
INTRODUCTION

Light-polymerized indirect resin composites are one
useful option for patients who desire esthetic dental

treatment. However, clinicians occasionally encoun-

ter problems and difficulties when working with
resin composite restorations, such as detachment,

fracture, and wear. In the severe oral environment,

proper bonding between a composite restoration and
the luting material is thus of paramount importance

to ensure long-term use of the restoration1,2).

Fiber-reinforced resin composites have been
studied in the context of fabricating laminate

veneers3,4) , onlays5) , crowns6,7) , denture bases8,9) , fixed

partial dentures10-13) , and root canal posts14) . They
were characterized by flexibility and fracture

resistance15,16). The fiber materials used were glass,

quartz, carbon, or polyethylene17-20) . In particular,
pre-impregnated fiber-reinforced resin composites

showed better physical properties and easier handling

than manually mixed fiber-reinforced resin
composites21,22). Further, for some preimpregnated

fiber-reinforced resin composites employing short

glass fibers with high elastic modulus, tensile
strength, toughness, and impact resistance have

been improved23,24) . Against this background, these

materials are expected to be useful in constructing
resin-bonded fixed partial dentures as well as resin

composite crowns25-27).

The bonding properties of a fiber-reinforced resin
composite were evaluated based on bond strength

after thermocycling28). The bond strengths of resin

luting agents to fiber-reinforced composite posts were
higher than those to zirconium oxide posts29) , and

were significantly affected by luting agent29,30). It was

found that the interfacial bonding between an

experimental fiber-reinforced resin composite (FRC)

containing milled glass fiber and a light-curing
resin composite was strong enough to prevent

delamination25). It was also reported that the FRC

improved the toughness and impact resistance of the
indirect resin composite. However, no information is

available concerning the adhesive bonding between

luting materials and this FRC material.
The purpose of the present study was to evaluate

the bond strength between the FRC and six luting

materials, and then compare the FRC to a conven-
tional resin composite. When compared to conven-

tional resin composites, the FRC is characterized by

its higher rate of methacrylate monomers in addition
to the unique mechanical properties mentioned above.

Therefore, the tested hypothesis was that the luting

materials bond to the FRC more strongly than to
the conventional resin composite.

MATERIALS AND METHODS

Materials

The materials used in the present study are summa-
rized in Table 1. FRC25) (Sun Medical Co. Ltd.,

Moriyama, Japan) and a microfilled resin composite

(RC-control; New Metacolor Infis Paste A3-B, Sun
Medical Co. Ltd.) were used as the substrate

materials. Seven luting agents were used: Panavia F

2.0 (PF; Kuraray Medical Inc., Tokyo, Japan),
Linkmax MC (LM; GC Corp., Tokyo, Japan),

Chemiace II (CA; Sun Medical Co. Ltd.), Multibond

(MB; Tokuyama Dental Corp., Tokyo, Japan),
Super-Bond C&B (SB; Sun Medical Co. Ltd.), an

experimental resin luting agent (MT), and Fuji I (FI;
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Material

(Abbreviation)

Component (％) Manufacturer Irradiation time

(seconds)

Lot No.

Substrate materials:

Fiber-reinforced composite UDPAC 41.73 Sun Medical Co. Ltd. 90 041027

(FRC) TEGDMA 27.82 Moriyama, Japan 040803

Silanized milled-glass fiber 24.84

Colloidal silica 4.97

Camphorquinone 0.30

Dimethyl aminobenzoic acid 2-n-butoxy ethyl 0.30

Hydroquinone monomethylether 0.04

New Metacolor Infis UDMA Sun Medical Co. Ltd. 90 LS1

Paste A3-B (RC-control) TEGDMA

Reactive prepolymerized filler 42*

Dimethyl aminobenzoic acid 2-n-butoxy ethyl

Hydroquinone monomethylether

Others

Luting agents:

Panavia F 2.0 Paste A: MDP, Methacrylate monomer, Kuraray Medical Inc. 20 00095A

(PF) Filler, Photo initiator, Chemical initiator Tokyo, Japan

Brown Paste B: Methacrylate monomer, 00087A

Filler, NaF, Photo initiator, Chemica l initiator

Oxyguard Ⅱ: Poly(ethylene glycol), Accelerator 00491A

Linkmax MC Paste A: Aluminosilicate glass powder, GC Corp. 20 0409271

(LM) Methacrylate Tokyo, Japan

Paste B: Aluminosilicate glass powder, 0409271

Methacrylate

ChemiaceⅡ Liquid: Multifunctional methacrylate, HEMA Sun Medical Co. Ltd. 0 LG-1

(CA) 4-META, BPO

Powder: Zirconia, Silica, Amine LM1

Multibond Liquid: MAC-10, MMA, Amine, Tokuyama Dental Corp. 0 325

(MB) Multifunctional methacrylate Tokyo, Japan

Clear powder: PMMA, BPO 509

Super-Bond C＆B Initiator: TBB Sun Medical Co. Ltd. 0 LW62

(SB) Monomer liquid: 4-META, MMA KE3

Clear powder: PMMA KL1

Experimental Initiator: TBB Sun Medical Co. Ltd. LW62

(MT) Monomer liquid: MMA Wako Pure Chemical TWQ5264

Industries Ltd., Osaka, Japan

Clear powder: PMMA Sun Medical Co. Ltd. KL1

Fuji Ⅰ Powder: Fluoroalumino silicate glass, GC Corp. 0 0410051

(FI) Poly (acrylic acid)

Liquid: Poly (acrylic acid), Distilled water, 0401211

Carboxylic acid derivative

UDPAC: urethane dimethacrylate with poly-aliphatic carbonate segment, TEGDMA: triethyleneglycol dimethacrylate, UDMA: 2-methyl-2-
propenoic acid 1,1’-[7,7,9(or 7,9,9)-trimethyl-4,13-dioxo-3,14-dioxa-5,12-diazahexadecane-1,16-diyl] ester, MDP: 10-methacryloxydecy1 dihydrogen
phosphate, HEMA: 2-hydroxyethy1 methacrylate, 4-META: 4-methacryloxyethyl trimellitate anhydride, BPO: benzoil peroxide, MAC-10: 11-
methacryloxyundecan-1,1-dicarboxylic acid, TBB: tri-n-butylborane derivative, MMA: methyl methacrylate, PMMA: poly (methyl
methacrylate). *Fraction of inorganic filler.

Table 1 Materials used in the present study



GC Corp.).
The organic components of FRC were dissolved

in acetone for 60 minutes, and the glass fibers were
then air-dried and observed with a color 3D laser
microscope (VK-8700, Keyence, Osaka, Japan) at a
magnification of ×1,000 (Fig. 1). The FRC contained
silanized milled glass fibers (average diameter: 11
μm; average length: 150 μm) and colloidal silica.
The silane coupling agent used contained 3-
trimethoxysilylpropyl methacrylate. On the other
hand, RC-control contained a reactive prepolymerized
filler31) (TMPT filler). The TMPT filler was a
composite filler copolymerized with poly (trimethylol
propane trimethacrylate). An RC-control sample was
burned out at 400℃ for 30 minutes (Ring Furnace, J.
Morita Tokyo MFG. Corp., Saitama, Japan) in order
to calculate the ratio of the inorganic components.
Weight of the burned-out sample divided by the
original weight indicated the percentage of inorganic
components.

Specimen preparation
An experimental separating agent consisting of α-
polyolefin, n-heptane, and pigment (Sun Medical Co.
Ltd.) was applied to a dental plaster slab (New
Fujirock Fast Set, GC Corp.). Two sizes of cylindri-
cal acrylic resin mold (diameter: 8 mm, thickness: 0.5
mm and diameter: 7 mm, thickness 0.5 mm) were
placed on the slab and filled with FRC (Fig. 2). The
FRC was then polymerized with a photopolymerizing
unit (α-Light II, Morita Corp., Tokyo, Japan) for 90
seconds. Additional cylindrical acrylic resin molds
(diameter: 8 mm, thickness: 2.5 mm and diameter: 7
mm, thickness: 2.5 mm) were placed concentric on the
first molds. The space was filled with RC-control
on the FRC paste and then polymerized with the
photopolymerizing α-Light II unit for 90 seconds.
After removing the cylindrical acrylic resin molds,
disk specimens of two sizes were obtained. Disk
specimens of RC-control without FRC were fabricated
as a control in the same manner.

All disks were air-abraded (Jet Blast III, Morita
Corp.) with 50-μm alumina (Hi-Aluminas, Shofu Inc.,
Kyoto, Japan) for five seconds. An air pressure of
0.2 MPa was applied, and the orifice was positioned
approximately 10 mm from the specimen surface. A
piece of 50-μm-thick masking tape with a circular
hole was positioned on the disk specimen to control
the bonding area to 5 mm in diameter. FRC sur-
faces of the specimens were then bonded with a
luting agent in accordance with the manufacturer’s
directions. As for LM in the present study, no
composite primer was used in order to preclude
the additional effect of adhesion promoting mono-
mers and to simplify the bonding system.

Shear bond strength test
At 60 minutes after specimen preparation, a total of
168 bonded specimens were immersed in water at
37℃ for 24 hours. Half of the specimens were
subjected to a thermocycling process (4℃ and 60℃
alternately, 60-second dwell time for 20,000 cycles)
using a thermocycling apparatus (Rika Kogyo,
Tokyo, Japan). Shear testing was carried out at a
crosshead speed of 0.5 mm/minute on a universal
testing machine (AGS-10kNG, Shimadzu, Kyoto,
Japan). Shearing load was applied parallel to the
bonded interface. Six specimens were tested for each
condition.

Statistical analysis
Data were analyzed by three-way analysis of vari-
ance (ANOVA) to assess the significance of interac-
tion among three factors― thermocycling, substrate,
and luting agent. Mean values for each condition
were compared by a post hoc Fisher’s Protected LSD
test following one-way ANOVA. P-values of 0.05
were regarded as significant.
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Fig. 2 Schematic illustration of specimen preparation.

Fig. 1 3D laser micrograph of the milled glass fibers
contained in the FRC.



Fracture mode
The debonded surfaces of all specimens were observed
through an optical microscope (SMZ-10, Nikon Corp.,
Tokyo, Japan) at a magnification of ×20. Failure
modes were categorized into six groups: adhesive
failure at the interface between the luting agent and
resin composite (A), cohesive failure within the luting
material (C), fracture within the resin composite (F),
and three combinations of these modes (AC, CF, and
ACF).

RESULTS

Figure 1 shows the 3D laser micrograph of the fibers
contained in the FRC used in the present experiment.
The fibers were confirmed to be straight and the
lengths were varied.

Table 2 shows the ANOVA results for bond
strength. Bond strength was significantly influenced
by thermocycling, the substrate, and the luting
agent. With the exception of the substrate/luting
agent interaction, no significant interactions were
found among the factors. The means and standard
deviations of shear bond strength before and after
thermocycling for 20,000 cycles are listed in Tables 3
and 4, respectively.

Before thermocycling (Table 3), the mean bond
strength evaluated ranged from 3.9 to 28.4 MPa. FI
showed the lowest bond strength in both FRC and
RC-control. The FRC groups bonded with LM, MB,
SB, and MT exhibited the highest bond strengths
(24.2－28.4 MPa). Although the RC-control groups
bonded with PF, CA, and MB were not significantly
different from each other, LM, SB, and MT showed
higher bond strengths than PF. When PF, LM, or
MB was used, the bond strength with FRC was
significantly higher than that with RC-control.
Most FRC specimens were observed to suffer
complete or partial cohesive failure. With the
exception of FI, most RC-control specimens suffered
complete or partial fracture at the substrate
material.

After thermocycling for 20,000 cycles, the bond
strength ranged from 0 to 22.1 MPa (Table 4). All
samples bonded with FI failed after thermocycling.
In the FRC groups, five luting agents (PF, LM, MB,
SB, and MT) showed the highest bond strengths, and
no statistically significant differences were found
among these agents. In the RC-control groups, the
bond strengths of three luting agents (MB, SB, and
MT) were relatively high compared with the other
luting agents (PF, LM, CA, and FI). When PF, LM,
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Source of variation d.f. Sum of squares Mean square F-value P-value

Thermocycling 1 954.9 954.9 59.3 0.0001

Substrate 2 1098.0 549.0 34.1 0.0001

Luting agent 6 4681.7 780.3 48.4 0.0001

Thermocycling/Substrate 2 25.1 12.5 0.8 0.5

Thermocycling/Luting agent 6 110.1 18.4 1.1 0.3

Substrate/Luting agent 5 246.6 49.3 3.1 0.01

Thermocycling/Substrate/Luting agent 5 66.7 13.3 0.8 0.5

Residual 140 2256.3 16.1

Table 2 Results of analysis of variance for shear bond strength

FRC RC-control

Luting agent Mean (SD)*
(MPa)

Bonding failure**
(number of specimens)

Mean (SD)*
(MPa)

Bonding failure**
(number of specimens)

PF 21.8(3.5)def AC(5), C(1) 13.7(4.5)b AC(1), CF(1), ACF(4)

LM 24.5(2.7)fg AC(3), C(3) 19.4(6.3)cde F(4), CF(2)

CA 19.0(6.5)cde AC(6) 17.0(3.1)bc CF(3), F(1), ACF(1)

MB 28.4(4.7)g AC(2), C(3) F(1) 17.9(3.8)bcd F(5), CF(1)

SB 24.2(3.2)fg AC(3), CF(1) ACF(2) 20.9(4.1)cdef CF(4), F(2)

MT 25.5(3.1)fg CF(3), F(3) 23.1(4.8)ef CF(2), F(4)

FI 3.9(0.9)a A(1), AC(5) 7.9(2.9)a A(1), AC(5)

*Identical letters indicate that the values are not statistically different (p噂 0.05).
**A, adhesive failure at the luting agent-substrate material interface; C, cohesive failure within the luting
agent; F, fracture at the substrate material; AC, CF, ACF, combined failure involving the above failure modes.

Table 3 Shear bond strengths and types of bonding failure at 0 thermocycles



MB, and MT were used, the bond strengths with
FRC were significantly higher than those with RC-
control. Furthermore, there were no cases where
FRC showed a significantly lower bond strength
than RC-control. Most specimens with PF, LM, CA,
MB, and FI were observed to suffer complete or
partial adhesive failure in both the FRC and RC-
control groups. In contrast, SB and MT demon-
strated no adhesive failures, but rather cohesive
failure within the luting agent or in the substrate
material.

DISCUSSION

The present study revealed that this experimental
FRC could be successfully bonded with resin-based
luting agents. Before thermocycling, FRC showed
less substrate fracturing than RC-control despite the
higher bond strength (Table 3). It has been reported
that FRC is flexible but not tough, as compared to
the RC-control material, according to bending tests25).
The flexibility of FRC originates from both the
incorporated fiber and the large amount of matrix
resin. The majority of monomers used for the FRC
matrix posses a soft polyaliphatic carbonate segment.
Therefore, a possible explanation was that the FRC
dispersed the shear stress at the bonding interface.

With regard to bonding durability, no definitive
conclusions should be drawn without clinical
evaluation. Thermal stress is one factor that weak-
ens adhesive bonding. On this ground, the
thermocycling test is considered as an expedient, in
vitro experiment to accelerate aging with controlled
thermal stresses in water. Thermal stress is mainly
derived from the difference between the thermal
expansion coefficients of the substrate materials and
the luting agents used, and Young’s modulus of the
luting agent affects the relief of thermal stress32,33) .

It is known that FRC has a lower Young’s modulus
(1.6± 0.2 GPa) than RC-control (4.4± 0.2 GPa)25) .
Therefore, thermal stress was better relieved by the
FRC layer.

In the present experiment, both FRC and RC-
control were blasted with alumina. Once the oxygen-
inhibited unpolymerized layer was removed, strong
bonding between the resin-based luting agent and
resin composite material was difficult to achieve34) .
FRC contained more methacrylate monomers than
RC-control (Table 1). Accordingly, the authors
speculated that the residual monomer existing in the
FRC specimen contributed to the strong bonding
with the resin-based luting agents, in addition to the
oxygen-inhibited unpolymerized layer.

The resin-based luting agents evaluated in this
study were classified into two categories: composite-
type resin cements (PF, LM, and CA) and unfilled
resins (MB, SB, and MT). All the unfilled resins
contained methyl methacrylate (MMA), which is
characterized by a smaller molecular weight than the
other monomers used in the composite-type resin
cements. Unfilled resins tended to exhibit higher
bond strengths than the composite-type resin
cements. In particular, in the cases of SB and MT,
most specimens failed in substrate or cohesive failure
mode. This indicated that the actual adhesive force
generated at the bonding interface was superior to
the obtained bond strength values.

As shown in Tables 3 and 4, the bond strengths
of MT and SB remained at the same level after
20,000 thermocycles. The functional monomer used
in SB was 4-methacryloxyethyl trimellitate
anhydride (4-META), while MT contained no
functional monomers. Apart from 4-META, SB and
MT had similar chemical compositions: MMA
monomer, poly (methyl methacrylate) powder, and
tri-n-butylborane initiator for polymerization. These
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FRC RC-control

Luting agent Mean (SD)*
(MPa)

Bonding failure**
(number of specimens)

Mean (SD)*
(MPa)

Bonding failure**
(number of specimens)

PF 19.7(2.9)def AC(5), ACF(1) 9.8(2.3)a AC(3), ACF(2), CF(1)

LM 17.8(6.3)cdef AC(5), ACF(1) 10.1(3.0)ab AC(5), ACF(1)

CA 14.9(5.7)bc A(4), AC(2) 13.1(2.6)abc ACF(6)

MB 22.1(5.4)f AC(3), ACF(3) 16.3(2.7)cde AC(2), CF(3), ACF(1)

SB 20.2(3.0)ef CF(5), F(1) 17.4(4.8)cdef CF(4), F(2)

MT 21.1(2.4)ef CF(6) 15.0(6.1)cd CF(1), F(5)

FI 0 A(6) 0 A(6)

*Identical letters indicate that the values are not statistically different (p噂 0.05).
**A, adhesive failure at the luting agent-substrate material interface; C, cohesive failure within the luting
agent; F, fracture at the substrate material; AC, CF, ACF, combined failure involving the above failure
modes.

Table 4 Shear bond strengths and types of bonding failure at 20,000 thermocycles



results suggested that the effect of 4-META was not
critical for resin composite bonding.

Shear bond strengths after 5,000 thermocycles
between a composite-type resin cement containing 10-
methacryloxydecyl dihydrogen phosphate and two
commercially available fiber-reinforced resin compos-
ites were reported to be 20.1－23.7 MPa28). These
values were comparable to those of PF in the present
experiment.

With Fuji I, the glass-ionomer cement, the reduc-
tion in bond strength was the greatest. This result
agreed with a previous report that a fiber-reinforced
resin composite crown cemented with glass ionomer
cement debonded after 10,000 thermocycles2). Taken
together, these results collectively suggested that
there were evident differences in the bonding mech-
anism to resin composites between resin-based luting
agents and glass ionomer cements.

In light of the present findings, the hypothesis
that luting materials bond to FRC containing milled
glass fiber more strongly than to conventional
indirect resin composites was confirmed for four
luting agents: PF, LM, MB, and MT.

In conclusion, the use of FRC improved the bond
durability between the indirect composite and resin-
based luting agents. Greatest bond strength was
achieved when FRC was bonded with PF, LM, MB,
SB, and MT, followed by CA. Insufficient bonding
was obtained with FI. In constructing indirect
composite restorations, the clinician should select a
proper luting agent in conjunction with FRC to
ensure their long-term durability.
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