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ABSTRACT
This paper presents a new Bayesian topical trend analysis.
We regard the parameters of topic Dirichlet priors in latent
Dirichlet allocation as a function of document timestamps
and optimize the parameters by a gradient-based algorithm.
Since our method gives similar hyperparameters to the doc-
uments having similar timestamps, topic assignment in col-
lapsed Gibbs sampling is affected by timestamp similarities.
We compute TFIDF-based document similarities by using a
result of collapsed Gibbs sampling and evaluate our proposal
by link detection task of Topic Detection and Tracking.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation

Keywords: Temporal Analysis, Topic Modeling, Topic De-
tection

1. INTRODUCTION
Bayesian approach is an outstanding trend in data min-

ing. Especially, latent Dirichlet allocation (LDA) [4] leads
to challenges in various fields [5][7][8][14]. In this paper,
we focus on topical trend analysis and propose a new ap-
proach, called Latent dYNnamically-parameterized Dirich-
let Allocation (LYNDA), by regarding the parameters of
topic Dirichlet priors in LDA as a function of document
timestamps. In LYNDA, a topic multinomial for each doc-
ument is drawn from a Dirichlet prior whose parameters
are an instantiation of a per-topic function defined over
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document timestamps. However, if topic Dirichlet priors
are markedly different among documents, we cannot fully
take advantage of Bayesian approach, because too differ-
ent per-document topic multinomials result in overfitting to
word co-occurrence patterns local to each document. There-
fore, we regard the parameters of topic Dirichlet priors as a
smooth function of continuous timestamps. Consequently,
documents having similar timestamps are generated based
on similar Dirichlet priors and exhibit similar topic mixture.

LYNDA has an advantage in its simplicity. We can use
collapsed Gibbs sampling (CGS) for LDA [6] as is and can
estimate hyperparameters in the course of CGS by using an
existing gradient-based method such as L-BFGS [11] [9].

CGS for LDA provides a topic assignment to all word to-
kens and induces predictive word probabilities conditional
on each document [16]. Since document similarities can be
computed based on these probabilities, we compare LYNDA
with competing methods by link detection task of Topic De-
tection and Tracking (TDT), where better document simi-
larity leads to a better result. Note that our approach may
be applied to other probabilistic models where Dirichlet pri-
ors are prepared for timestamped data.

2. PREVIOUS WORKS, OUR PROPOSAL
In this paper, we focus on probabilistic topical trend anal-

ysis. Dynamic Topic Models (DTM) [3] and its continuous
time version (cDTM) [13] utilize transitions of the parame-
ters of per-topic word multinomials for modeling document
temporality, where the vectors drawn from time-dependent
Gaussians are used to obtain multinomial parameters. How-
ever, Gaussian is not a conjugate to multinomial. There-
fore, the authors of [10] discuss that inference becomes com-
plicated and propose Multiscale Topic Tomography Models
(MTTM) based on a completely different idea. In MTTM,
the time interval is segmented into two pieces recursively to
obtain a binary tree representing the inclusion among subin-
tervals. Further, each leaf node is associated with a Poisson
distribution for word generation. However, MTTM cannot
be applied to continuous timestamps. When compared with
these works, LYNDA is remarkable in two features below.



First, inference is easy to implement. While LYNDA re-
quires additional computations for hyperparameter estima-
tion, we can use CGS for LDA as is and can adopt an exist-
ing gradient-based method for hyperparameter estimation.
In contrast, the above works require heavily customised im-
plementation. Second, LYNDA can be applied to continuous
timestamps. While cDTM has this feature, a special imple-
mentation technique is required for efficient memory usage.

More appropriately, we can compare LYNDA with Top-
ics over Time (TOT) [15], because TOT shares both above
features. TOT extends LDA just by adding per-topic Beta
distributions, which are defined over continuous timestamps.

However, these Beta distributions cause the following prob-
lem. The full conditional probability that topic k is as-
signed to ith token of document j in TOT is proportional

to
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Γ(·) denotes the standard gamma function, and τj is the
timestamp of document j. The first half corresponds to
the full conditional in LDA [6]. The latter corresponds to
the likelihood of Beta distribution and means that the same
topic is likely to be assigned to the word tokens appearing in
the documents having similar timestamps. Our preliminary
experiments reveal that this likelihood grows unboundedly
as CGS proceeds, and that the first half comes to play only
a marginal role. To solve this problem, we should keep the
likelihood comparable with the first half. In our evaluation
experiment, we multiply all Beta parameters ak, bk by the
same constant and keep them less than a specific limit.

In contrast, LYNDA controls time-dependency of topic
assignment not by augmenting LDA with probability dis-
tributions without priors, but by making hyperparameters
time-dependent to achieve a moderate fit to timestamp data.
In LYNDA, we make topic Dirichlet priors time-dependent

by defining p(θj |f1, . . . , fK) ∝ Q
k θ

fk(τj)−1

jk for document

j, where fk(·) are per-topic differentiable functions defined
over continuous timestamps. In this paper, we adopt unnor-
malized Gaussian density and define fk(τ) ≡ ζk exp{−(τ −
mk)2/(2s2

k)}. We think that Gaussian density is appropriate
to represent the dynamism of topical trends. Consequently,
each topic Dirichlet prior is determined by the three pa-
rameters. mk specifies the position of the peak popular-
ity of topic k, sk tells how wide the popularity stretches,
and ζk represents the intensity of popularity. We introduce
ζk to automatically rescale the unnormalized Gaussian den-
sity separately for each topic k. These parameters are es-
timated by empirical Bayes method. The log likelihood of

a topic assignment can be obtained as log
ˆQ
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˜
. We maximize this by optimizing ζk, mk,

and sk with L-BFGS [11][9]. However, in the preliminary ex-
periments, mk showed no significant change after optimiza-
tion. Therefore, we fix mk to (k−1)/(K−1) by normalizing
the timestamp domain to [0, 1]. As a result, we can put an
equal interval between the peaks of neighboring Gaussians
and thus can cover the entire time interval impartially.

We compare LYNDA also with LDA where hyperparam-
eters are optimized straightforwardly. The log likelihood of

a topic assignment in LDA is obtained as log
ˆQ

j
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k Γ(njk+αk)

Γ(
P

k(njk+αk))

˜
. Therefore, we can determine αk by max-

imizing the log likelihood. LDA with this straightforward
hyperparameter estimation is denoted by HypLDA.

3. EXPERIMENTS
We use TDT4 dataset [1] for our link detection evaluation.

This dataset is accompanied with the on-topic document
sets for 40 topics of TDT 2002 competition and those for 40
topics of TDT 2003 competition. From now, we say “TDT-
topic” to indicate the topics prepared for these TDT com-
petitions. While an off-topic document set is also prepared
for each TDT-topic, we regard all documents other than on-
topic documents as off-topic to make evaluation reliable by
using as many documents as possible. The entire dataset is
used both to train probabilistic models and to compute doc-
ument similarities. A similar strategy is taken when LDA-
based models are evaluated in ad-hoc retrieval tasks [16]. If
we split the dataset into a training and a test sets, we will
face a difficulty in constructing new on-topic document sets
based on this split, because distributions of on-topic docu-
ments along time axis may be heavily modified. The dataset
consists of J = 96, 259 documents, W = 196, 131 unique un-
stemmed words, and 17,638,946 word tokens after removing
stop words. We use the dates as document timestamps.

Our baseline method is TFIDF, because it is widely known
that TFIDF is effective in TDT tasks [2][12]. We define
the weight of word w in document j as njw{log(J/Jw) +
σ log(njw/nj)}, where Jw is the document frequency of word
w, njw is the term frequency of word w in document j, and
nj is the length of document j. When σ = 0, we obtain
the conventional TFIDF. While our weighting schema looks
ad-hoc, only this could give results better than the conven-
tional TFIDF. We set σ = 0.4 and regard this as our baseline
TFIDF, because other values give comparable or weaker re-
sults. We adopt cosine measure for document similarity.

When we use a result of CGS, the above weighting schema
is modified as njw{log(J/Jw)+ρ log p(w|j)+σ log(njw/nj)},
where p(w|j) denotes the predictive probability of word w
given document j. Based on preliminary experiments, we set
ρ = 0.2 and σ = 0.2. For LDA and HypLDA, we have p(w|j)
=
P

k

njk+αk

nj+
P

k′ αk′
nkw+βP

w(nkw+β)
. For TOT, we have p(w|j)
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where a normalization is required. In Section 2, we discuss
that TOT suffers unbounded increase of the likelihood of
per-topic Beta distributions. Therefore, for all Beta param-
eters ak, bk, we put two types of limits: ak, bk ≤ 2 and
ak, bk ≤ 5. Correspondingly, we present evaluation results
under the tags TOT2 and TOT5. Since the peak of Beta
density is higher for larger parameters, TOT5 is more af-
fected by timestamp data. We use these two limits, because
smaller limits make TOT indistinguishable from LDA, and
larger limits heavily degrade the overall performance. Fi-

nally, for LYNDA, p(w|j) =
P

k

njk+fk(τj)

nj+
P

k′ fk′ (τj)
nkw+βP

w(nkw+β)
.

We compare LYNDA with five methods: TFIDF, LDA
with fixed hyperparameters (αk = 0.5 for all k, β = 0.01),
HypLDA, TOT2, and TOT5. The number of topics K is
set to 100. While we tested K = 50 and 200, we only ob-
tained worse results for K = 50 and comparable results for
K = 200. We prepare 30 results of CGS from different
random initializations. The number of iterations of CGS is
500 for LDA, TOT2, and TOT5. In the course of CGS for
HypLDA and LYNDA, we estimate hyperparameters by L-
BFGS once for every 10 iterations. HypLDA and LYNDA
require 1,000 iterations, because convergence is slow due to
the incorporation of hyperparameter estimation.

Our evaluation is conducted as follows. Assume that the
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Figure 1: Comparing averaged NDCs.

number of on-topic documents for a TDT-topic t is Tt. By
computing the similarities between each on-topic document
and all documents, we have similarities for Tt × J docu-
ment pairs. Among these pairs, we call Tt × Tt pairs of two
on-topic documents “correct” and the rest “incorrect.” We
would like to approximate this ideal split by devising a doc-
ument similarity and then by setting a similarity threshold
to obtain a split. We introduce two functions of similar-
ity threshold η. Rt(η) is the number of correct pairs whose
similarities are larger than η. At(η) is the number of incor-
rect pairs whose similarities are larger than η. Now we can
define two evaluation measures: miss probability P Miss

t (η)
≡ 1− Rt(η)/(Tt × Tt) and false alarms probability P FA

t (η)
≡ At(η)/{Tt× (J −Tt)}. We also use Normalized Detection
Cost (NDC) defined as P Miss

t (η) + 4.9 × P FA
t (η) based on

an intuition that false alarms are more unfavorable [2][12].

4. RESULTS
Figure 1 presents NDCs for the similarity thresholds from

0.040 to 0.055 with 0.001 step. The top panel gives NDCs
averaged over 40 TDT-topics of TDT 2002, and further aver-
aged over 30 results of CGS except for TFIDF. The bottom
panel gives the results for TDT 2003. Based on Figure 1,
we choose η = 0.04, because smaller values are advanta-
geous to TDT 2002, and larger values are to TDT 2003.
Figure 1 shows that TFIDF is efficient for TDT 2003. A
detailed inspection reveals that TFIDF is likely to work for
the TDT-topics whose topic explication includes character-
istic words, e.g. for TDT-topic 41016 having an explication
where the words “Basque” and “ETA”appear, and for 41021
whose explication includes the words“Ghana”and“Kufuor.”

Based on Figure 1, we can conclude that hyperparameter
estimation improves LDA, because both LYNDA and Hy-
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Figure 2: TDT-topics where our approach succeeds.

pLDA work better than LDA. However, there seem no signif-
icant differences between LYNDA and HypLDA. The differ-
ences will later be revealed by inspecting several TDT-topics
separately. Further, Figure 1 shows that TOT results in a
weak performance. However, if we inspect TDT-topics sep-
arately, we will know that TOT is comparable with LYNDA
under a specific condition, and nevertheless that LYNDA is
more robust with respect to overfitting to timestamp data.

In each of Figures 2 and 3, we select four TDT-topics and
clarify detailed differences. Figure 2 presents the results for
the TDT-topics where LYNDA succeeds, and Figure 3 for
the TDT-topics where LYNDA fails. Each scatter graph is
tagged with a TDT-topic ID and includes markers each of
which corresponds to a pair of a false alarms probability
(horizontal axis) and a miss probability (vertical axis). One
cross marker is given for TFIDF, and 30 markers are for
other methods, because we have 30 results of CGS except
for TFIDF. The line graph on the left side of each scatter
graph shows the number of on-topic documents at each date
ranging from December 1 in 2000 to January 31 in 2001,
where horizontal grids are put at unit interval.

First, we compare LYNDA with HypLDA and LDA. Fig-



ures 2 and 3 provide the following observations. In these
figures, we give the TDT-topics whose on-topic documents
exhibit a distribution with one distinguished peak along time
axis. However, smaller peaks are also observed. When the
height of smaller peaks is far less than that of the largest
peak, LYNDA succeeds (e.g. 40007 and 41026 in Figure 2).
However, even when the height of smaller peaks is consider-
ably less than that of the largest peak, LYNDA fails as long
as some smaller peaks are placed far from the largest peak
(e.g. 40026 and 41025 in Figure 3). When the height of
smaller peaks is comparable with that of the largest peak,
LYNDA fails (e.g. 40003 and 41014 in Figure 3). How-
ever, even when the height of smaller peaks is comparable
with that of the largest peak, LYNDA succeeds as long as
smaller peaks are located near the largest peak (e.g. 40004
and 40038 in Figure 2). Based on these observations, we
can draw a claim: For a pair of documents having similar
timestamps, LYNDA works.

Second, to compare LYNDA with TOT2 and TOT5, we
observe from Figure 2 that TOT achieves the results better
than or comparable with LYNDA for many of the presented
TDT-topics, e.g. 40007 and 41026. That is, TOT also works
for a pair of documents having similar timestamps. How-
ever, recall that Figure 1 shows weaker results for TOT,
where NDCs are averaged over all TDT-topics. This means
that TOT gives poor results for the TDT-topics which are
not included in Figure 2, i.e., the TDT-topics whose on-topic
documents do not show a concentrated timestamp distribu-
tion. Therefore, we can draw another claim: For a pair of
documents located far from each other along time axis, TOT
is likely to give the results worse than other methods, though
LYNDA can give the results at least comparable with others.

We can combine these two claims as follows: While TOT
excessively favors the TDT-topics whose on-topic documents
show a concentrated timestamp distribution, LYNDA receives
such TDT-topics with moderate favor. In this sense, LYNDA
helps us to prevent from overfitting to timestamp data.

5. CONCLUSIONS
In this paper, we give a new approach for using document

timestamps in LDA-based document modeling. We clarify
when our approach succeeds by discussing the correlation
between timestamp similarities and document similarities by
comparing the results of various competing methods. How-
ever, we reveal differences between the methods only with
respect to link detection task. Further investigation will be
required to confirm the efficiency of our approach.
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