
GAP/D: VLSI Hardware for Parallel and Adaptive Distributed Genetic
Algorithms

Kazutaka Kobayashi
InterDesign Technologies Inc., Japan

kobayashi.kazutaka@interdesigntech.co.jp

Norihiko Yoshida
Department of Information and Computer Sciences

Saitama University, Japan
yoshida@mail.saitama-u.ac.jp

Shuji Narazaki
Department of Computer and Information Sciences

Nagasaki University, Japan
narazaki@cs.cis.nagasaki-u.ac.jp

Abstract

This paper presents GAP/D, a VLSI implementation of
a dynamic adaptation scheme for the frequency of inter-
deme migration in distributed genetic algorithms (GA). Dis-
tributed GA, or multi-deme-based GA, uses multiple popu-
lations which evolve concurrently. The purpose of dynamic
adaptation is to improve convergence performance so as to
obtain better solutions. Through simulation experiments,
we proved that our scheme achieves better performance
than fixed frequency migration schemes.

1. Introduction

VLSI hardware implementations of genetic algorithms

(GAs) have already been widely studied. Their extensions

towards parallel GA and distributed GA are also being stud-

ied to obtain much better performance improvement.

Parallel GA evaluates fitness values of multiple geno-

types simultaneously, and thus realizes fine-grained parallel

processing. Distributed GA, or multi-deme-based GA, uses

multiple populations which are evolving concurrently, and

thus realizes coarse-grained parallel processing.

We designed and developed GAP, a general-purpose GA-

VLSI with parallel and distributed GA implementations [1].

The distributed GA configuration of GAP is composed

of multiple GAPs working concurrently. It is important in

distributed GA that some of the genotypes should be “mi-

grated” between demes occasionally in order to prevent iso-

lated evolution and premature convergence. We used the

simplest scheme for migration: in every evolution cycle,

newly created genotypes are migrated to the next deme.

In this paper, we present a dynamic adaptation scheme

for the frequency of inter-deme migration. In short, each

processor observes the convergence status of its deme, i. e.

observes the gradient of the convergence curve, and deter-

mines how often to communicate for migration. The pur-

pose is to reflect convergence properties and adapt dynami-

cally so as to obtain better solutions.

We present GAP/D, a multi-deme-based distributed-

GA VLSI design, and through simulation experiments, we

prove that our scheme achieves better performance than

fixed frequency communication schemes without affecting

the overall convergence properties.

Section 2 summarizes the design of the original GAP.

Section 3 describes its extensions to parallel GA and dis-

tributed GA. Section 4 presents dynamic adaptation scheme

for inter-meme migration, and Section 5 shows an experi-

ment results. Section 6 contains some concluding remarks.

2. Design of GAP

Our GA-VLSI system is composed of two modules:

a general-purpose problem-independent part for selec-

tion, crossover and mutation operations, and a problem-

dependent part for fitness evaluation. GAP is the problem-

independent module, working together with FEP (Fitness

Evaluation Processor) implementing problem-dependent

fitness evaluation module (Figure 1).

GAP contains some modules for random number gener-

ation and population control along with modules for selec-

tion, crossover and mutation. FEP must be designed for a

given specific problem. GAP and FEP are connected via a

population memory. In this system, the below modules are

the most innovative. Their details are found elsewhere [1].

2009 International Joint Conference on Computational Sciences and Optimization

978-0-7695-3605-7/09 $25.00 © 2009 IEEE
DOI 10.1109/CSO.2009.454

95

2009 International Joint Conference on Computational Sciences and Optimization

978-0-7695-3605-7/09 $25.00 © 2009 IEEE
DOI 10.1109/CSO.2009.454

95

2009 International Joint Conference on Computational Sciences and Optimization

978-0-7695-3605-7/09 $25.00 © 2009 IEEE
DOI 10.1109/CSO.2009.454

95

2009 International Joint Conference on Computational Sciences and Optimization

978-0-7695-3605-7/09 $25.00 © 2009 IEEE
DOI 10.1109/CSO.2009.454

95

Figure 1. Basic GAP architecture.

Figure 2. GAP/D architecture.

Population Memory GAP employs the steady-state GA.

Genotypes are passed from GAP to FEP as soon as

they are created, and then passed back from FEP to

GAP as soon as they are evaluated. Genetic operations

and fitness evaluations are overlapped in this way, and

the whole system works in a pipeline fashion. Only a

single set of population memories is required.

Selection Module We have introduced a selection scheme

which is suitable for VLSI hardware. It is named the

“simplified tournament selection”, since it is a simpli-

fied version of the tournament selection scheme.

Random Number Generation Module This module gen-

erates a sequence of pseudo-random bit strings using

the theory of linear cellular automata (CA). The CA

scheme was proved theoretically to generate better ran-

dom sequences, in the sense that the sequences had a

longer cycle length, than the scheme of linear feedback

shift registers (LFSR) which has been widely used.

3. Extensions to Parallel and Distributed GA

As problems to be solved become more complicated,

FEPs turn into bottlenecks for the overall GA system per-

formance. Therefore, multiplication of FEPs in a system

can be effective for improving performance.

In the research area of theories and software for GA,

there have already been many studies on parallel and dis-

tributed processing for GA. Parallel GA evaluates fitness

values of multiple genotypes simultaneously, and thus re-

alizes fine-grained parallel processing. Distributed GA, or

multi-deme-based GA, uses multiple populations which are

evolving concurrently, and thus realizes coarse-grained par-

allel processing.

The basic architecture of GAP hardware design facili-

tates extensions for parallel GA and distributed GA.

Parallel GA for GAP The simplified tournament selection

scheme creates two new genotypes and evaluates their

fitness values in every evolution cycle. Therefore, two

FEP chips can be connected to a GAP, as shown in Fig-

96969696

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20000 40000 60000 80000 100000 120000 140000 160000

Figure 3. Convergence on GAP.

ure 4, and they evaluate the fitness values of the two

new genotypes simultaneously. The dispatch module

controls these two FEPs. This parallel GA configura-

tion is expected to double the performance of fitness

evaluation.

Distributed GA for GAP The distributed GA configura-

tion of GAP is composed of multiple GAPs working

concurrently. It is important in distributed GA that

some of the genotypes should be “migrated” between

demes occasionally in order to prevent isolated evolu-

tion and premature convergence. At first, we used the

simplest scheme for migration: in every evolution cy-

cle, newly created genotypes are migrated to the next

deme. GAP chips are connected to each other in a ring

form. Newly created genotypes are transferred to the

population memory in the next GAP chip via the em-

igration and immigration modules. This configuration

contributes to convergence.

4. Dynamic Adaptation for Migration Fre-
quency

Regarding migration frequencies, most distributed GA

systems migrate genes in every generation or at randomly

chosen intervals. These migration schemes are so simple

that they cannot reflect convergence properties, nor adapt

dynamically so as to obtain good solutions. A too low fre-

quency leads to premature convergence, whereas a too high

frequency spoils the effect of parallel evolution, and system

performance due to communication overhead.

The essence of our idea is very simple in its principle.

A processor observes the gradient of the convergence curve

of its deme, and performs migration when the gradient gets

flat, i. e. its deme is about to converge. On each generation

0

10000

20000

30000

40000

50000

60000

0 20000 40000 60000 80000 100000 120000 140000 160000

va
lu

e

step

Figure 4. Convergence on GAP/D.

t, the processor computes an average fitness value f(t) and

its gradient

g(t) =
f(t) − f(t − Δt)

Δt
It then checks whether g(t) ≤ gth or not against a certain

pre-defined threshold gth, and performs migration when

this condition stands (Figure 2).

There is a related study for dynamic adaptation based on

population distribution [2]. A processor observes standard

deviation σ of gene fitness in its demes, and performs mi-

gration when σ gets low. However, this scheme disregards

absolute values of gene fitness, thus sometimes causes pre-

mature convergence towards the low level of fitness. Also,

this scheme involves intensive computation, and difficult to

fit for hardware implementation.

5. Simulation Platform and Experiments

We implemented the VLSI hardware design of GAP us-

ing a hardware description language “SFL” [3], assuming

the CMOS 0.8m process technology. We carried out logic

simulation and logic synthesis for preliminary evaluation of

the design prior to actual VLSI fabrication. The specifica-

tion of the prototype implementations is:

Population size: 256

Genotype bit length: 64

Fitness bit length: 24

Crossover probability: 1

Mutation probability: 1/32

The comparisons regarding the number of gates (circuit

size) and the number of steps per cycle (speed) between the

original GAP and the new GAP/D are as below:

97979797

#gates #clocks/cycle

GAP 53890 17

GAP/D 60477 21

We did some experiments using a well-known stan-

dard example for GA experiments called “Royal-road func-

tion” [4], which is simple but slow to converge. Figure 3

shows the convergence of Royal-road function on the orig-

inal GAP, and Figure 4 shows the convergence on the new

GAP/D, where the threshold is 32, and four curves corre-

spond to four demes respectively. We observed that the for-

mer converges to the value of approximately 41,000, while

the latter converges to 50,000 at highest. This proves that

the adaptive migration scheme improves the quality of the

solution result.

6. Concluding Remarks

We presented a dynamic adaptation scheme for the fre-

quency of inter-deme migration in multi-deme-based dis-

tributed GA on GA VLSI. Each processor observes the gra-

dient of the convergence curve, and determines how often

to migrate.

Using an example of function minimization problems,

we showed that our scheme achieves better performance

than fixed frequency migration schemes without affecting

the overall convergence properties.

This improvement causes some increases in the circuit

size and the execution speed. The increase in the circuit

size is not a serious issue. The increase in the execution

speed from 17 clocks to 21 clocks per cycle (approximately

124%) can be acceptable, however, we had better improve

the technique so as to reduce the increase. It is left for fur-

ther study.

References

[1] N. Yoshida, T. Yasuoka, T. Moriki, and T. Shimokawa,

“VLSI Hardware Design for Genetic Algorithms and

Its Parallel and Distributed Extensions”, Int. J. of
Knowledge-Based Intelligent Engineering Systems,

Vol. 5, No. 1, 2001, pp. 14–21.

[2] M. Munetomo, Y. Takai, and Y. Sato, “An Efficient

Migration Scheme for Subpopulation-based Asyn-

chronously Parallel Genetic Algorithms”, Proc. 5th
Int. Conf. on GA, 1993, p. 649.

[3] Y. Nakamura, K. Oguri, et al., “High-Level Synthesis

Design at NTT Systems Labs”, IEICE Trans. on Inf.
& Syst., Vol. E76-D, No.9, 1993, pp. 1047–1054.

[4] M. Mitchell, and S. Forrest, “Fitness Landscapes:

Royal Road Functions”, Handbook of Evolutionary
Computation (T. Back, D. Fogel, and Z. Michalewicz,

eds.), Oxford, 1997.

98989898

