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Abstract  On the basis of the fact that selenium (Se) from selenite binds to hemoglobin (Hb), we 

investigated the missing process in the selenium export from red blood cells (RBCs), i.e., the transfer of 

selenium bound to Hb to RBC membrane proteins.  To elucidate the molecular events of the Hb-

associated selenium export from RBC, an Hb-Se complex was synthesized from thiol-exchange of Cys-

β93 in Hb with penicillamine-substituted glutathione selenotrisulfide, as a model of major metabolic 

intermediates, and then interactions between the Hb-Se complex and RBC inside-out vesicles (IOVs) 

were examined.  Selenium bound to Hb was transferred to the IOV membrane on the basis of the 

intrinsic interactions between Hb and the cytoplasmic domains of Band 3 protein (CDB3).  The 

observed selenium transfer was inhibited by the pretreatments of IOVs with iodoacetamide and the α-

chymotrypsin digestion, indicating that the Hb mediates the selenium transfer to the thiol groups of 

CDB3.  In addition, it was found that deoxygenated Hb with a high binding affinity for CDB3 more 

favorably transferred selenium to the IOV membranes than oxygenated Hb with a low affinity.  When 

selenium export from RBC to the plasma was examined by continuously introducing nitrogen gas, the 

selenium export rate was promoted with an increase in the rate of deoxygenated Hb.  Overall, these 

data suggested that Hb could possibly play a role in the selenium export from RBC treated with selenite 

in an oxygen-linked fashion. 
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GSSeSG: Glutathione selenotrisulfide･GPA: Glycophorin A･Hb: Human hemoglobin･IOV: Inside-out 

vesicle･MALDI-TOF: Matrix-assisted laser desorption ionization-time of flight･Pen: L-Penicillamine･

PenGSH: L-Penicillamine-substituted glutathione (γ-L-Glu-L-Pen-Gly)･RBC: Red blood cell 

 
Introduction 
 
Oxygen is essential for all higher forms of animal life.  Vertebrates have evolved with two principal 

mechanisms for supplying their peripheral tissues/cells with a continuous and adequate flow of oxygen 

to acquire much energy from glucose.  The first mechanism is a circulatory system that actively 

delivers oxygen to the peripherals.  The second is the use of oxygen-carrying molecules to overcome 

the limitation imposed by the low solubility of oxygen in water.  Hemoglobin (Hb) molecules in red 

blood cells (RBCs) serve as the oxygen carrier from the respiratory to peripheral tissues and also play a 

vital role in the transport of cellular waste carbon dioxide in the opposite direction [1].  On the other 

hand, selenium is also an essential trace element in mammals and is broadly distributed over the entire 

body and incorporated into selenoproteins in the form of selenocysteine that is known the 21st amino 

acid.  The family of selenium-dependent glutathione peroxidases (GPx-1, GPx-2, GPx-3, GPx-4 & 

GPx-6) is the best-known example of the selenoproteins [2].  These enzymes play a critical role in the 

antioxidant defense against the deleterious actions of free radicals and lipid peroxides that unavoidably 

occur due to the oxygen utilization [3].  The selenium element as the central building block of GPxs is 

thought to be delivered to the entire body via the bloodstream.   

In humans, the chemical form of selenium from food sources is mainly organic selenomethionine 

and selenocysteine, while inorganic selenite (SeO3
2–) is rare but an effective source compound most 

frequently used in the selenium supplementation for medical treatments.  Selenite is immediately taken 

up from the plasma into RBC through the Band 3 protein (anion exchanger 1) and then returned to the 

plasma after the reductive metabolism in RBC [4,5].  However, little is known about the definitive 

delivery mechanisms of selenium from selenite after the RBC uptake.  It has been speculated further 

that reductive metabolites such as selenide excreted into the bloodstream are bound to albumin and 

transferred to tissues/cells.  If the oxygen-carrying Hb molecule participates in the selenium delivery to 

the peripheral blood and/or tissues in order to extinct the harmful substances that are generated by the 

accompanying oxygen utilization, it is likely to be a compensatory function of Hb.  In human Hb, the β 

chain contains a thiol group (Cys-β93) that probably reacts with reductive metabolites of selenite.  This 

thiol group is highly conserved among species while its actual physiological function has remained 

unknown.  In this study, we synthesized a metabolic intermediate of selenium in RBCs as a chemical 
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tool to reveal the missing process, i.e., the transfer of selenium bound to hemoglobin to RBC 

membrane proteins.  

 
Materials and methods 
 

Materials 

 

L-Pen and iodoacetamide were obtained from Tokyo Chemical Industry Co., Ltd.  The human 

hemoglobin was from Sigma Co. {oxy-Hb : deoxy-Hb : ferri-Hb = 6 : 9 : 86 (UV-VIS photometry), Hb 

purity; 98.9%, the number of reactive thiol groups determined by the DTNB [5,5’-dithiobis(2-

nitrobenzoic acid)] method; 1.45 per Hb tetramer} method.  α-Chymotrypsin (from bovine pancreas, 

35–65 units/mg) was purchased from Nacalai Tesque, Inc.  Sinapinic acid used as a matrix substance 

for MALDI-TOF mass spectrometry was obtained from Fluka.  All other chemicals were of 

commercial reagent or special grades and used as received. 

 

Determination of selenium and protein concentrations 

 

The selenium concentrations were fluorometrically determined using 2,3-diaminonaphtalene (DAN) 

after the digestion with a one to five mixture by volume of perchloric acid and nitric acid [6].  The 

selenium standard solution [1,000 ppm as selenium (IV) dioxide in 0.5 M nitric acid] for the 

fluorometry was obtained from Kanto Chemical Co., Inc.  The protein concentrations were measured 

by BCA protein assay [7]. 

 

Preparation of RBCs and oxy-Hb 

 

Fresh human venous blood was collected in a heparinized vacutainer tube.  Each sample was 

centrifuged at 1,400 g for 10 min at room temperature, and the plasma, buffy coat and upper 10% of the 

RBC layers were removed by aspiration.  The precipitated RBCs were washed three times with isotonic 

phosphate buffer (pH 7.4).  The isolated RBCs were hemolyzed with 40 volumes of 5 mM phosphate 

solution (pH 8), and centrifuged at 22,000 g for 10 min.  The supernatant was dialyzed against 0.5 mM 

phosphate solution (pH 8) using a Spentra®/Por Membrane (molecular weight cutoff; 6–8 kDa) at 4 °C.  

The transition state of the purified oxy-Hb was measured from visible absorption spectra (from 560 to 

630 nm) according to the method of Zijistra et al. [8] by UV-VIS photometry (oxy-Hb : deoxy-Hb : 
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ferri-Hb = 87 : 10 : 3, the number of reactive thiol groups determined by the DTNB method; 1.69 per 

Hb tetramer). 

 

Analysis of selenium distribution in selenite-treated RBCs  

 

The isolated RBCs were treated with varying concentrations of selenite (0.8–80 µM) in isotonic 

phosphate buffer (pH 7.4) at 37 °C for 10 min [hematocrit 20% (v/v)].  The RBCs were hemolyzed by 

the addition of two volumes of deionized water, and centrifuged at 28,000 g for 1 h.  The supernatant 

and the red pellet were then separated.  Furthermore, the supernatant was diluted and ultrafiltered using 

an Ultrafree®-MC (30 kDa nominal molecular weight limit).  The selenium contents of the supernatant 

(cytosol, whole), the filtrate (cytosol, molecular weight less than 30 kDa), and the red pellets (the 

plasma membrane) were determined.  To investigate the membrane-bound selenium in detail, the 

selenite-treated RBCs were hemolyzed by the addition of 40 volumes of 5 mM phosphate solution (pH 

8).  The hemolysate was centrifuged at 22,000 g for 15 min and the supernatant was aspirated.  The 

pellets were washed three times with 5 mM phosphate solution (pH 8) and once with 0.5 mM 

phosphate solution (pH 8).  White unsealed ghosts were obtained and their selenium and protein 

concentrations were determined. 

 

Synthesis of PenGSSeSGPen 

 

Penicillamine-substituted glutathione (γ-L-Glu-L-Pen-Gly, PenGSH) was synthesized by the 

conventional liquid-phase synthesis reaction.  Purified PenGSH had a 1.08 thiol group/molecule when 

determined by the DTNB method.  1H NMR (D2O):  1.43 (s, 3H), 1.49 (s, 3H), 2.14 (q, 2H, J = 7.2 Hz), 

2.57 (t, 2H, J = 7.8 Hz), 3.77 (t, 1H), 3.87 (s, 2H), 4.47 (s, 1H).  FAB MS: calcd for C12H21N3O6S m/z 

336.1, found: 336.0.  Anal. calcd for C12H21N3O6S · CF3COOH · 2H2O C, 34.64; H, 5.40; N, 8.66, 

found: C, 35.89; H, 5.47; N, 9.01.  PenGSH (10 mM) was allowed to react with selenious acid (2.5 

mM) in deionized water with stirring for 12 h at room temperature.  The resultant was 

chromatographed on a COSMOSIL 5C18-AR-II at the flow rate of 7 mL/min with a detection 

wavelength of 210 nm.  The column was programmed with a 70-min linear gradient from 100 to 50% 

of eluent A [10% (v/v) acetonitrile in water containing 0.005% (v/v) trifluoroacetic acid] in eluent B 

(acetonitrile).  The peak assigned to PenSSeSPen was fractionated, and then followed by lyophilization.  
1H NMR (D2O): δ 1.44 (s, 3H), 1.49 (s, 3H), 2.10 (m, 2H), 2.51 (t, 2H, J = 7.5 Hz), 3.72–3.78 (m, 3H), 

4.55 (s, 1H), MALDI-TOF MS: calcd for C24H40N6O12S2
80Se m/z 748.1, found: 749.8.  Anal. calcd for 
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C24H40N6O12S2Se ⋅ 2CF3COOH ⋅ 4H2O C, 32.10; H, 4.81; N, 8.02; Se, 7.54, found C, 32.08; H, 4.56; N, 

7.93, Se, 7.33.  λmax in deionized water: 268 nm (εmM = 1.60) (Fig. S1). 

 

Preparation of Hb-Se complex 

 
PenGSSeSGPen (0.5 mM) was combined with Hb (50 mM as tetramer) in 0.5 mM phosphate solution 

(pH 7.4).  The mixture was incubated for 10 min at 37 °C, and then the unreacted PenGSSeSGPen was 

removed by passing through a Sephadex G-50 (fine) column equilibrated with 0.5 mM phosphate 

solution (pH 7.4).  The ferri-Hb and ferri-Hb-Se concentrations were measured using a molar extinction 

coefficient of Hb at 407 nm (ε = 352.3 mM–1 cm–1).  The oxy-Hb concentrations and the transition 

states of the prepared Hb-Se complex were measured by UV-VIS photometry (ferri-Hb-Se; oxy-Hb : 

deoxy-Hb : ferri-Hb = 10 : 3 : 87, oxy-Hb-Se; oxy-Hb : deoxy-Hb : ferri-Hb = 72 : 0 : 28).  The 

purified Hb-Se complex contained 0.78 selenium/Hb tetramer. 

 

Preparation of IOV and selenium transfer experiment 

 

The IOVs were prepared from the white ghosts according to the method of Steck and Kant with slight 

modifications [9].  The apparent purity of the used IOVs was estimated to be 87.9 ± 0.6% (mean ± s. e. 

m.) from the determination of the acetylcholinesterase activity.  The IOVs were mixed with the Hb-Se 

complex in 10 mM phosphate buffer (pH 6) at ambient temperature, and the mixture was centrifuged at 

22,000 g for 15 min.  The binding affinity of the Hb-Se complex with Hb to IOV was compared using 

the Langmuir type binding equation.  In a study of the selenium transfer, the mixture of the Hb-Se 

complex and IOV was centrifuged at 22,000 g for 15 min, and then the precipitated IOVs were washed 

with 20 mM phosphate buffer (pH 8) containing 0.5 M sodium chloride to remove the IOV-bound Hb 

and Hb-Se complex.  The released Hb amounts in the washing buffer and a SDS-PAGE analysis of the 

IOV (Fig. S2) indicated that Hb and the Hb-Se complex were completely washed out from the IOV 

membranes.  The Hb-Se complex solutions of various transition states (oxy-Hb-Se content; 10 to 70%, 

ferri-Hb-Se content; 30 to 90 mol%) were prepared by mixing of the oxy-Hb-Se and ferri-Hb-Se. 

 

Selenium export experiment from selenite-treated RBCs to the plasma 

 

The isolated RBCs were treated with selenite (8 µM) in isotonic phosphate buffer (pH 7.4) at 37 °C for 

10 min.  The plasma was separately placed in a tightly sealed glass vessel, and was exposed to gentle 
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N2 gas bubbling at 37 °C for 30 min.  The RBC suspension was combined with the plasma in the sealed 

glass vessel [hematocrit 50% (v/v)], and then incubated with N2 gas bubbling at 37 °C.  Aliquots of the 

RBC suspension were pipetted out at appropriate time intervals and centrifuged at 1,400 g and 4 °C for 

10 min to separate it from the plasma.  The selenium contents in the RBCs and the plasma were 

separately determined.   

 
Statistical analysis 
 
All data were presented as the mean ± s. e. m. (n = 5 or more).  Statistical analyses were performed 

using a program PRISM 4 (GraphPad Software Inc.).  Multiple mean values were compared by a one- 

or two-way ANOVA with a Bonferroni post-hoc test.  Comparisons were considered statistically 

significant at P < 0.05. 

 
Results and discussion 
 

The hemolysate of RBC was separated into three fractions [low (< 30 kDa) and high (> 30 kDa) mass 

fractions, and the plasma membrane] and the selenium contents of each fraction were determined.  

Represented in Fig. 1 (A) is selenium distributions in RBC treated with varying selenite concentrations.  

Most of the selenium (> 95%) in the RBC hemolysate was found in the high mass fraction, namely Hb, 

and the rest was in the low mass fraction and the plasma membrane.  This selenium distribution was 

similar to each other for the three different selenite concentrations used in the RBC treatments.  The 

selenium distributions remained the same up to 3 h after the uptake of selenite into the RBC, which 

demonstrates that most of selenium is stably bound to Hb.  The selenium contents in the plasma 

membrane increased with an increase in the selenite concentration used for the treatment of RBC, 

although the distribution rate of selenium in the RBC was very low [Fig. 1 (B)].   

Painter reported that the reaction of selenite with low mass thiol-containing compounds (RSH) 

yielded selenotrisulfide (RSSeSR) in vitro (SeO3
2– + 4 R–SH → R–SSeS–R + R–SS–R + 3 H2O) [10].  

Recently, glutathione selenotrisulfide (GSSeSG) was actually identified in a yeast extract by mass 

spectrometric techniques [11].  Since Hb did not allow the forming of Hb selenotrisulfide (HbSSeSHb) 

in the reaction with selenite probably due to a steric hindrance, the Painter reaction with glutathione 

(GSH) could also be involved in the metabolism of selenite in the RBC.  We have demonstrated that 

selenotrisulfide preferentially reacts with the Cys-β93 by the thiol exchange mechanism to form 

HbSSeSR, and selenium is not eliminated from Hb in the presence of GSH [12].  Consequently, 
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selenite in the RBC is thought to transform into GSSeSG, and subsequently, GSSeSG could react with 

Cys-β93 to form the HbSSeSG.  These results are also consistent with previous observations that 

selenite is bound to Hb after undergoing the GSH-mediated reduction in RBC [4,5].   

After the RBC was treated with selenite, selenium-bound Hb was not able to be directly 

characterized because the fraction of the selenium–bound Hb is fairly lower than that of the unbound 

one, in addition, the separation of the two species is also quite difficult.  While the naturally occurring 

GSSeSG easily decomposes in vitro at physiological pH to generate the red elemental selenium (Se0) 

that is not practically present in vivo [13,14].  An in vitro reaction of Hb with GSSeSG inevitably 

results in the generation of not only HbSSeSG, but also unfavorable species such as the Hb-Se0 

complex.  To avoid this chemical diversity, we synthesized a new penicillamine-substituted glutathione 

selenotrisulfide [PenGSSeSGPen, Fig. 2 (A)] as a model of the metabolic intermediate GSSeSG.  

PenGSSeSGPen was isolatable and chemically stable in isotonic phosphate buffer (pH 7.4) at 37 °C for 

4 h or longer without any degradation [Fig. 2 (B)].  PenGSSeSGPen and Hb were co-incubated in 

isotonic phosphate buffer (pH 7.4) at 37 °C, and the unreacted PenGSSeSGPen was monitored by 

reversed-phase liquid chromatography.  PenGSSeSGPen completely disappeared within 10 min after 

the incubation with Hb [Fig. 2 (C)].  The resulting material was subjected to a MALDI-TOF mass 

spectrometric analysis.  In addition to the peaks assigned to the α- and β-chains (mass number 15191.9 

and 15935.8 respectively), a separate peak appeared at mass number 16350.0 and its peak intensity 

increased with an increase in the PenGSSeSGPen/Hb molar ratio (Fig. 3).  The mass number of 414.2, 

which is greater than the free β-chain, corresponded to that of the PenGSSe- moiety (calculated mass 

number for C12H20N3O6S2
80Se 412.3), suggesting the formation of Hb-SeSGPen (Hb-Se complex).  

These mass spectral data were identical to our previous work, in which penicillamine selenotrisulfide 

(PenSSeSPen) reacted only with the reactive Cys-β93 via the thiol exchange mechanism [12].  In 

addition, no remarkable difference in the structural organization between the Hb-Se complex and Hb 

was observed in the circular dichroism spectral data over the range from 190 to 350 nm (Fig. S3).   

Since Hb molecules never pass through the RBC plasma membrane, selenium bound to Hb 

molecules must dissociate from Hb and then cross the plasma membrane for the selenium to be 

exported to the plasma.  In addition, selenium release from the Hb-Se complex is not observed by 

glutathione treatment.  It is known, however, that the amino-terminal cytoplasmic domain (N-CPD, 

Met1–Pro403) of Band 3 offers the binding sites for Hb and the cytoskeletal proteins [15–21].  Band 3, 

a 911 amino acid integral membrane protein, catalyzes the electro–neutral exchange of Cl–/HCO3
– 

across the plasma membrane.  This membrane protein also anchors a subpopulation of Hb molecules to 

RBC membranes, however, the functional significance of this behavior is not clear.   
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We first examined whether the Hb-Se complex would bind to the inner surface of the RBC 

membrane, as the non-treated Hb does using the RBC inside-out vesicles (IOVs).  When the binding 

constants of the Hb-Se complex and Hb for IOV were estimated using the Langmuir type binding 

equation [22], the values obtained for the Hb-Se complex and Hb were 2.10 ± 0.43 and 1.86 ± 0.26 

(µM–1), respectively (mean ± s. e. m., P = 0.64, Fig. S4).  In similar experiments, we confirmed that 

PenGSSeSGPen and selenite were not interactive with the IOVs (Fig. S5).  When the IOVs were 

treated with the Hb-Se complex and thoroughly washed out with the washing buffer to remove the Hb 

bound to them, 2.58 pmol selenium per mg of IOV protein remained on the IOVs (Fig. 4).  Taking 

these results into account, the Hb–Se complex is evidently capable of binding to the inner surface of the 

RBC membrane in a similar fashion to Hb, and that Hb can deliver Se to the RBC membrane 

components. 

Attempts were then made to elucidate the binding sites of selenium to be delivered by Hb.  The 

free cysteine residues (Cys201 and Cys317) of N-CPD are known to form a disulfide linkage with Cys-

β93 under catalytic oxidative conditions [23].  X-ray crystal structure analysis indicates that the 

cytosolic part of one end of the Band 3 docks between the β chains of the Hb molecules.  Cys-β93 of 

Hb is positioned near the potential target thiol groups in the Band 3 [16].  Recently, Stamler et al. 

demonstrated the concerted nitric oxide/oxygen systemic delivery by which nitric oxide is bound to 

Cys-β93, and then delivered to Cys201 and Cys317 of N-CPD based on the intrinsic interactions of Hb 

with N-CPD [24,25].   

The pretreatment of IOV with iodoacetamide, a thiol-alkylating agent, resulted in the inhibition of 

the selenium delivery from the Hb-Se complex to the IOVs in a concentration-dependent manner [Fig. 

4 (A)].  The treatments with iodoacetamide gave no remarkable changes in the binding affinity of the 

Hb-Se complex for IOV (the binding constant: 1.64).  The selenium delivery to IOVs was also 

inhibited by the pretreatment with α-chymotrypsin (α-Chy) which selectively cleaves the Tyr359–

Lys360 bond of N-CPD [Fig. 4 (A)] [26].  The reverse treatment with α-Chy (when the IOVs were first 

treated with the Hb-Se complex and then digested with α-Chy) gave ~ 50% selenium elimination [Fig. 

4 (B)], which was similar to the result shown in Fig. 4 (A) (SDS-PAGE analyses of IOVs before and 

after the α-Chy treatment were shown in Fig. S2).  These results support the concept that Cys201 and 

Cys317 of N-CPD are implicated in the selenium delivery mechanism from the Hb-Se complex to the 

IOVs.   

In addition, the selenium delivery was tested using IOVs that were prepared from the DIDS (4,4’-

diisothiocyanato-2,2’-stilbene disulfonate)-pretreated RBC.  DIDS, an inhibitor of the anion exchange 

function of Band 3, binds to the membrane domain residues, Lys539 and Lys851, of the Band 3 protein 
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and induces its conformational changes [27,28].  The amount of selenium delivered to the DIDS-

pretreated IOVs was less compared to the non-treated IOVs’ [Fig. 4 (C)], indicating the participation of 

Band 3 in the selenium delivery.   

To verify the results from our model experiments using PenGSSeSGPen and IOV, the unsealed 

membrane ghosts of the RBCs were treated with selenite and characterized.  The treatment with α-Chy 

afforded ~ 50% release of the selenium bound to the membrane ghosts (Fig. 5), which matched the 

results from the model experiments (Fig. 4).  While ~ 50% of the membrane-bound selenium was 

located on N-CPD, the rest seems to be on the cytoplasmic domain of Band 3 other than N-CPD or 

other membrane components.  To further explore the binding sites other than N-CPD, the membrane 

ghosts were treated with dithiothreitol which reductively cleaves di- and trisulfide bonds.  The 

selenium bound was almost quantitatively eliminated from the membrane ghosts (Fig. 5), thus, 

indicating that the thiol groups on the inner surface of the RBC membrane participated in the selenium 

delivery by Hb.   

Band 3 contains two cytoplasmic domains; one is N-CPD and the other is the carboxy-terminal 

cytoplasmic domain (C-CPD, Asn880–Val911) responsible for the anion exchange function [28].  It 

was recently reported that an assembly of C-CPD with the cytoplasmic moiety of glycophorin A (GPA) 

is another possible Hb binding site [29].  C-CPD also contains one free cysteine residue (Cys885) that 

is possible to react with the selenotrisulfide moiety (GSSeS–) of the Hb-Se complex, whereas GPA 

contains no cysteine residues in the cytoplasmic moiety.  The mechanism underlying the selenium 

delivery to the RBC membrane by Hb may also involve the reactive cysteine residues of C-CPD of 

Band 3.   

Hb molecules are present in three physiologically pertinent forms in the RBC (oxy-, deoxy- and 

ferri-Hb), and bind to N-CPD at physiological pH and ionic strength in an oxygen-linked fashion, with 

deoxy- and ferri-Hb having higher affinities for the RBC inner membrane [16,19].  Therefore, the 

ability of selenium delivery by Hb molecules to the IOVs was examined by varying the molar ratio of 

the oxy- to ferri-Hb-Se complexes.  There were no differences in the amount of selenium bound to 

when the oxy- and ferri-Hb-Se complexes were used in this experiment, while the binding constant of 

oxy-Hb for the IOVs (0.51 ± 0.09 µM–1) was significantly lower than that of the ferri-Hb (2.10 ± 0.43 

µM–1) (mean ± s. e. m., P < 0.05, Fig. S6).  The amount of selenium transferred to the IOVs increased 

with a decrease in the oxy-Hb-Se (or an increase in ferri-Hb-Se) fraction (Fig. 6).  These data indicate 

that the selenium delivery by Hb to the inner surface of the RBC membrane is responsible for the Hb 

transition states. 

When Hb in the RBC comes in contact with the capillaries in oxygen-metabolizing tissues, a large 

fraction of the O2 saturation is lost to the venous exchange.  Practically, all Hb molecules are saturated 
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by O2 in the alveoli of the lung while ~ 70% of the Hb is deoxygenated in the active muscle capillaries 

due to the release of O2 [1].  To further verify the dependence of the selenium delivery on the Hb 

transition states, we examined the selenium export from the RBC to the plasma by continuously 

introducing N2 gas after the selenite treatment.  The selenium content in the RBC significantly 

decreased due to N2 gas introduction, while the selenium amount exported to the plasma increased 

correspondingly (Fig. 7).  Under the conditions used in this experiment, the oxy-Hb content in the RBC 

decreased from 91.4 ± 1.5% before mixing with the plasma to 24.9 ± 4.0% at 60 min after the 

incubation, whereas the fraction of the deoxy-Hb increased from 0.8 ± 1.2% to 67.6 ± 4.4%.  Thus, the 

selenium release from the RBCs to the plasma was facilitated by the increase in the deoxy-Hb fraction.   

The data in this study support the concept that Hb involves the selenium delivery to the peripherals 

where the rate of the deoxy-Hb in the RBC becomes much higher than that of the oxy-Hb due to the 

oxygen release.  Consequently, selenium supplied by selenite seems to be exported from the RBC to 

the plasma as follows: selenite is taken up into RBC and transformed into the Hb-Se complex via 

GSSeSG.  Thereafter, the selenium bound to Hb is transferred to the RBC inner membrane surface 

based on the intrinsic interactions between Hb and the cytoplasmic domain of the Band 3 protein, and 

then exported to the peripheral blood and/or tissues.  Accordingly, Hb molecules may respond to a 

reduction in peripheral O2 pressure with the release of selenium from the RBCs. 

In the present study, we demonstrated that the interactions between the Hb molecule and the 

cytoplasmic domain of the Band 3 protein mediate the selenium delivery to the RBC plasma membrane 

and the subsequent export from the RBC.  These observations indicate that selenium could possibly, in 

part, be exported to the peripheral blood and/or tissues by the Hb molecule in an oxygen–linked fashion.  

Selenium metabolites such as GSSeSG can be bound to a conserved thiol group (provided by Cys-β93 

in human Hb), producing the selenium-bound Hb.  This could be followed by the selenium transfer to 

the Band 3 protein, with selenium departing from the RBC.  This would preferentially occur in oxygen-

utilizing tissues, where deoxygenation triggers Hb to change its conformation from the oxygen-bound 

Hb structure to the deoxygenated one.  As mentioned above, selenium is a critical element for the 

antioxidant defense against the oxidative damages to be generated by the respiration.  Therefore, if the 

peripherals receive selenium from Hb together with O2 in defensive compensation for the oxidative 

damages, the concerted delivery of selenium and O2 to the peripheral blood and/or tissues may be a 

purposive function of Hb.  A better understanding of the systemic delivery mechanisms selenium from 

selenite is also of significance from the viewpoints of human medical treatments and toxicology [3].  

Further experiments should focus on the elucidation of the in vivo selenium delivery by Hb to the 

peripheral blood and/or tissues in an oxygen-linked fashion.   
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Fig. 1 (A) Selenium distribution in RBC after the treatment with selenite.  The RBCs were incubated 

with selenite (0.8–80 µM) in isotonic phosphate buffer (pH 7.4) at 37 °C for 10 min to a hematocrit of 

20% (v/v).  The selenite-treated RBCs were hemolyzed and centrifuged at 22,000 g for 15 min.  The 

obtained supernatant was further ultrafiltered using an Ultrafree®-MC.  The selenium contents of the 

supernatant (whole cytosol), the red pellets (the plasma membrane) and the filtrate (molecular weight 

less than 30 kDa in the cytosol) were measured. (B) Selenium contents in the plasma membrane after 

the treatment of selenite.  The RBCs [hematocrit 20% (v/v)] were incubated with selenite (0.8–80 µM) 

in isotonic phosphate buffer (pH 7.4) for 10 min.  The selenite-treated RBCs were hemolyzed and 

centrifuged at 22,000 g for 15 min.  The precipitated red pellets were thoroughly washed with 5 and 0.5 
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mM phosphate solution (pH 8) to remove the membrane-bound Hb.  Data are mean ± s. e. m., n = 5. n. 

d.; not detected.  
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Fig. 2 (A) Chemical structure of PenGSSeSGPen. (B) Chemical stability of PenGSSeSGPen (100 µM) 

in isotonic phosphate buffer (pH 7.4) at 37 °C. (C) Reaction of PenGSSeSGPen (20 µM) with Hb (200 

µM) in isotonic phosphate buffer (pH 7.4) at 37 °C. Remaining PenGSSeSGPen was determined by 

RPLC. 
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Fig. 3 MALDI-TOF mass spectra of Hb treated with increasing PenGSSeSGPen concentrations. Hb to 

PenGSSeSGPen concentration ratio (A) 1 : 0, (B) 1 : 5, (C) 1 : 10, (D) 1 : 20. Hb (5 µM) was treated 

with varying concentration ratio of PenGSSeSGPen in deionized water at 37 °C for 10 min.  The 

sample solutions were combined with the matrix solution [sinapinic acid in 34% (v/v) acetonitrile and 

20% (v/v) trifluoroacetic acid] by one to ten volume ratios, and an aliquot was applied on an 

AnchorChip® target (Bruker Daltonics Inc, USA). The mass spectra were obtained using an Ultraflex 

(Bruker Daltonics Inc, USA), operated in the linear positive ion mode. The molecular mass calibration 

was accomplished using a #206355 Protein Calibration Standard (Bruker Daltnics, Inc, USA). 
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Fig. 4 (A) Inhibitory effects of iodoacetamide and α-Chy on the selenium delivery from Hb-Se 

complex to IOVs.  Non-treated and iodoacetamide (5 and 10 mM) or α-Chy (200 µg/mL)-pretreated 

IOVs (170 µg-protein/mL) were combined with the Hb-Se complex (1 µmol-Hb/L) in 0.01 M 

phosphate buffer (pH 6).  After centrifugation at 22,000 g for 15 min, the precipitated IOVs were 
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washed with 0.02 M phosphate buffer (pH 8) containing 0.5 M NaCl and their selenium contents were 

determined by the DAN method.  (B) Selenium delivery from the Hb-Se complex to α-Chy-pretreated 

IOVs.  IOV suspension (170 µg-protein/mL) was pretreated with the Hb-Se complex (1 µmol-Hb/L) in 

0.01 M phosphate buffer (pH 6) at room temperature.   After centrifugation at 22,000 g for 15 min, the 

precipitated IOVs were washed three times with 0.02 M phosphate buffer (pH 8) containing 0.5 M 

NaCl to remove the membrane-bound Hb and Hb-Se complex.  The Hb-removed IOVs were treated 

with α-Chy (200 µg/mL) in 0.01 M phosphate buffer (pH 7.4) at 37 °C, and centrifuged at 22,000 g for 

15 min.  The selenium contents in the washing buffer and IOV were determined by the DAN method.  

The selenium content of the IOV before the removal of Hb was defined as 100%.  (C) Effect of DIDS 

on selenium delivery from Hb-Se complex to IOVs.  RBCs were pretreated with 100 µM selenite, and 

the obtained IOVs were treated with 50 µM DIDS.  Data are mean ± s. e. m., n = 5. *; P < 0.05, **; P < 

0.01. 
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Fig. 5 Selenium release from selenite-treated RBC membrane ghosts by α-Chy and dithiothreitol 

treatments.  The isolated RBCs [hematocrit 20% (v/v)] were incubated with selenite (80 µM) in 

isotonic phosphate buffer (pH 7.4) at 37 °C for 10 min.  The selenite-treated RBCs were hemolyzed 

and centrifuged at 22,000 g for 15 min.  The precipitated red pellets were thoroughly washed with 5 

and 0.5 mM phosphate solution (pH 8) to remove the membrane-bound Hb.  The Hb-free white RBC 

membrane ghosts were treated with α-Chy (200 µg/mL) or dithiothreitol (2 mM) in 0.01 M phosphate 

buffer (pH 7.4) at 37 °C for 10 min, and centrifuged again at 22,000 g for 15 min.  The selenium 

contents in the washing buffer and RBC membrane were determined by the DAN method.  The 

selenium content of the RBC membrane before treatment was defined as 100%.  Data are mean ± s. e. 

m., n = 5. **; P < 0.01. 
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Fig. 6 Effect of the transition form of Hb on the selenium delivery from the Hb-Se complexes to the 

IOVs.  An IOV suspension (170 µg-protein/mL) was co-incubated with mixtures of the oxy-Hb- and 

ferri-Hb-Se complexes (1 mmol-Hb/L) at various ratios (oxy-Hb; 10–70 mol%, ferri-Hb; 30–90 mol%) 

in 0.01 M phosphate buffer (pH 6) at 37 °C for 10 min.  After centrifugation at 22,000 g for 15 min, the 

precipitated IOVs were washed with 20 mM phosphate buffer (pH 8) containing 0.5 M NaCl and their 

selenium contents were determined by the DAN method.  Data are mean ± s. e. m., n = 4. **; P < 0.01. 
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Fig. 7 Effects of nitrogen gas introduction on the selenium release from the selenite-treated RBCs to 

the plasma.  ■, RBC with N2 gas; □, plasma with N2 gas; ●, RBC without N2 gas; ○, plasma 

without N2 gas.  The RBCs [hematocrit 20% (v/v)] were incubated with selenite (8 µM) in isotonic 

phosphate buffer (pH 7.4) at 37 °C for 10 min.  The selenite-treated RBCs and the plasma that was 

pretreated with or without N2 gas for 30 min were combined [hematocrit 20% (v/v)] and then incubated 

at 37 °C for the indicated time.  The selenium contents in RBCs before incubation with the plasma 

were defined as 100%.  Data are mean ± s. e. m., n = 17.  Significantly different from the 

corresponding time points of the N2 gas-free experiment, *; P < 0.05, **; P < 0.01. 
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Supplementary material 

 

Fig. S1 Reversed–phase liquid chromatographic analysis of reaction mixture of selenite and PenGSH 

and absorption spectrum of isolated PenGSSeSGPen 

Fig. S2 SDS–PAGE of IOVs 

Fig. S3 Circular dichroism spectra of ferri–Hb–Se complex and ferri–Hb  

Fig. S4 Langmuir plots for binding of Hb (A) and ferri–Hb–Se complex (B) to IOV 

Fig. S5 Hb mediated–selenium binding to IOV 

Fig. S6 Langmuir plots for binding of oxy–Hb prepared from RBC and ferri–Hb to IOV. 


