue the loop.

9~S means the polarization direction of particle, not spin operator.
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To calculate the time-evolution operator U(t), we define four terms corresponding to the various terms in

Eq. 5.116

U1(t) = exp [−i(−i 1

2τ0
)t] = Î exp [− t

2τ0
],

U2(t) = exp [−i(i P3

2τ3
〈cos θn3〉)σ̂xt] = Î cosh[

P3

2τ3
〈cos θn3〉 t] + σ̂x sinh[

P3

2τ3
〈cos θn3〉 t],

U3(t) = exp [−i(1
2
ωa 〈cos θn3〉)σ̂xt] = Î cos[

1

2
ωa 〈cos θn3〉 t]− iσ̂x sin[

1

2
ωa 〈cos θn3〉 t],

U4±(t) = exp [−i1
2
(±ωz,0 + ωz)σ̂zt] = Î cos[

1

2
(ωz,0 ± ωz)t]∓ iσ̂z sin[

1

2
(ωz,0 ± ωz)t] (5.117)

U±(t) = U1(t)U2(t)U3(t)U4±(t) (5.118)

where the σi are

σx =





1 0

0 −1



 , σy =





0 1

1 0



 , σz =





0 −i
i 0



 . (5.119)

following the definition of Eq. 5.113.

The practical value of parameters are

• ωz,0 = 0.5π Hz, corresponding to the modulation amplitude.

• τ = 1
2τm = 0.5 sec, one-half of the modulation period.

• 〈cos θn3〉 = sin 1
2ωz,0τ

1
2ωz,0τ

≈ 0.974495.

• ωd
e = γnB̃eJ0(xc) ≈ 1 µHz, the EDM effective precession frequency.

• ωa = γB̃a ≈ 2 mHz, corresponding to the pseudomagnetic field.

• τ3 = 500 sec, the absorption decay time.

• P3 = Pn = 1, the polarization of 3He and neutron.

The following study will depend on those parameters. The method is efficient for studying the effect of

each parameter.

One should pay attention to those parameters, like ωa, which are difficult to control. First, we consider

the system without decay, i.e., U1 = U2 = 1. Fig. 5.17 shows one example of the feedback loop. Several

points should be emphasized. First, ωz will be eventually close to zero as expected. The nonzero final

ωz ∼ 2.02× 10−7 reflects the effect of pseudomagnetic field discussed earlier. Second, Sx approaches a

different constant from one. The polarization ~S is rotating about an axis having x̂ and ẑ components.
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Using Eq. 5.111, the ratio of two spin components and two effective fields are

Sz

Sx
=

0.000135025

0.923866689
= 1.46152× 10−4 (5.120)

ωz

ωa
=

2.0229345× 10−7

0.002
= 10−4 (5.121)

showing the polarization is (roughly) along the axis ωax̂+ ωz ẑ. For the pseudomagnetic field, Fig. 5.18

shows the effect is at the level of 3× 10−7 Hz. Using Eq. 5.112 we have Sz = 1
2ω

d
eωaτ

2
L = 0.000135025,

τL ∼ 367 sec. Therefore, ωz = 1
2ω

d
eω

2
aτ

2
L = 2.7× 10−7 which is consistent with the simulation result of ωz.

The analytical expression is just an approximation. This would explain the small difference between the

expression and simulation. When the decay is considered, i.e., U1 6= 1, U2 6= 1 , Fig. 5.19 shows the

feedback loop can still work.
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Figure 5.17: ~S and ωz. U1 = U2 = 1. ωd
e = 1 µHz and ωa = 2 mHz, α = 0.1, and β = 1. τm = 1 sec and

ωz,0 = 0.5π Hz.

In [29], the dressed spin technique with the feedback method is demonstrated to be comparable with

the free case(the SQUID method) 10. However, the model assumes neutron and 3He both precessing at the

horizontal plane, and also assumes the symmetry between the two sides of the critical point. In reality,

Bloch equation simulation shows the precession is not at the horizontal plane. Even at the critical dressing,

neutron and 3He cannot precess exactly together. The pseudomagnetic field could affect the final result.

Besides, the decay and the absorption of the neutron will change the input signal of the feedback loop. All

of these issues will be discussed in the next two sections.

10The details of the sensitivity calculation can be referred in Appendix H.
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Figure 5.18: ωz versus ωa. f(x) = 2.6792× 10−7x2 − 5.08636× 10−8x− 2.68027× 10−8. The
pseudomagnetic field effect is at level of 10−7 Hz which is smaller than ωd

e = 10−6 Hz.

5.7.3 Monte Carlo simulation of the feedback system

The Monte Carlo of the scintillation light signals were generated, called Φ, to simulate the real experiment.

The collection of the scintillation light in the first half and the second half of a modulation cycle are Φ+,i

and Φ−,i. The difference, ∆Φi = Φ+,i − Φ−,i, will be used as an input to the feedback loop for a real

experiment. The feedback loop will enable ∆Φi → 0 by modifying the dressing field. The detailed

procedure for the simulation is the following:

1. The initial value of Bd is Bd,0.

2. For a given Bd,i, the Bloch equation is used to calculate cos θn3 within a modulation cycle,

t = [ti, ti + τm].

3. cos θn3 is inserted into Eq. 5.30, dΦ
dt .

4. The collection of the scintillation light is calculated:

Φ+,i =

∫ ti+τm/2

ti

dΦ

dt
dt,

Φ−,i =

∫ ti+τm

ti+τm/2

dΦ

dt
dt, (5.122)

5. Monte Carlo is generated with a randomization using Poisson statistics 11, i.e., N+,i = Poisson(Φ+,i)

and N−,i = Poisson(Φ−,i)

11If the expected number of occurrences in this interval is λ, then the probability that there are exactly κ occurrences (κ
being a non-negative integer, κ = 0, 1, 2, ...) is equal to

f(κ, λ) =
λκeλ

κ!
. (5.123)
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Figure 5.19: ~S and ωz. U1 6= 1 and U2 6= 1. ωd
e = 1 µHz and ωa = 2 mHz, α = 0.1, and β = 1. τm = 1 sec

and ωz,0 = 0.5π Hz.

6. The difference is calculated: ∆Ni = N+,i −N−,i.

7. The feedback loop process is run and a modified dressing field is obtained.

• Low Pass Integrator: Bc,0,α = Bd,0, Bc,i,α = Bc,i−1,α − α∆Ni.

• Amplifier: Bc,i,β = −β ×∆Ni.

• Modified field: Bd,i+1 = Bc,i,α +Bc,i,β .

8. Go to 2 and repeat the loop.

The Bloch equation simulation uses the following parameters. The time step is ∆t = 10−6 sec. The

dressing parameters are y = 0.01 and x = 1.189. The holding field is B0 = 10 mG. The modulation field is

set at Bm = ǫBd,0, where ǫ = 0.05 is the modulation ratio. The modulation period is τm = 1 sec like

Fig. 5.11, where θMAX ≈ 0.5 rad. The feedback loop parameters are named α and β. α is for the

integrated effect of the whole measurement period, while β is for a single modulation cycle. It is necessary

to have both terms. They can balance the fast and slow response of the feedback loop.

It is difficult to analytically optimize the feedback loop parameters. We have empirically tried several

conditions of different modulation field magnitude Bm and frequency fm. τm = 1/fm should be kept much

smaller than the decay constant in order to reduce the decay effect. Larger Bm may cause a larger offset.

Ref. [29] assumes a slow decay constant for the loop. If the modulation period is too long, then the decay

would bias the feedback loop final values. However, if it is too short, the loop may not work either due to
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small statistics. It is not easy to balance these two situations. The proper α and β are also chosen so that

they can give the most stable cos θn3. The average value of cos θn3 is
sin 1

2ωz,0τ
1
2ωz,0τ

where ωz,0 is given in

Eq. 5.73 and τ = 1
2τm. Thus, the value of cos θn3 also depends on Bm and fm.

As an example, we show the results are otained with parameters Bm/Bd,0 = 0.05, fm = 0.5 Hz,

α = 5× 10−6, and β = 5× 10−4. Fig. 5.20 shows the modified dressing field with (black curves) and

without (red curves) fluctuation, i.e., the randomization using Poisson distribution in Step (5). The left

figure of Fig. 5.20 shows the pattern if the initial Bd is set at 1189 mG for run 0 and the right figure is the

pattern of run 1 if its initial Bd is the final value of run 1. Fig. 5.21 shows cos θn3 of cell 1 and cell 2 for

run 1. cos θn3 of cell 1 can be largely kept at a constant while cos θn3 of cell 2 will linearly increase.

Fig. 5.22 shows the time spectrum of scintillation light signals for cell 1 and cell 2. The signal for cell 1 is

kept at the critical dressing and for cell 2, the linearly increasing first harmonic signal is observed.

Fig. 5.23 shows the signal difference between two cells, which should be compared with Fig. 5.16. Fig. 5.24

shows another example of the signal difference between two cells.
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Figure 5.20: Bd as a function of time for the first run (run 1) and the successive run (run2).
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by the feedback. cos θn3 for cell 2 is linearly increasing.
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Figure 5.22: The time spectrum of scintillation light signals for cell 1 and cell 2.
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Figure 5.23: The time spectrum difference between cell 1 and cell 2. The right plot is the rebinned
histogram of the left plot (100 bins), showing linearly increasing pattern is not clear.

5.7.4 Extraction of the neutron EDM in the feedback system

If the feedback loop works, the modified dressing field should be able to keep the system at the critical

dressing so that the correction field can compensate the frequency shift due to a nonzero neutron EDM.

Therefore, by measuring the change of the modified dressing field, the neutron EDM can be determined.

We consider a frequency shift ∆ωγ due to the correction field which causes a shift ∆x = γnBc/ωd:

∆ωγ = ω0[J0(xc +∆x)− γ3/γnJ0(γ3/γn(xc +∆x))]

≈ ω0∆x[−J1(xc) + (γ3/γn)
2J1(γ3/γnxc)] = 0.156077ωn∆x. (5.124)
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Figure 5.24: Bm/Bd,0 = 0.05, fm = 1 Hz and α = 10−5, β = 10−3. The time spectrum difference between
cell 1 and cell 2. The right plot is the rebinned histogram of the left plot (100 bins), showing linearly
increasing pattern.

When the correction field cancels out the EDM effective frequency shift ωd
e ,

∆ωγ ∼ ωd
e = 0.156077ωn

γnBc

ωd
= −0.0286007Bc (5.125)

so that we can get the relation

Bc = −34.9642ωd
e (5.126)

where the unit of Bc is mG and the unit of ωd
e is Hz.

Except for the first run, the final stable Bd,f can be obtained by fitting the Bd(t) time spectrum within

t = [0− 1000] sec. To study the sensitivity, 90 runs for each cells were generated. The fitted

Bc = Bd,f −Bd,0 is shown in Fig. 5.25. The mean of 90 runs for ωe = 100µHz is −0.396 mG and for

ωe = −100µHz is −0.401 mG and the standard deviation is around σBc
≈ 2.49× 10−4 mG. The difference

∆B̄c = 5.0× 10−3 mG corresponds to ∆ωe = 5.0× 10−3/(34.9642× J0(1.189)) = 211.4 µHz which is

consistent with the input. The standard deviation of fd, which is related to ωd
e , is

σfd =
σωd

e

2πJ0(1.189)
=

1

34.9642× 2πJ0(1.189)
σBc

= 1.68× 10−6 Hz. (5.127)

For t = [0, 500] sec, σfd = 2.77× 10−6 Hz.

5.7.5 Systematic uncertainties in the feedback system using Monte Carlo simulation

We have shown that the statistical accuracy for the feedback method is comparable to that of the SQUID

method. The systematic uncertainties should also be carefully studied. Several initial parameters have

been varied for different studies. The fluctuation of holding field is one of the dominant errors the dressed
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Figure 5.25: The correction field Bc = Bd,f −Bd,0 for ωe = 100µHz (left) and ωe = −100µHz (right). The
mean difference is ∆Bc = 4.74× 10−3 mG. The standard deviation σBc

is 2.49× 10−4 mG.

spin technique is designed to suppress. We assume that the holding field B0 has a Gaussian distribution

and the mean value is mG with a width of ∆B0. B0 value is randomized for each run. To see the effect

from the fluctuation of the holding field, the same random seed is applied to each run. Correction field

versus ∆B0 is shown in Fig. 5.26. It shows that the dressed spin technique is not sensitive to the holding

field drift as well as the analytic prediction in Appendix F, showing the deviation in the correction field is

about 1 % due to the drift of the holding field. Correction field versus the variation of neutron density is

shown in Fig. 5.27 without and with the fluctuation. The simulation shows that the effect is about

1× 10−5, 10% of the statistical sensitivity. Correction fields versus the magnitude of pseudomagnetic field

is shown in Fig. 5.28 without and with the statistical fluctuation. The simulation shows that the effect is

proportional to B2
a in agreement with the exepctation [29]. If there is a nonzero initially relative angle

between neutron and 3He in the x̂− ŷ plane, called φ, Fig. 5.29 shows the effect for different

pseudomagnetic fields. If there is an initially relative angle between neutron and 3He along ẑ axis, called θ,

Fig. 5.30 shows the effect for different pseudomagnetic fields. The systematic error caused by nonzero θ is

larger than that of nonzero φ. It is clear that additional study of systematic uncertainties is required

before the final design of the nEDM dressed-spin system.

-0.3975

-0.397

-0.3965

-0.396

-0.3955

-0.395

-0.3945

 0  2e-05  4e-05  6e-05  8e-05  0.0001

B
c(

m
G

)

∆B0/B0

f(x)

Figure 5.26: The correction field Bc = Bd,f − Bd,0 versus fluctuation of B0.
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Figure 5.27: The correction field Bc = Bd,f −Bd,0 versus initial densities of neutron without(left) and
with(right) statistical fluctuation. The error bars in the left plot show the statistical uncertainty.
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Figure 5.28: The correction field Bc = Bd,f −Bd,0 versus pseudomagnetic fields without(left) and
with(right) statistical fluctuation.

5.8 Summary of simulation studies

In Sec. 5.4, we have seen the analysis of the free situation is straightforward. The sensitivity of the relative

precession frequency is at the level of 10−6 Hz. The dressed spin technique is more complicated. The idea

is to apply the dressing field to modify the precession frequency of neutron and 3He so that they can

precess together. The modulation field varies the relative angle between the two particles and enough

input signals are collected for operating the feedback loop. The feedback loop corrects the dressing field

amplitude so that two particles can eventually precess at the critical dressing. The correction field is

related to the neutron EDM plus the offset from the dressing field. The neutron EDM can be derived from

the difference in the modified dressing field between two runs with different electric field directions. The

linearly increasing signal in the other cell will be used as a monitor. The statistical sensitivity of the

dressed spin method is shown to be comparable to the SQUID method. The systematic sensitivity for some

parameters is also studied. The drift of the holding field and the initial neutron density variation are

shown not to be an important issue. The effect of the pseudomagnetic field depends on the 3He density,

the polarization and the initially relative angle which should be studied experimentally.
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Figure 5.29: The correction field Bc = Bd,f −Bd,0 versus initially horizontal relative angles without(left)
and with(right) statistical fluctuation.
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with(right) statistical fluctuation.
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CHAPTER 6

SUMMARY

The observation of the neutron EDM remains a major challenge in physics. The potential of the neutron

EDM for revealing new physics has attracted physicists into this field from generation to generation. The

journey started sixty years ago with Norman F. Ramsey’s first neutron EDM experiment. The size of the

neutron EDM is still a puzzle waiting for people to solve, even though the experimental sensitivity has

been improved by six orders of magnitude. Many novel ideas have been proposed and applied to improve

the sensitivity. The goal of the next generation of experiments aims at a two orders of magnitude

improvement. An original idea using the UCN production in superfluid helium together with the dressed

spin technique was developed by Golub and Lamoreaux in 1994 [29]. Based on this idea, a neutron EDM

experiment was proposed at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory

(ORNL) [12]. Ultracold neutrons are produced in the superfluid 4He, and 3He will be used as a spin

analyzer and a comagnetometer. The spin-dependent absorption of neutrons by 3He atoms emits

scintillation light, which can be used to measure the relative precession frequency between neutron and

3He. The shift of the relative precession frequency in electric field will be a signal of the neutron EDM.

One of the dominant systematic errors is from the drift of the holding magnetic field, which affects the

relative precession frequency. The method of the dressed spin can change the precession frequencies of

neutron and 3He. At the critical dressing condition, neutrons and 3He can have identical effective magnetic

moments. Therefore, the dressed spin technique, in principle, can strongly suppress the effect from the

fluctuation of the holding magnetic field.

The goal of this research is to understand various aspects of the dressed spin technique in the proposed

neutron EDM experiment. We first demonstrated the phenomenon of the dressed spin using a room

temperature cell filled with polarized 3He. 3He nuclei were polarized through the metastability spin

exchange process with optical pumping. Modification of the 3He precession in the presence of dressing field

was obtained for a broad range of the magnitude and frequency of the dressing magnetic field. The data

have been compared with calculation using the quantum mechanical approach. The positive agreement

between the theory and the experiment gives us confidence that the optimal configuration for the dressing

field can be selected based on the existing theoretical formula.

In order to apply the dressed spin technique to the neutron EDM experiment, detailed simulation is

necessary. When the system is at critical dressing condition with no relative initial angle, there are no
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absorption signals. The authors in [29] suggested applying a modulation field with the feedback loop to

measure the neutron EDM. The modulation field can cause the relative spin between neutrons and 3He to

move forward and backward. The difference in the scintillation light signals in different modulation half

cycles can be used as an input to the feedback loop. The final correction in the dressing field is related to

the neutron EDM. The idea of the modulation and the feedback loop has not been checked with detailed

simulation, especially for the two-cell design of the proposed nEDM experiment. The two cells share the

same dressing coils so that the dressed spin technique can only correct for one cell. The dressed spin

technique needs significant modification from what we presented in [29]. Based on extensive Monte Carlo

simulation, we demonstrated that the dressed spin technique can have a competitive statistical sensitivity

compared with the case without the dressing field. The systematic error from the drift of the holding field

is suppressed with the dressed spin method. Studies of systematic errors from other sources, such as the

pseudomagnetic field, the non-zero initial angles between UCN and 3He spins, and the fluctuation of the

UCN intensity have also been carried out with detailed simulation. We believe this study has contributed

to our understanding of various aspects associated with the application of the dressed spin technique,

which may affect future neutron EDM experiments.
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APPENDIX A

SENSITIVITY LIMIT DUE TO THE UNCERTAINTY

PRINCIPLE

From the uncertainty principle, the sensitivity limit for energy determination, δE, is given as

δE × T = hδf × T = ~ (A.1)

δf =
1

2πT
(A.2)

hfe = 2edE (A.3)

δfe = 2(eδd)E/h =
1

2πT
=

1

2π × 500s
= 3.183× 10−4Hz (A.4)

eδd =
~

2ET
=

6.582× 10−22MeV s

2× 50KV cm−1 × 500s
= 1.3164× 10−23e · cm (A.5)

where we use measurement time of 500 sec and 50 KV/cm E field. Repeating the measurement N times

will allow determination of the frequency with and uncertainty of δf/
√
N . Instead of repeating the

measurement N separate times, we can consider an ensemble of N uncorrelated systems measured

simultaneously, and the same
√
N reduction in frequency uncertainty results. This demonstrates the

advantage of working with the highest possible number of systems. The relation in Eq. A.5 becomes

(eδd) =
~

2ET

1√
mN

, (A.6)

where m represents the number of separate complete measurements of the N uncorrelated systems. Using

m = 1000 and N = 106,

δfe = 3.183× 10−4 1√
103 × 106

= 10−8Hz = 10−2µHz (A.7)

(eδd) = 1.3164× 10−23 1√
103 × 106

= 4.1628× 10−28e · cm (A.8)

We may consider the realistic particle N and the effective T to use here. Comparing the integral of
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Φ(t)− ΦB(t),

N500 =

∫ 500

0

N0e
−Γavet(

1

τβ
+

1

τ3
)dt = 106 (A.9)

= N0
1

Γave
(
1

τβ
+

1

τ3
)(1− e−500Γave) (A.10)

= N0 × 0.758983 = 106 (A.11)

N0 = 1.31755× 106 (A.12)

N∞ = N0 ×
∫ ∞

0

e−Γavet(
1

τβ
+

1

τ3
)dt (A.13)

= 1.31755× 106 × 0.87587 = 1.154× 106 (A.14)

where N0 is the initial UCN number, N∞ is the total number of UCN absorbed by 3He or decay and N500

is the number of observed UCN in 500 seconds. The particle number for n+3He capture should be

N3 = N500 ×
1
τ3

1
τβ

+ 1
τ3

= 106 × 295

434
= 679724. (A.15)

Taking the particle decay into account, the effective T we put in Eq. A.2 is

Tave =

∫ 500

0 te−Γavet 1
τ3
dt

∫ 500

0 e−Γavet 1
τ3
dt

=

1
Γ2
ave

(1− e−500Γave(1 + 500Γave))

1
Γave

(1− e−500Γave)
(A.16)

=
36842.8

215.13
= 171.258 (A.17)

The estimation based on uncertainty principle becomes

δfe =
1

2πT

1√
mN

=
1

2π × 171.258

1√
103 × 679724

(A.18)

= 3.56453× 10−8Hz = 3.56543× 10−2µHz (A.19)

The calculation here shows the sensitivity 3.6× 10−2µ Hz, in qualitative agreement with the Monte

Carlo result of 8.5× 10−2µ Hz.
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APPENDIX B

π/2 PULSE STUDY

A π/2 pulse is to rotate atoms polarized vertically into the horizontal plane. An rf field perpendicular to

the holding field is applied at the resonance frequency, the Larmor frequency, of the atoms. The

mechanism can be described using the Bloch equation [11],

d~S

dt
= ~S × (γ ~B(t)) (B.1)

where ~S is the spin of the atoms, γ is the gyromagnetic ratio and ~B(t) is the time-dependent magnetic

field. However, the resonance frequency of the rf field is not the only solution to rotate the atoms from the

vertical axis to the horizontal plane. The solution can be generalized to off-resonance frequencies using the

Bloch equation. Inspired by the neutron EDM experiment at the Spallation Neutron Source in the Oak

Ridge National Laboratory [29], a π/2 pulse can also be applied simultaneously to two atomic species with

different gyromagnetic ratios. We will generalize the idea of the π/2 pulse to two atomic species in this

paper, providing a numerical method to solve the corresponding problems.

We consider a system with a static uniform magnetic field, B0, keeping the spin orientation of polarized

atoms along the ẑ-axis. If the atoms are not along the ẑ-axis, the atoms precess about the ẑ-axis at the

Larmor frequency, ω0 = γB0. To apply the π/2 pulse, an oscillatory rf field perpendicular to the holding

field, B(t) = 2B1 cos(ωt)x̂, is applied as shown in Fig. B.1. For a typical π/2 pulse, the rf frequency ω is

set at Larmor frequency of the atoms. The linear oscillatory magnetic field can be expressed in terms of

two rotating components:

Brf (t) = 2B1 cos(ωt)x̂ = B1(cos(ωt)x̂+ sin(ωt)ŷ) +B1(cos(ωt)x̂− sin(ωt)ŷ) (B.2)

In a frame rotating counterclockwise at ω along ẑ, the first component is a static field while the second

component rotates at 2ω. It will be convenient to use the “rotating field approximation” to ignore the high

frequency term. In this rotating frame, the atoms will precess about the total magnetic field

~Btot = (B0 −
ω

γ
)ẑ +B1x̂ = B1x̂. (B.3)

To rotate exactly 90◦ from the ẑ-axis to the x̂− ŷ plane, a duration τ = (π/2)/γB1 of the rf field will be
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(B0 −

ωrf

γ
)ẑ

Figure B.1: Schematic plot. It shows the total magnetic field in the rotating frame at frequency ωrf .

applied.

If the rf field is not at the resonance, i.e., ω 6= ω0, the total magnetic field in the frame rotating at ω is

~Btot = (B0 −
ω

γ
)ẑ +B1x̂, (B.4)

and the effective Larmor frequency is

ω′
0 = γ

√

(B0 −
ω

γ
)2 +B2

1

= γB0

√

(1− ω

γB0
)2 + (

B1

B0
)2. (B.5)

We also define ψ as the angle between the direction of the ~Btot and x̂ so that

tanψ =
B0 − ω/γ

B1
=
B0

B1
(1− ω

γB0
). (B.6)
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A new coordinates is defined as








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ŷ′

ẑ′
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cosψ 0 sinψ
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









. (B.7)

The polarization of the atoms is initially along the ẑ-axis and

~S(t = 0) = ~S‖(t = 0) + ~S⊥(t = 0), (B.8)

where ~S‖(t) is along the ~Btot and independent of time,

~S‖(t = 0) = |~S| sinψx̂′,
~S⊥(t = 0) = |~S| cosψẑ′. (B.9)

~S⊥ will be rotating about ~Btot so that

~S⊥(t) = (|~S| cosψ)(cos (ω′
0t)ẑ

′ − sin (ω′
0t)ŷ

′) (B.10)

The total polarization is

~S(t) = ~S‖(t) + ~S⊥(t)

= |~S| sinψx̂′ + (|~S| cosψ)(cos (ω′
0t)ẑ

′ − sin (ω′
0t)ŷ

′)

= |~S| sinψ(cosψx̂+ sinψẑ) + (|~S| cosψ)(cos (ω′
0t)(− sinψx̂+ cosψẑ)− sin (ω′

0t)ŷ)

= |~S|(sinψ cosψ(1 − cosω′
0t)x̂− cosψ sinω′

0tŷ + (sin2 ψ + cos2 ψ cosω′
0t)ẑ) (B.11)

For a duration τ , the rf pulse can rotate the atoms from the vertical axis to the horizontal plane such that

~S(τ) · ẑ = sin2 ψ + cos2 ψ cosω′
0τ = 0

cosω′
0τ = − tan2 ψ. (B.12)

For any given ω0 and τ , we can find out solutions of B1 and ω satisfying this relation. In addition, if we

consider a (n+ 1
2 )π pulse, Eq. B.12 can be generalized to

cos(ω′
0τ + nπ) = − tan2 ψ. (B.13)

We will discuss a (n+ 1
2 )π pulse for two atomic species later.

A neutron EDM experiment [29] was proposed to use 3He as a spin analyzer and a comagnetometer.
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The π/2 pulse is needed to rotate simultaneously the spin orientation of polarized 3He and neutrons from

ẑ-axis to x̂-ŷ plane together. The gyromagnetic ratios of neutron and 3He are γn/2π = −2.91647 Hz/mG

and γ3/2π = −3.24341 Hz/mG. The analytic calculation was first studied in [12] for a rotating rf field.

Inspired by this experiment, we will derive more general solutions for two atomic species with different

gyromagnetic ratios. The condition to have the π/2 pulse is to have simultaneous duration of ratating for

two atomic species. Assuming two atomic species have gyromagnetic ratios γ1 and γ2, and their Larmor

frequencies are ω0,1 = γ1B0 and ω0,2 = γ2B0, the duration τ will be

τ =
cos−1(− tan2(ψ1))

ω′
0,1

=
cos−1(− tan2(ψ2))

ω′
0,2

(B.14)

We define the parameters: R = γ1

γ2
, x = B0

B1
and y = 2ω

ω0,1+ω0,2
. Eq. B.14 becomes

τ =
cos−1(−(x(1 − y

2 (1 +
1
R )))2)

ω0,1

√

(1− y
2 (1 +

1
R ))2 + x2

=
cos−1(−(x(1 − y

2 (1 +R)))2)

ω0,2

√

(1− y
2 (1 +R))2 + x2

. (B.15)

The solutions exist when

cos−1 (−x2(1− y

2
(1 +

1

R
))2) = R

√

1 + x2(1− y
2 (1 +

1
R ))2

√

1 + x2(1− y
2 (R + 1))2

cos−1 (−x2(1− y

2
(1 +R))2). (B.16)

To find out solutions, x, y and R are varied step by step. The difference between the left side and the right

side of Eq. B.16 is defined as ∆. First x and R are fixed and then y is varied step by step. If the sign of ∆

is changed, the corresponding x, y and R are recorded. Fig. B.2 shows solutions of the rf frequency verse

the rf amplitude for different R. The time duration τ for R = γ3/γn is also shown in Fig. B.2. To

generalize the π/2 pulse to two arbitrary atomic species having different gyromagnetic ratios, we vary R

step by step to calculate possible solutions. Fig. B.3 shows the range of R verse x and y while solutions can

only exist between 0.707 < R < 1.415. When R→ 1, the π/2 pulse can work for all x > 1 and y < 1. We

can conclude that the amplitude of the rf field cannot be larger than the holding field and the frequency

has be smaller than the average of two Larmor frequencies. Next we consider the cases if n = 1 which can

be called a 3
2π pulse and n = 2, called a 5

2π pulse, shown in Fig. B.3. The 3
2π pulse has a small range of R,

0.94 < R < 1.06 while the 5
2π pulse has a much smaller range of R, 0.97 < R < 1.03.

To confirm the solutions, the Bloch equation is applied to simulation the spin dynamics of two atomic

species, for example, neutrons and 3He, for both the rotating rf field and the linear rf field. The

Runge-Kutta method is applied and the time step of the simulation is ∆t = 10−6 sec. In order to find out

solutions, we scan all possible values of the rf field amplitude, B1, and frequency, ω. First B1 is fixed and

then ω is varied. When the spin of neutrons is rotated into the horizontal plane first time, i.e., the vertical

component of spin, Sz,n becomes negative from positive, the vertical spin component of 3He, Sz,3, is

recorded. The difference between spin of two species is defined as ∆Sz = Sz,3 − Sz,n. We record the
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Figure B.4: The solution of B1 and ω for neutron and 3He. The Bloch equation simulation is applied for
both the rotating rf field and the linear rf field.

corresponding ω if the sign of ∆Sz is changed. Next we vary B1 a small step and repeat the scan of ω until

no solution.

The rotating rf field is

Bx = B1 sin (ωt), By = B1 cos (ωt), Bz = B0, (B.17)

and the linear rf field is

Bx = 2B1 cos (ωt), By = 0, Bz = B0, (B.18)

where B0 = 10 mG. The spin is counterclockwise rotating around ẑ-axis and 3He is running faster than

neutron. In Fig. B.4, the solutions of the rotating rf field using the Bloch equation are consistent with the

numerical solution in Eq. B.16 and Fig. B.2. However, the linear rf field will be used in the experiment, not

the rotating rf field. The solutions of the linear rf field, shown in Fig. B.2, are different from the solutions

of the rotating rf field, containg an interesting pattern. After a π/2 pulse, the corresponding vertical

components of spins of neutrons and 3He for different x and the corresponding y are shown in Fig. B.5.

∆Sz can be improved if we use finer time step for the Bloch equation simulation and finer small step of ω

to search for solutions. The relative angle between neutron and 3He after a π/2 pulse, ∆φn3 , is shown in

Fig. B.6. One advantage is we can choose the proper ∆φn3 if we need different initial angle for the neutron

EDM measurement.

The simulation shows we can find out solutions of the π/2 pulse for different setups of B1 and ω. The

potential of using the (n+ 1
2 )π pulse needs further study. If we consider different number of cycles for two

atomic species, we may rotate simultaneously two atomic species with very different gyromagnetic ratios to
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the horizontal plane. It may provide a broader range for choosing the angle ∆φn3.
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APPENDIX C

T2 STUDY

C.1 Data

One interesting question is how the T2 relaxation time is affected by the uniformity of dressing field. The

left plot of Fig. C.1 shows a measurement of the T2 relaxation for various values of x and y. It is

interesting that T2 deteriorates rapidly when y approaches 1, shown in the right plot of Fig. C.1. Future

simulation work as well as laboratory tests are expected.

C.2 McGregor’s study

McGregor [50] shows how a magnetic field gradient affects transverse relaxation rate of spin-polarized 3He.

The T2 is
1

T2
=

1

2T1
+
γ2L4

120D
(
∂Hz

∂x
)2 +

7γ2a4

96D
(
∂Hz

∂y
)2 (C.1)

for a cylindrical cell whose axis is parallel to x̂ and perpendicular to the H0ẑ. The T2 for spherical cell is

1

T2
=

1

2T1
+

8γ2L4

175D
(
∂Hz

∂z
)2. (C.2)

We consider the following case. Diffusion constant of 3He, D = 1370.2cm2/s for 1 Torr and 300K, is

proportional to T
3
2 /P . Gyromagnetic ratio of 3He, γ, is 0.2037 Sec−1 nT−1. We ignore T1 term

(T1 ∼ 2× 107) and ∂Hz

∂y term. The cylindrical cell length is L = 12.35 cm. The spherical cell radius,

R = 4.96/2 cm. The pressure of the cylindrical cell is 5 Torr so that D′ = D/5. The pressure of the

spherical cell is 10 Torr so that D′ = D/10. Fig. C.2 reproduces McGregor’s result.

C.3 Calculation of the holding field B0

The NMR system at UIUC has a (rough) Helmholtz coil consisting of two identical circular magnetic coils

that are placed symmetrically on both sides of the experimental area along a common axis(ẑ) and

separated by a distance h = 20± 0.5 in. = 0.508± 0.0127 m equal to the radius R = 20 in. = 0.508 m of
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Figure C.1: Left) T2 versus x for various values of y. Right) The slope of T2 verse x plotted as a function
of y. It shows the steep slopes as y approaches 1.

the coil. Each coil has N = 15 turns and with the current I = 8 Amp. Assume the width of the wire is

0.001 m and the total width of the coil is 0.015 m. The center is located at perfect Helmholtz coil position.

We divide the φ of the coil into 180 pieces as in Fig. C.3. The cylindrical 3He cell placed at the center

along the Helmholtz coil (ẑ) has length L = 0.057 m and radius r = 0.025 m. We divide the φ into 180

pieces, ρ into 20 pieces and z into 20 pieces. Fig. C.4 presents the space division of the cell.

We use the Biot-Savart law to calculate the magnetic field at each point, as described above, of the

experimental area between two coils.

~B(~r) =
∑

d~l

(
µ0

4π
)IN

d~l × (~l − ~r/|~l− ~r|)
(~l − ~r)2

, (C.3)

where d~l is along the current segment, µ0/4π = 4π × 10−7/4π = 1× 10−7NA−2 and B is in unit [Tesla].

Fig. C.5 and Fig. C.6 show the magnetic field distribution at some location in the experimental area. We

can use the same method to calculate the magnitude and the gradient of the magnetic field, shown in

Tab. 3.1, which compensates the Earth vertical field.

C.4 Calculation of the T2

T2 depends on the gradient of the magnetic field and the geometric structure of the cell. Using the method

in [49], we get
1

T2
=

1

2T1
+
γ2L4

120D
(
∂Hz

∂z
)2 +

7γ2a4

96D
[(
∂Hz

∂x
)2 + (

∂Hz

∂y
)2], (C.4)

where the length of the cell L = 0.057 m and the radius of the cell a = 0.025 m.
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Figure C.2: Transverse relaxation time of spin-polarized 3He as a function of the magnetic field gradient.
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Figure C.3: Helmholtz coil in unit [m].

Considering the gradient of the holding field and the field compensating the vertical component of the

Earth field, we get the T2 result in Fig. C.7 at x̂− ŷ plane and Fig. C.8 at x̂− ẑ plane. To find out the T2

for the cell, we average the T2 through the whole volumn. The result is around ∼ 0.9 sec which seems to

be consistent with the measurement. The effect of the dressing field to the T2 is still an open question.
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T2(X,Y,0)

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5
X(cm) -2.5

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

Y(cm)

 6
 8

 10
 12
 14
 16
 18
 20
 22

T2(X,Y,0) (sec)

Figure C.7: T2 distribution at x̂− ŷ plane.
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Figure C.8: T2 distribution at x̂− ẑ plane.
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APPENDIX D

SIGNALS OF THE PICKUP COILS

It is of interest to estimate the magnitude of signals of the pickup coils, which helps the design of the coils.

For a magnetic moment ~µ lying along the x̂-axis, the magnetic field is given by

~B(~r) =
µ0

4πr3
[3(~µ · r̂)r̂ − ~µ] (D.1)

(~µ · r̂)r̂ = µ x̂ · (cosφ x̂+ sinφ ŷ)(cosφ x̂+ sinφ ŷ)

= µ(cos2 φ x̂+ cosφ sinφ ŷ)

~B(~r) =
µ0

4πR3
[3µ(cos2 φ x̂+ cosφ sinφ ŷ)− µ x̂]

=
µ0µ

4πR3
[(3 cos2 φ− 1) x̂+ 3 cosφ sinφ ŷ)] (D.2)

The flux of ~B through a loop of area A with outward normal is proportional to

Φ ∝ ~B · r̂ = µ0µ

4πR3
[3 cos3 φ− cosφ+ 3 cosφ sin2 φ] =

µ0µ

4πR3
[2 cosφ]. (D.3)

Therefore the flux is

Φ(φ) =
µ0µA

2πR3
cosφ (D.4)

The loop rotates around ~µ in the x̂− ŷ plane at freqency ω so that

dΦ(φ)

dt
=
dΦ

dφ

dφ

dt
= −µ0µA

2πR3
sinφ · ω (D.5)

The induced emf for one loop is

emf = −dΦ(t)
dt

=
µ0µA

2πR3
sinφ · ω. (D.6)

Assuming the loop has C turns, n pickup coils, N atoms contributing to the B field and the average
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projection of their spins onto x̂-axis is P , the net signal is

ǫ(t) =
µ0µCnNPA

2πR3
ω sinωt. (D.7)

ǫRMS =
µ0µCnNPAω

2
√
2πR3

(D.8)

We can use the following values for Eq. D.8:

µ0 = 4π × 10−7NA−2

~µ =
γ~

2
=

2π × 32.434MHzT−1 × 6.582× 10−22MeV s

2
= 6.7× 10−14MeV T−1

C = 80

n = 4

N =
PV

kT
=

1torr × (π(0.025)2(0.057))m3

1.38× 10−23JK−1 × 291K

=
133.322Nm−2 × 1.11919× 10−4m3

401.58× 10−23J
=

1.49213× 10−2Nm

401.58× 10−23J

= 3.71565× 1018

P = 20%

A = 0.05× 0.0635m2 = 3.175× 10−3m2

ω = 2π × 1200Hz = 7539.82Hz

R = 0.025m.

We will get ǫRMS is

ǫRMS = 3.45214× 106 × 1.6× 10−13kg ·m2

C · s2 = 5.52342× 10−7V olt

= 0.552342µV. (D.9)

The impedance of the pickup coils is 65.7 Ω.
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APPENDIX E

SIGNALS OF LOCK-IN AMPLIFIER

The width of signals in Fig. 3.4 can be well explained by considering the function of the Lock-in Amplifier.

We use a function generator to test the width of lock-in amplifier output. The function generator generates

a sine wave at 1200 Hz and 1 V olt. If the reference frequency of the lock-in amplifier is set at 1200 Hz, we

will get a DC signal at 0.7053 V olt, consistent with the rms of the amplitude. Next we vary the function

generator frequency. For different time constants τ and different roll-off’s, Fig. E.1 shows the correponding

output voltage versus the frequency shift.

The Lock-in amplifier sets a bandwidth of low-pass filter by changing the time constant which is simply

1/2πν. To understand the relation between the time constant and the bandwidth, we introduce a

differential equation as

dV

dt
+
V

τ
= f(t) = Aeiωt. (E.1)

where τ represents the exponential decay constant and V is a function of time t. The right-hand side is an

external driving function, which can be regarded as the system input, to which V(t) is the response, or the

system output. The general solution, assuming V (t = 0) = V0, is

V (t) = V0e
− t

τ +Ae−
t
τ

∫ t

0

dt′e
t′

t eiωt′ ,

= V0e
− t

τ +
A

iω + 1
τ

(eiωt − e−
t
τ ). (E.2)

At large t, the decaying exponentials become negligible and the steady-state solution is

V∞(t) = A
eiωt

iω + 1/τ
. (E.3)

The magnitude of this response is

|V∞(t)| = A

(ω2 + 1/τ2)1/2
=

Aτ
√

1 + (ωτ)2
. (E.4)

The bandwidth of this system is the frequency where |V∞|2 drops to half-value, or where ωτ = 1.
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Figure E.1: The output voltage versus the frequency shift.

For a RC filter, the voltage transfer function, A, is

A =
Vo
Vi

=
1

1 + iωRC
. (E.5)

At ωc = 1/RC = 1, the power ratio is

|A|2 =
1

1 + (ω/ωc)2
=

1

1 + (ω)2
, (E.6)

which can be expressed as a loss,

L = −10 log |A|2 = 10 log (1 + ω2) ≈ 10 logω2 = 20 logω (E.7)

The roll-off is given by

∆L = 20 log
ω2

ω1
. (E.8)

If ω2/ω1 = 2, ∆L is equal to 20 log 2 = 6dB/oct which means the power drops 6 dB where the frequency

drops half. We can normalize Fig. E.1 by ν−3dB which is defined as the −3dB frequency of the filter when

the power is half. Fig. E.2 shows the gain, which is defined as (V/V (ν = 0))2, versus ν/ν−3dB. For

6dB/oct, we can see gain is equal to 0.5 at ν/ν−3dB = 1. Higher order roll-off can be achievable. The

108



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  1  10  100

G
ai

n(
(V

/V
(ν

 =
 0

))
2 )

ν/ν-3dB

τ = 100 mS, 6dB
τ = 30 mS, 6dB
τ = 10 mS, 6dB

τ = 100 mS, 12dB
τ = 30 mS, 12dB
τ = 10 mS, 12dB

τ = 100 mS, 18dB
τ = 30 mS, 18dB
τ = 10 mS, 18dB

τ = 100 mS, 24dB
τ = 30 mS, 24dB
τ = 10 mS, 24dB

Figure E.2: (V/V (ν = 0))2 verse ν/ν−3dB.

digital signal processor can achieve up to four filter stages at 24 dB/oct of roll-off.

Therefore, the width of signals in Fig. 3.4 can be well understood from the consideration of the time

constant and the roll-off.
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APPENDIX F

SENSITIVITY AND THE REQUIRED UNIFORMITY OF THE

MAGNETIC FIELDS

The neutron and 3He absorption signal depends on the relative precession frequency between two particles.

The relative precession frequency can be described as

ωγ = 2πfγ ≡ (γ3 − γn)B0 ± 2Edn/~, (F.1)

where 3 is for 3He and n is for neutron. From measuring the frequency difference, we can determine

neutron EDM value. The drift of B0 is a source of systematic error. The ILL collaboration showed that

their B0 = 10mG has a drift around 5× 10−4 mG shown in Fig. 2.5, which can cause a relative precession

frequency shift of ∆fγ = 164µHz. The frequency shift from the EDM is ωe = 2Edn/~. If

dn = 6× 10−26e · cm and E = 50KV/cm, ωe = 2π × 1.45µHz. The ILL applied the comagnetometer 199Hg

to monitor B0 in order to reduce the effect of B0 drift.

An alternative method is to apply the dressed spin technique. The statistical sensitivity with and

without dressed spin should be comparable [29, 44]. However, to apply the dressed spin technique, we also

need to consider the uniformity of the magnetic field to achieve the critical dressing field condition.

When the dressing field is applied, Eq. F.1 becomes.

2πfγ = (γ
′

3 − γ
′

n)B0 ± 2Edn/~ = fγ(x, y)± 2Edn/~,

∆fγ(x, y) = (
∂fγ(x, y)

∂x
)y∆x+ (

∂fγ(x, y)

∂y
)x∆y (F.2)

Assuming we can make the dressing field frequency very stable, we only consider possible drifts of the

magnetic fields. The ILL group shows that the drift at B0 = 10mG can be on order of 5× 10−4mG. We

assume the same relative drift for both B0 and B1. If x = γnB1

ω and y = γnB0

ω , we can get

∆B1

B1
=

∆B0

B0
=

5× 10−4

10
= 5× 10−5, (F.3)

∆x

x
=

∆y

y
= 5× 10−5. (F.4)
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F.1 B0 drift

The Hamiltonian in unit of ~ω for a particle with gyromagnetic ratio γ subjected to a constant magnetic

field B0ẑ and a linearly polarized rf field B1 cosωtx̂ can be written as

H
~ω

= (
γB0

~ω
)Ŝz + â†â+

λ

~ω
Ŝx(â+ â†)

≡ y

2
σ̂z + â†â+

x

4
√
n̄
σ̂x(â+ â†), (F.5)

where Ŝx = ~

2 σ̂x and Ŝz = ~

2 σ̂z are the spin operators along x̂ and ẑ respectively. The first term in Eq. F.5

is the Zeeman interaction of the spin with B0, and the second term is the energy of the dressing field (rf

field) with creation and annihilation operators â† and â. The final term describes the coupling between the

spins of the particles and the rf field with strength λ = γB1/2
√
n̄, where n̄≫ 1 is the average number of

photons. This interaction term allows the particle to absorb or emit photons and exchange energy and

angular momentum with the rf field. Because the rf field is perpendicular to B0 and can be decomposed

into a superposition of right- and left-handed circularly polarized fields, only ∆mz = ±1 transitions are

allowed.

In the weak-field region, i.e., B0 ≪ ω/γ (y ≪ 1), Eq. F.5 can be solved analytically with the result

γ′ = γJ0(x) [63]. The precession frequency becomes

ωeff

ω0
=
γ′B0

γB0
= J0(x), (F.6)

which only depends on the dressing strength x = γB1/ω.

In reference [29], the higher-order corrections to the eigenvalues were also shown. They are given as:

E(0)
n = n (F.7)

E(1)
n,m =

y

2
mJ0(x) (F.8)

E(2)
n,m =

∑

m′ ,n′ 6=n

∣

∣

∣

〈

m
′

, n
′
∣

∣

∣

y
2σz |m,n〉

∣

∣

∣

2

E
(0)

n′ − E
(0)
n

=
y2

4

∑

m′ ,n′ 6=n

1
4 (m

2Jq(x)
2 +m

′2Jq(−x)2 + 2mm
′

Jq(x)Jq(−x))
q

=
1

8
y2

∑

q 6=0

Jq(x)
2

q
= 0 (F.9)

E(3)
n,m ≈ −m

8
y3J0(x)

∞
∑

q=1

Jq(x)
2

q2
, (F.10)

where m = ±1. E(2) = 0, since the sum extends over all ±q 6= 0.
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Figure F.1: fγ(xc, y) v.s. y

To calculate the precession frequency, we have

y =
2πf0
ω

,

fneutron ≡ fn = (
ω

2π
) · (E+ − E−) = E

(1)
+ − E

(1)
− + E

(3)
+ − E

(3)
−

= f0J0(x)− f0
y2

4
J0(x)

∞
∑

q=1

Jq(x)
2

q2
. (F.11)

The precession frequency between neutron and 3He at the critical point xc shown in Fig. F.1 will be

fγ(xc, y) = f3 − fn = fn,0
y2

4
J0(xc)

∞
∑

q=1

Jq(xc)
2

q2
− f3,0

( γ3

γn
y)2

4
J0(

γ3
γn
xc)

∞
∑

q=1

Jq(
γ3

γn
xc)

2

q2

≈ 2.035y2 (F.12)

and

∆ωγ = 2π∆fγ = 2π × 2.035× 2× y ×∆y ≈ 8π × y2(∆y/y)(µHz). (F.13)
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Figure F.2: ∆fγ(∆x/x) v.s. y. We obtain the fitting
function:fγ(xc = 1.18, y) = −0.0367783− 0.0492097y+ 3.20374y2

Eq. F.13 shows that for y = 0.01 and ∆y/y = 5× 10−5, ∆fγ = 0.02µHz. One can conclude that the

effect due to shift in y (originating from shifts in B0 or ω) is small, provided that y is small.

If we set xc = 1.18, we can find out the relative precession frequency versus y. To fit the data as shown

in Fig. F.2, we obtain the function fγ(xc, y) = −0.0367783− 0.0492097y+ 3.20374y2. When y = 0.115099,

fγ(xc, y) = 0. The corresponding drift is given as

∆fγ(xc, y = 0.115) = (−0.0492097y+ 6.40748y2)(∆y
y ) = 0.0792206(∆y

y ).

F.2 B1 drift

Assuming we can fix y at the Bessel function limit, we now examine how the relative precession frequency

would shift due to the drift of x, ∆x. We consider the situation at the critical dressing field,

xc = 1.188682344. We have

fγ(∆x, y → 0) = B0

γ3J0(
γ3

γn
(xc −∆x)) − γnJ0(xc −∆x)

2π

≈ 4.5679∆x (F.14)

Fig. F.3 shows the frequency shift fγ(∆x) v.s. ∆x.
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If we assume ∆x = 5× 10−5xc, the frequency shift will be 0.000027149Hz = 271.5µHz. If we need to

fix at the critical point at less than 1 µHz, the ∆x has to be smaller than 2× 10−6x.

Comparing Fig. F.3 with Fig. F.1, we conclude that B1 needs to be much more stable than B0. It

seems a challenge to keep the dressing field very stable. But the requirement is much less severe as long as

the two cells experience the same fields.
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APPENDIX G

TIME EVOLUTION OF THE UCN SPIN IF ωD
E → 0

Set ~V = ± 1
2ωz,0ẑ +

1
2ω

′
ax̂, V = 1

2

√

ω2
z,0 + (ω′

a)
2 ≈ 1

2ωz,0 and define ǫ = ω′
a/ωz,0 which is at 1% level.

Eq. 5.83 becomes

U±(τ) = exp (−iH±
~
t) = exp (−1

2

t

τ0
)





exp (∓i 12ωz,0t) −iǫ sin 1
2ωz,0t

−iǫ sin 1
2ωz,0t exp (±i 12ωz,0t)



 . (G.1)

Apply the field +ωz,0 for time τ = 1
2τm followed by the field −ωz,0 for time τ to produce one

modulation period of length 2τ = τm. Ignoring ǫ2 terms, the time-evolution operator for one modulation

period τm will be

U−+(2τ) = U−(τ)U+(τ) = exp (− τ

τ0
)





1 −i2ǫ exp (i 12ωz,0τ) sin
1
2ωz,0τ

−i2ǫ exp (−i 12ωz,0τ) sin
1
2ωz,0τ 1





(G.2)

≈ exp (− τ

τ0
)(Î + bσ̂b) (G.3)

where

b ≡ −i2ǫ sin 1

2
ωz,0τ and σ̂b ≡





0 exp (i 12ωz,0τ)

exp (−i 12ωz,0τ) 0



 . (G.4)

Apply U−+(2τ) n times and get

Un = (U−+(2τ))
n = exp (−nτ

τ0
)(Î + bσ̂b)

n

= exp (−nτ
τ0

)(Î
1

2
[(1 + b)n + (1− b)n] + σ̂b

1

2
[(1 + b)n − (1− b)n]). (G.5)

Use

(1± b)n = (1∓ 2iǫ sin(
1

2
ωz,0τ))

n ≈ exp (∓iǫ sin(1
2
ωz,0τ)

T

τ
) ≡ exp (∓iα) (G.6)
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where n = T
2τ and

α ≡ ǫ sin(
1

2
ωz,0τ)

T

τ
= i

bT

2τ
. (G.7)

Thus,

Un =
1

2
exp (−nτ

τ0
)[Î[exp (−iα) + exp (iα)] + σ̂b[exp (−iα)− exp (iα)]]

=
1

2
exp (− T

2τ0
)





F+ F− exp (i 12ωz,0τ)

F− exp (−i 12ωz,0τ) F+



 (G.8)

where

F± ≡ exp (−iα)± exp (iα). (G.9)

Consider the cos square wave modulation,

Utot(T ) = Un exp (−iH−
τ

2
) ≈ 1

2
exp (− T

2τ0
)





F+ exp (i 14ωz,0τ) F− exp (i 14ωz,0τ)

F− exp (−i 14ωz,0τ) F+ exp (−i 14ωz,0τ)



 (G.10)

The neutron initial states for parallel or antiparallel to 3He which is along to x̂-axis are

ψ±(0) =
1√
2





1

±1



 . (G.11)

Then the final state is

ψ±(T ) = Utot(T )ψ±(0) =
1

2
√
2
exp (− T

2τ0
)(F+ ± F−)





exp (i 14ωz,0τ)

± exp (−i 14ωz,0τ)



 . (G.12)

The expected value of σ̂x is

〈σx〉± = ψ†
±σxψ± =

1

8
exp (− T

τ0
) |F+ ± F−|2 (±2 cos(

1

2
ωz,0τ))

= ± exp (− T

τ0
) cos(

1

2
ωz,0τ) |exp (∓iα)|2 . (G.13)

Define

δ ≡ sin(12ωz,0τ)
1
2ωz,0τ

, Ω ≡ ωaδ, and γ ≡ P3

τ3
δ. (G.14)

Calculate

|exp (∓iα)|2 =

∣

∣

∣

∣

exp (∓i2 T
2τ

ω′
a

ωz,0
sin

1

2
ωz,0τ)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

exp (∓i2 T
2τ

Ω + iγ

ωz,0δ
sin

1

2
ωz,0τ)

∣

∣

∣

∣

2

= exp [±γT ] (G.15)
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The time dependence of 〈σx〉 is not affected by the pseudomagnetic field, which is proportional to ωa. Since

〈cos θn3〉 =
∫ τ

0
cos(12ωz,0t)dt

τ
=

sin(12ωz,0τ)
1
2ωz,0τ

= δ, (G.16)

we can have

〈σx〉± = ±e−
T
τβ e

− T
τ3

(1∓P3)〈cos θn3〉 cos(
1

2
ωz,0τ). (G.17)
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APPENDIX H

NOISE ANALYSIS IN THE FEEDBACK SYSTEM

To analyze the feedback loop, a useful tool is the Laplace transform. We use the modulation signal of

Eq. 5.102 as the input to the feedback loop. Since its coefficient depends slowly on time, treat

V0 ≡ N0

τ3
e−

T
τ0 P3Pn sin

1
2ωz,0τ as a constant for a short modulation period. The feedback adds a correcting

field ωc so that ωz = ωd
e − ωc becomes the new input. Then the Laplace transform of the input for a unit

step ωzu(t)
1 is

L[V0ωzt] = V0
ωz

s

1

s
≡ L1(s)

ωz

s
(H.1)

where s = iω, i is the imaginary number
√
−1. The correcting field ωc is

ωc = β · V0ωzt+ α

∫ t

0

V0ωzτdτ, (H.2)

L[ωc] = βL1(s)
ωz

s
+
α

s
L1(s)

ωz

s
≡ L2(s)L1(s)

ωz

s
. (H.3)

So that the gain is

H(s) =
ωc(s)

ωd
e/s

=
L2L1ωz/s

ωz/s+ ωc(s)
=

L2L1ωz/s

ωz/s+ L2L1ωz/s
=

L2L1

1 + L2L1
=

βV0s+ αV0
s2 + βV0s+ αV0

. (H.4)

The natural frequency is

ωn =
√

αV0, (H.5)

and the damping factor is

ζ =
1

2

√

β2V0
α

. (H.6)

Finally the gain is

H(s) =
2ζωns+ ω2

n

s2 + 2ζωns+ ω2
n

. (H.7)

1u(t) = 1 if t > 0; u(t) = 0 if t < 0.
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Using the final value theorem 2, one obtain

lim
t→∞

ωc(t) = lim
s→0

[sωc(s)] = lim
s→0

[s(H(s)
ωd
e

s
)] = ωd

e . (H.8)

It shows at sufficiently long period (long than the inversus of the loop natural frequency), the loop tracks

the input variables exactly. If a white noise n(t) is added to the input as

Vi(t) = V0ω
d
e t+ n(t). (H.9)

The Laplace transform gives

Vi(s)

s
=
V0ω

d
e/s

s
+
n(s)

s
=
V0
s
(
ωd
e

s
+
n(s)

V0
) ≡ V0

s
(
ωd
e

s
+
ni

s
) (H.10)

where ni =
s
V0
n. The variance of ni is

σ2
ni

=
|s|2σ2

n

V 2
0

, (H.11)

and the variance of no is

σ2
no

= σ2
ni
H2(s) =

|s|2
V 2
0

σ2
nH

2(s). (H.12)

For sufficiently small ω,

σ2
no

≈ ω2

V 2
0

σ2
n. (H.13)

On the other hand, the variation in scintillation rate Φ0 in a time T is

δΦ0 =
√

Φ0/T . (H.14)

The angular frequency bandwidth is Bi = π/T . The variance of the input white noise is

σ2
n =

(δΦ0)
2

π/T
=

Φ0

π
. (H.15)

The variance of no is

σ2
no

≈ Φ0

π

ω2

V 2
0

, (H.16)

2The theorem can be referred in the wikipedia http://en.wikipedia.org/wiki/Final_value_theorem.
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which is exactly equal to Eq. 6.19 in [29]. The noise analysis shows a quite competitive sensitivity for the

dressed spin technique.
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