Gas-sensing Properties of Photoluminescence-type Macroporous SnO₂-based Sensors

 <u>Kazuya Kuroiwa</u>¹, Takeo Hyodo¹ and Yasuhiro Shimizu²
¹Graduate School of Science and Technology
²Department of Materials Science and Engineering, Faculty of Engineering Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
*Tel: 81-95-819-2645, Fax: 81-95-819-2643, E-mail: d709163g@nagasaki-u.ac.jp

Abstract

Macroporous (mp-) SnO₂ thick films mixed with 2.5 mol% Eu₂O₃ and 0~50 mol% metal oxide (mp-SnO₂(*m*M):Eu, M: constituent metal element (Mg, Ca, Sr, Ba or Li) of metal oxide (MO) mixed, *m*: the content of metal oxide (mol%)) were fabricated by a modified sol-gel method employing PMMA microspheres as a template. The photoluminescence (PL) intensity of mp-SnO₂(*m*M):Eu due to Eu³⁺ ions increased with mixing MO in the thick films. These films were subjected to the PL response measurements to various gases (acetone, NO₂ and O₂), and their PL intensities changed clearly upon exposure to these gases balanced with air or N₂. Response of PL to these gases tended to increase with an increase in their PL intensities, and the addition of 20 mol% MgO or LiO_{0.5} was more effective in improving their responses among all films tested.

Keywords: Gas sensor, Photoluminescence, Macropore, SnO₂, Eu

Introduction

Eu³⁺ has been extensively used as a high-effective emission center in various host materials, and the addition of Mg²⁺ species into the hosts has increased the PL intensity of Eu^{3+} . We have recently reported that mp-SnO₂(mMg):Eu is very attractive as a PL-type acetone-sensing material, but the low magnitude of response and poor S/N ratio should be improved for its practical applications. Therefore, we have investigated effects of the addition of various metal oxides the mp-SnO₂ mixed with to Eu₂O₃ (mp-SnO₂:Eu) on the PL intensities and gas-sensing properties in this study.

Experimental

mp-SnO₂(mM):Eu were fabricated by a modified sol-gel method which employs PMMA microspheres with a diameter of 800 nm as a template and constituent metal chlorides as an oxide source. Typical PL spectra of the oxide thick films in air were investigated at room temperature (excitation

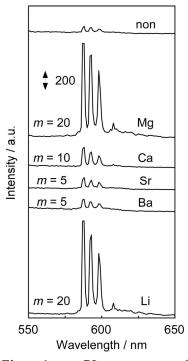


Fig. 1 PL spectra of mp-SnO₂(mM):Eu thick films excited by UV (260 nm) irradiation.

wavelength = 260 nm). Sensing properties of these thick films to acetone, NO₂ and O₂ were investigated by monitoring their PL properties at 588 nm in air or N₂. The magnitude of response was evaluated with ΔI , where ΔI was defined as the difference between I₀ and I of PL intensity in air (I₀) to that (I) in gas at 10 minutes after introducing gas.

Results and Discussions

Figure 1 shows PL spectra of mp-SnO₂:Eu and mp-SnO₂(*m*M):Eu thick films in air at an excitation wavelength of 260 nm. All films exhibited three strong peaks derived from ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition at 588, 593 and 599 nm. The PL spectra of mp-SnO₂(*m*M):Eu were larger than that of mp-SnO₂:Eu, probably because the effective incorporation of Eu³⁺ into the host lattice [1] by the substitution of Mⁿ⁺ for the Sn⁴⁺ site. In addition, the substitution of Mg²⁺ or Li⁺ may give a rise to the substantial number of oxygen vacancies, which might facilitate charge transfer from conduction band of the SnO₂ to energy state of Eu³⁺, too [2].

Variation in ΔI at 588 nm to various gases in air or N₂ of mp-SnO₂(*m*M):Eu films are shown in Fig. 2. PL responses of all films to these gases tended to increase with an increase in their PL intensity (see Fig. 1). The PL

Fig. 2 Variation in $\Delta I (= I_0 - I)$ to (a) 30.9% acetone and (b) 29.1 ppm NO₂ in air, and (c) 30% O₂ in N₂ at 588 nm of mp-SnO₂(*m*M):Eu.

intensity of all films decreased upon exposure to 30.9% acetone in air, while that of all films increased upon exposure to 30% O₂ in N₂. These results show that the PL intensity may be largely dependent on the coverage of oxygen adsorbates on the oxide surface. On the other hand, the PL intensity of mp-SnO₂(*m*M):Eu (M = alkaline-earth metal) films increased and that of mp-SnO₂:Eu and mp-SnO₂(*20*Li):Eu decreased upon exposure to 29.1 ppm NO₂ in air. The chemisorption state of negatively-charged NO₂⁻ species on the oxide surface may be an important key to control the PL intensity of mp-SnO₂(*m*M):Eu. More detailed investigations on the surface and solid-state chemistry of mp-SnO₂(*m*M):Eu films are our future subjects to clarify their gas-sensing mechanism.

References

- [1] X. Fu et al., Mater. Sci. Eng. B-Solid, 123, 1, 45–49 (2005).
- [2] H. Zhang et al., J. Lumin. 115, 7-12 (2005).