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Abstract 

Onset and development of aggressive behavior were observed in the early life 

stages of seven-band grouper Epinephelus septemfasciatus. Fish culture was divided 

into two terms: the first term, from hatch until 21 days after hatching (DAH); and the 

second term, from 21 DAH until settlement (65 DAH). During the second term the 

effect of different aeration rate on survival was investigated. Survival during the first 

term was 14.1±7.1%. In the second term, survival in control tanks (aeration rate 200 

mL/min) was 14.7±10.2% and 18.8±7.8% in the increasing aeration tanks (aeration rate 

200-800 mL/min). Behavioral observations were conducted at about 8-days intervals 

and aggressive behavior was quantified by the frequency of chase behavior. Aggressive 

behavior was first observed on 52 DAH when pigment appeared on the dorsal area of 

the metamorphosing larvae (standard length 16.6±6.0 mm). Aggressive behavior 

significantly increased from 59 DAH coinciding with the beginning of settlement.  

 

Keywords: aggressive behavior, swimming behavior, ontogeny, Epinephelus 

septemfasciatus. 
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1 Introduction 

Behavioral development is the key to understand the life mode of fish larvae and 

juveniles in relation to morphological development and organogenesis (Fukuhara, 1992). 

Many fish species develop social responses in their early life stages (Noakes and Godin, 

1988). Social behavior includes all behaviors directly related to actual or potential 

encounters between individuals within a species (Noakes, 1978), such as aggressive 

behavior and cannibalism (Sakakura and Tsukamoto, 1999). Aggressive behavior, 

including cannibalistic behavior, has a significant impact on the early life history of 

fishes not only in the rearing conditions but also in the wild (Smith and Reay, 1991). 

Investigation of development of social behavior is of practical importance to improve 

the quality of reared fish for stock enhancement (Olla et al., 1994; Svâsand, 1993; 

Sakakura, 2006) and aquaculture. 

Groupers (subfamily Epinephelinae) include many commercially important 

species and have become target species for stock enhancement and aquaculture in Japan 

(Fukuhara, 1989). However, high mortalities due to aggressive behavior and/or 

cannibalism from the end of the metamorphosis to the juvenile stage had been reported 

in many grouper species, such as red-spotted grouper Epinephelus akaara (Morizane et 

al., 1984, Kayano and Oda, 1986, Narita et al., 1986), orange-spotted grouper E. 

coioides (Duray et al., 1997, Bombeo-Tuburan et al., 2001, Takeshita and Soyano, 

2008), brown-marbled grouper E. fuscoguttatus (Lim, 1993), giant grouper E. 

lanceolatus (Hseu et al., 2004, 2007), camouflage grouper E. microdon (Okinawa PFES, 

1984), long-tooth grouper E. moara (Nakagawa, 1988), greasy grouper E. tauvina (Lim, 

1993) and potato grouper E. tukula (Yeh et al., 2003). Since it is possible to reduce 

cannibalism in finfish culture with size-grading techniques (Liao et al., 2001), it is 
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crucial to investigate the onset of aggressive behavior to reduce mortality by 

cannibalism for increasing survival in the rearing of these species. 

Seven-band grouper E. septemfasciatus is a candidate species of aquaculture in 

Japan. However, mortality due to cannibalism is a bottleneck for improving seedling 

production (Kitajima et al., 1991). Early development of this species had been well 

described by Kitajima et al. (1991) and there are studies on the growth and survival of 

larval stages in relation to the effect of food selectivity (Tanaka et al., 2005), water flow 

field/aeration (Shiotani et al., 2003, 2005, Sakakura et al., 2006, 2007) and tank 

proportion (Ruttanapornvareesakul et al., 2007). However, there is no quantitative 

report on the development of aggressive behavior of the seven-band grouper. The 

objective of this study is to investigate the onset and development of aggressive 

behavior of seven-band grouper from hatch until the juvenile stage.  

 

2 Material and Methods 

2.1 Egg collection and general rearing 

A female broodstock (5.2 kg body weight), which was caught in the wild in 

2003, was reared in a floating net cage (5x5x5 m) at the Nagasaki Prefectural Fisheries 

Experimental Station, Nagasaki, Japan. It was subjected to the hormonal treatment 

described by Ni Lar Shein et al. (2004). Fertilized eggs were obtained by artificial 

insemination using cryo-preserved sperm (Miyaki et al., 2005). Floating eggs were 

transferred into 1,000-L circular black rearing tanks at a density of 10 eggs/L and 

hatched approximately 24 hours after transfer. To calculate hatching rate 100 eggs were 

transferred into a 1-L beaker, incubated at 20oC and hatched larvae were counted every 

24 hours until all eggs hatched or died. The rearing of seven-band grouper was divided 
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in two terms: from hatch until 21 days after hatching (DAH), and from 21 DAH to 65 

DAH. Survival was calculated at the end of the first and second terms.  

Rotifers Brachionus plicatilis sp. complex (Hagiwara et al., 2007) were cultured 

in 1,000 L transparent tanks with HUFA enriched Chlorella vulgaris (Super Chlorella 

V-12; Chlorella Industry Co. Ltd., Fukuoka, Japan) and newly hatched Artemia nauplii 

enriched with Super Capsule Powder A-1 (Chlorella Industry Co. Ltd., Fukuoka, Japan).  

 

2.2 Rearing conditions in the first term  (0-21 DAH) 

Larval rearing during the first term was designed according to the previous trials 

for the seven band grouper (Tanaka et al., 2005). Two black rearing tanks, each 

containing 1,000 L of seawater, were kept in a water bath at 25.4±0.9 ºC with an 

aeration of 200 mL/min and natural light condition ranging 97-673 Lux during daytime 

on the water surface. Surface film was formed once a day by the addition of oil at 0.2 

mL/m2 water surface (Riken Feed Oil Omega; Riken Vitamin, Tokyo, Japan) from 3 

DAH until the end of the experiment to prevent surface tension-related death of larvae 

(Yamaoka et al., 2000, Tsuchihashi et al. 2003). Sand filtered seawater with UV 

disinfection was supplied at water exchange rate of 100%/day. 

Larvae were fed once a day with SS-type rotifers from mouth opening (3 DAH, 

standard length, SL, mean±SD, 2.3±0.1 mm) until 13 DAH (SL 2.3±0.1 mm) at a 

density of 10 ind./mL, and L-type rotifers from 14 DAH until 21 DAH at a density of 10 

ind./mL, respectively. Super Chlorella V-12 was added from mouth opening at a 

density of 50x105 cells/mL once daily. 

 

2.3 Rearing conditions in the second term  (21-65 DAH) 
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In the second term, fish survival was compared when reared at two different 

aeration rates, constant 200 mL/min aeration and increasing aeration rate (200 mL/min 

between 21-26 DAH; 400 mL/min between 27-44 DAH; 600 mL/min between 45 and 

53 DAH; and 800 mL/min from 53 DAH until the end of the experiment).  Two 1,000-L 

black rearing tanks were prepared for each aeration treatment and were kept in a water 

bath at 25-26 oC. Light condition was natural ranging 37-706 Lux during daytime on the 

water surface and sand filtered seawater with UV disinfection was supplied at water 

exchange rate of 100%/day. One thousand larvae from the first term were transferred 

into each tank. 

Larvae were fed once a day with L-type rotifers from the beginning of the trial 

until 45 DAH at a density of 10 ind./mL, and Artemia from 30 DAH until the end of the 

experiment at a density of 0.03-2.0 ind./mL twice daily. Other rearing conditions were 

kept same as those in the first term rearing trial. 

 

2.4 Sampling 

Thirty fish were randomly taken from the control tanks at 0, 5, 13, 15 and 20 

DAH during the first term and 25, 30, 40, 50, 55 and 66 DAH during the second term. 

Fish were anesthetized with MS222 (Tricaine; Sigma Chemical Co., St Louis, MO, 

USA) and preserved in 5% formalin solution. To measure SL, a digital microscope 

(VH-6300, Keyence Corp., Osaka, Japan) or a digital caliper (CD-15CP, Mitutoyo 

Corp., Nakagawa, Japan) was used. Scientific drawings of the sample were made for 

each developmental stage using a dissecting microscope with camera lucida (Olympus 

SZX-12, Olympus Optical Corp., Tokyo, Japan) following Kitajima et al. (1991). 
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We realized that the former definition of developmental stages (Kitajima et al., 

1991) is not appropriate, because it defined individuals that still have some larval 

characteristics, such as elongated spines and no coloration (Kendall et al., 1984, Trijuno 

et al., 2002, Kato et al., 2004, Hussain and Higuchi, 1980), as juveniles. Therefore we 

examined the development of digestive tract together with the morphological 

development during the early life stages of seven-band grouper and proposed a new 

developmental stage (Fig. 1). 

  

2.5 Behavioral observations 

 Observations were performed in order to examine the behavioral development of 

the seven-band grouper in 5 developmental stages: hatch (0 DAH), development of 

dorsal and pelvic spines (13 DAH), flexion (24 DAH), metamorphosing larvae (dorsal 

and pelvic spines longest respect to the body length, 38 DAH), late metamorphosing 

stages with pigmentation on the dorsal region (beginning of settlement, 52 DAH) and 

juvenile with mature color pattern (63 DAH). Behavioral indexes were defined as 

follows: swimming speed; relative swimming speed (swimming speed/SL); and chase 

(an aggressive fish bursts towards and follows another fish for a short time). 

Video recordings to measure swimming speed and relative swimming speed 

were performed using observation containers in an enclosed chamber at 1,000 lx. Five 

fish were gently transferred from the rearing tank into an observation container with 

seawater from the rearing tank at 9:00. Three different containers were used according 

to fish size, 50 mL (5 cm (L), 4 cm (W) and 3 cm (H)), 350 mL (10.5 cm (L), 8 cm (W) 

and 6 cm (H)) or 5 L (24 cm radius, 12 cm height). Video recordings of fish behavior 

were made from above for 60 minutes. After observation, fish were anesthetized with 
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MS222 and fixed in 5% formalin solutions. Swimming speed of each fish was 

calculated by the computer program Larvae version 0.9, which was developed by the 

cooperation of Aquaculture Biology Laboratory, Nagasaki University and Dr. 

Nobuyoshi Taguchi at Technology Center of Nagasaki Prefecture, Nagasaki, Japan. SL, 

total length (TL), dorsal spine length and pelvic spine length were measured and 

developmental stage was determined.  

Aggressive behavior was directly observed in observation containers. According 

to fish size, either 1 L crystal beaker (11 cm diameter) or 5 L white plastic tank (24 cm 

diameter) were used under natural light condition. Two to four replicates were 

performed in every sampling day. Five fish were introduced into an observation tank 

and behavior was observed for 10 minutes every 2 hours from 9:00 to 17:00. At the end 

of the observation, fish were anesthetized with MS222 and fixed in 5% formalin 

solution. SL, TL, dorsal spine length and pelvic spine length were measured and the 

development stage was determined. Frequencies of chase behavior were pooled by hour 

and age and mean value (per minute per fish) was obtained for each time and age group, 

respectively. Twenty minutes observations were made daily for each rearing tank 

together with the observation containers. 

Using the data of SL of fish from the behavioral observations, specific growth 

rate (SGR) and coefficient of variation (CV) were calculated for each age group. CV 

was calculated as: 

CV=SD/SL 

where CV is the coefficient of variation, SD is standard deviation and SL is 

average standard length. 

SGR was calculated as:  
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SGR=SL2-SL1/t 

where SL1 and SL2 are the SL of the fish at the beginning and at the end of a 

period of t days. 

 

 2.6 Statistical analysis 

To determine whether there was a difference in growth or behavioral parameters 

among developmental stages, one-way ANOVA was performed (p<0.05). In case 

significant difference was detected, Tukey-Kramer test was used to assess differences 

among hours (p<0.05), and if no significant differences were detected, data were pooled 

and mean values were calculated for each sampling day. Tukey-Kramer test was also 

used to assess differences among sampling days (p<0.05). To compare survival and SL 

in the second term between control and increasing aeration tanks χ2-test and t-test were 

performed, respectively (p<0.05). 

 

3. Results 

3.1 Growth, development and survival 

 Fertilization rate and hatching rate were 95% and 100% respectively. The SL at 

hatching was 1.6±0.1 mm (n=30, Fig. 1). At mouth opening yolk sac and oil globule 

were almost absorbed (4 DAH, SL 2.3±0.1 mm, Figs. 1 and 2). Survival during the first 

term (from hatch until 21 DAH) was 14.1±7.1% and the SL of the larvae was 3.7±0.6 

mm. Survival in the increasing aeration tanks was 18.8±7.8% and 14.7±10.2% in the 

control tanks during the second term. There was no significant difference in SL of fish 

between the increasing aeration tank (SL 25.9±1.9 mm) and the control (SL 25.3±1.9 
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mm) at the end of the experiment (65 DAH).  The relationship between SL and TL was 

described by the formula: TL = 1.0072 SL1.0785 (R = 0.9986, n=265). 

The seven-band grouper developmental stages were classified as: 

A: Yolk sac, immediately after hatch (SL 1.2 mm, Fig. 2). Yolk and oil globule 

clearly visible. No pigmentation is present in the eye. Anus located in the posteroventral 

area but not open. 

B: Mouth opening, 5 DAH (SL 2.4 mm). Yolk and oil globule completely 

absorbed. Mouth and anus opened and eyes fully pigmented. Anus migrates to a 

centroventral position. The primitive digestive tract which enables larva to feed on 

exogenous food is established. Intestine and rectum visible but undeveloped. Pelvic fin 

develops. Melanophores form a cap on the dorsum of the gut. 

C: Pelagic larvae, 13 DAH (SL 3.2 mm). Digestive tract rotates and develops. 

The second dorsal spine and the pelvic spines primordium develop. Nostrils begins to 

be distinguished.  

D: Pre-flexion larvae, 15 DAH (SL 3.5 mm). Digestive tract stops rotating and 

increases in capacity. The second dorsal spine and the pelvic spines elongate and 

develop melanophores in their distal end. 

E: Flexion larvae, 20 DAH (SL 6.0 mm). Skull clearly visible. Pre-opercle, 

opercle and inter-opercle developed. First and third dorsal fin ray appear, and the 

second dorsal spine and the pelvic spines elongate further with a serrated border. 

Notochord flexion begins and caudal fin develops. Stomach and intestine increase in 

capacity. 

F: Post-flexion larvae, 25 DAH (SL 6.9 mm). No change is visible in the 

development of the digestive track, but increases in capacity. Hard fin ray count 
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increases without reaching the adult fin ray complement. Soft rays develop in dorsal and 

anal fin. Notochord fully flexed and caudal fin nearly completed. A depression is visible 

in the nostrils. 

G: Metamorphosing larvae, 30 DAH (SL 8.1 mm). No development of the 

digestive track, but bigger capacity. The second dorsal spine and the pelvic spines reach 

its maximum length respect to the body. All fins fully developed with a complete hard 

and soft fin ray count. Melanophores develop in the head.  

H: Metamorphosing larvae, 40 DAH (SL 9.7 mm). Operculum well developed. 

Pigmentation more extensive in the head. Appearance of melanophores around the 

opercle. No development of the digestive tract, but bigger capacity. 

I: Metamorphosing larvae, 50 DAH (SL 12.2 mm). Stomach and intestine begin 

to differentiate, both increase in capacity. The second dorsal spine and the pelvic spines 

still long compare to the body, but begin to decrease its relative length. Body shape 

similar to adult. Pigmentation appears in the base of the dorsal fin. 

J: Metamorphosing larvae, 55 DAH (SL 15.5 mm). Pyloric caeca differentiates. 

Skull well developed. The second dorsal spine and the pelvic spines continue to 

decrease in length. 

K: Juvenile, 66 DAH (SL 20.5 mm). Pyloric caeca well differentiated. 

Proportion and coloration identical to adults. Lateral line system clearly visible from the 

opercle to the base of the caudal fin. Body covered in melanophores and 7 bands clearly 

visible. Nostrils bridge does not develop completely. 

The second dorsal spine and pelvic spines appeared from 14 DAH (SL 2.5±0.2 

mm) and reached half the length of the body by 20 DAH. Metamorphosing larvae with 

completion of fin rays with maximal length of spines to the SL (over 100% for second 
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dorsal spine and around 80% for pelvic spines, Fig. 3) were first observed from 31 DAH 

(SL 5.5±0.6 mm). From 51 DAH (SL 16.6±6.0 mm), metamorphosing larvae with 

pigmentation on the dorsal region were firstly observed and their second dorsal spine 

and pelvic spines decreasing in length compared to the SL (around 40% for second 

dorsal spine and around 30% for pelvic spines). CV of SL increased steadily from hatch 

(5%, Fig. 1) until the beginning of metamorphosis  (40 DAH, 21.9%) and became stable 

thereafter. SGR decreased rapidly from hatch (0.39 day-1, Fig. 1) until the mouth 

opening stage (0.10 day-1) and stayed stable until 36 DAH. Afterwards, SGR became 

very variable with a slight trend to increase towards the end of the metamorphosis 

stages. 

   

3.2 Behavioral development 

 Swimming speed did not increase significantly from hatch (13.5±6.0 mm/sec) 

until 40 DAH (metamorphosing larvae, 24.4±15.0 mm/sec, ANOVA, df=9, F=97.108, 

p<0.0001, Fig. 4). Swimming speed increased significantly from the appearance of 

pigmentation on the dorsal area during the late metamorphosing stages (52 DAH, 

99.1±38.6 mm/sec) and showed a peak at 56 DAH (165.5±89.4 mm/sec). 

 Relative swimming speed decreased steeply from hatch (7.9±3.6 mm/SL/sec, 

ANOVA, df=9, F=35.122, p<0.0001, Fig. 4) until the metamorphosing larvae stages (35 

DAH, 3.5±5.1 mm/SL/sec). From the end of the metamorphosing larvae stage the 

relative swimming speed increased until its peak at 56 DAH (9.0±4.9 mm/SL/sec). 

 As there was no effect of hour of the day on the expression of aggressive 

behavior data were pooled and mean values were calculated for each sampling day. No 
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aggressive behavior was observed from hatch until the late metamorphosing larval 

stages at the appearance of pigmentation in the dorsal area (51 DAH, Fig. 5). 

Afterwards, aggressive behavior increased significantly from the appearance of 

pigmentation until the end of the experiment (ANOVA, df=10, F=64.916, p<0.0001). 

 Settlement was first observed in the rearing tank towards the end of the 

experiment in metamorphosing larvae with an almost mature color pattern (towards the 

end of stage J, 59 DAH). 

 

4 Discussion 

  Larval growth and development in our rearing experiment were comparable to 

the former study of this species (Kitajima et al., 1991), even though we had a very 

variable SGR during the last days of our experiment. On the other hand, survival 

showed higher trend for the metamorphosing larvae and juveniles in the increasing 

aeration tanks than in other study (1.3% at 25oC using feed oil and natural light 

condition, Tsuchihashi et al., 2003). These results support the data and hypothesis by 

Sakakura et al. (2006) that an optimized aeration throughout the development of seven-

band grouper is necessary for improvement of survival of larviculture of this species.  

Grouper species change their habitat from a relatively calm environment with 

slow currents at open-ocean during the larval and early metamorphosing stages to an 

environment with stronger currents in shallow rocky shoals during the late 

metamorphosing and juvenile stages (La Mesa et al., 2002). Hence, the higher survival 

in the different aeration tanks suggests that the physical rearing environment of water 

flow was optimized for the fish. We hypothesize that the change in the aeration 

according to the fish size will increase the survival of the fishes, not only by increasing 
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the encounter rate of live feed to the fish without producing excessive stress on the 

seedlings (rotifer density was kept constant) but also by optimizing the rearing 

environment to the fish swimming capabilities by reflecting the natural history of this 

species. 

Fast swimming speed and relative swimming speed during the yolk sac and 

mouth opening stages (Fig. 4) can be attributed to a predator avoidance tactic displayed 

as a dispersion of the larvae after hatching (Fuiman and Magurran 1994). Although 

swimming speed did not change until the late metamorphosing larval stages, relative 

swimming speed was very low during the beginning of metamorphosing larval stages. 

This slow relative swimming speed stages coincides with the longest dorsal and pectoral 

spine lengths, probably as a result of the lag produced by the dorsal and pelvic spines. 

Well developed spines in metamorphosing grouper larvae may constitute a trade off 

between swimming ability and larval protection against predators (Fuiman and 

Magurran, 1994) during the pelagic stages of the development before settlement. 

Increase in swimming speed and relative swimming speed were observed from the 

beginning of settlement. The high swimming speed on this species during the late 

metamorphosing larvae and juvenile stages may indicate migratory movements of the 

fish from spawning grounds to nursery areas. Also, a higher swimming speed could be 

beneficial for territorialism, as an increase in swimming speed may be useful for the fish 

in the search and protection of a suitable habitat and in feed search/predator avoidance. 

We propose that seven-bend grouper juveniles use a strategy of fast growth and 

development as well as a fast swimming speed in order to minimize the risk of 

predation from the beginning of the metamorphosis. 
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Aggressive behavior appeared after the relative length of the second dorsal and 

pelvic spines began to decrease (40% and 25% of the SL or less, respectively), 

indicating that certain development during the metamorphosis must be achieved for the 

onset of aggressive behavior. These spines develop during the pre-flexion stage larvae 

as protection structures from predation (Fuiman and Magurran, 1994). Similarly to the 

data reported by Kitajima et al. (1991), we observed that the maximum relative length 

of the spines coincided with the beginning of metamorphosis (about 80% for the dorsal 

fin and 46% for the pectoral fin, Fig. 3). Behaviorally, the onset of the aggressive 

behavior coincided with the beginning of the settlement in seven-band grouper, 

presumably as a beginning of territorialism. Seven-band grouper developed aggressive 

behavior relatively late in terms of age (51 DAH), compared to other grouper species 

such as E. moara (30 DAH, Nakagawa, 1988, 35 DAH, Narita et al., 1986) or E. 

microdon (30 DAH, Okinawa PFES, 1984). However, in terms of total length seven-

band grouper aggressive behavior onsets at a comparable size (TL 20.9±8.0 mm) to 

other grouper species such as E. moara (TL 18 mm, Narita et al., 1986), E lanceolatus 

(TL 19 mm, Hseu et al., 2004) or E coioides (TL 15-16 mm, Narisawa et al., 1997, 

Hseu et al., 2003). Although we did not check aggressive behavior during nighttime, we 

speculate that aggressive behavior will mainly occur during daytime, since groupers are 

visual feeders (Yoseda et al., 2008). 

When compared with other settling fish, such as Japanese flounder (Sakakura 

and Tsukamoto, 2002), aggressive behavior of seven-band grouper onsets at a 

comparable developmental stage, around the end of metamorphosis. In other species, 

such as yellowtail (Sakakura and Tsukamoto, 1999), aggressive behavior also onsets 

from the beginning of the juvenile stage. Settlement of seven-band grouper was seen 
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from a comparable developmental stage to Japanese flounder (Sakakura and Tsukamoto, 

2002), towards the end of metamorphosis (appearance of bands in the dorsal area). 

Size variations in SL increased slowly in the development of seven-band 

grouper until the metamorphosing stages and CV remained relatively stable after the 

onset of aggressive behavior (CV<25%). Aggressive behavior related growth 

dispensation has also been observed on juvenile cichlids (Tilapia zillii, Koebele, 1985), 

where not only direct interactions of dominants but also visual cues affected negatively 

the growth of subordinates. This effect will be reinforced by the high growth rates 

generally showed by dominants due to an even greater competitive ability and therefore 

strengthen the position of the dominant fish in the hierarchy (Sloman and Armstrong, 

2002). Although the similar experiments in yellowtail Seriola quinqueradiata showed 

less variation in SL (CV<15%, Sakakura and Tsukamoto, 1996), yellowtails showed the 

same ontogenetic changes in CV. In the wild, schools of juvenile yellowtails consisting 

of similar ages aggregate to drifting seaweed in current rips (Sakakura and Tsukamoto, 

1997). It is assumed that aggressive behavior and social rank in schools of yellowtail 

function to make the body size of school members uniform both in the wild and 

artificial rearing conditions in order to minimize individual predation risk by predator 

confusion (Sakakura and Tsukamoto, 1999). However, this is not the case in seven-band 

grouper, which does not show schooling behavior. Seven-band grouper late 

metamorphosing larvae and juveniles settle at inshore regions and they inhabit shallow 

rocky shores. There is not a shift toward deeper waters with increasing size in groupers, 

but rather an enlargement of their bathymetric range, at least for undisturbed 

populations (La Mesa et al., 2002). Observations from coral reef habitats indicated that 

settled juvenile groupers are cryptic fishes, closely associated with the bottom, and not 
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straying far from crevices (Smith, 1961).  Habitat dependency of tropical groupers was 

probably more closely related to the need for shelter than for food (Parrish, 1987). Thus 

we assume that aggressive behavior in the early seven-band settling grouper may have a 

function for shelter/resources protection. 
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Figure captions 

 

Fig. 1. Growth of the seven-band grouper. A: Solid dots indicate standard length and 

bars indicate standard deviations (n=4-44). Significant differences among ages are 

indicated by alphabets (Tukey-Kramer test, p<0.05, a<b<c<d<e<f<g). B: Solid dots 

indicate coefficient variation of standard length and clear dots Specific Growth Rate 

(SGR) for each age group. 

 

Fig. 2. Morphological development and development of digestive tract of the seven-

band grouper. The developmental stages of fish were defined as: A, Yolk sac (0 

DAH, SL 1.2 mm); B, Mouth opening (5 DAH, SL 2.4 mm); C, Pelagic larvae (13 

DAH, SL 3.2 mm); D, Pre-flexion (15 DAH, SL 3.5 mm); E, Flexion (20 DAH, SL 

6.0 mm); F, Post-flexion (25 DAH, SL 6.9 mm); G, Metamorphosing larvae (30 

DAH , SL 8.1 mm); H, Metamorphosing larvae (40 DAH , SL 9.7 mm); I, 

Metamorphosing larvae (50 DAH, SL 12.2 mm); J, Metamorphosing larvae (55 

DAH , SL 15.5 mm); K, Juvenile (66 DAH , SL 20.5 mm). The scale bar of each 

scientific drawing represents either 0.5 mm (drawings A, B, C, D and E) or 1 mm 

(drawings F, G, H, I, J and K). 

 

Fig. 3. Changes in spine length as a percentage of the body length during early life 

stages of seven-band grouper (A: Second dorsal spine. B: pelvic spines). Open dots 

indicate aggressive fish and solid dots indicate subordinates, respectively. 
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Fig. 4. Changes in swimming behavior of seven band grouper (for hatch n=10, the other 

n=5). A: Swimming speed. B: Relative swimming speed. Bars indicate standard 

deviations. Significant differences are indicated by alphabets (Tukey-Kramer test, 

p<0.05, a>b>c>d>e>f). 

 

Fig. 5. Changes in aggressive behavior of seven-band grouper (n=2-4). Dots indicate the 

mean chase frequency and bars indicate standard deviations. Significant differences 

are indicated by alphabets (Tukey-Kramer test, p<0.05, a>b>c).
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