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Abstract 

        The signal transduction pathway involved in hepatocyte growth factor 

(HGF)-induced capillary morphogenesis of endothelial cells was investigated. 

HGF-induced capillary morphogenesis of the murine spleen endothelial cell line MSS31 

was inhibited by a Src family kinase inhibitor, PP2. Stable expression of kinase-inactive 

Src in MSS31 cells inhibited HGF-induced activation of Src as well as capillary 

morphogenesis. The HGF-induced capillary morphogenesis of human umbilical vein 

endothelial cells was also inhibited by PP2, and was reduced by the downregulation of 

Src by small interfering RNA. These results suggest that HGF induces capillary 

morphogenesis of endothelial cells through Src. 
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        Hepatocyte growth factor (HGF) induces angiogenesis. HGF stimulates the 

proliferation, secretion of proteases, migration, survival, and differentiation (capillary 

morphogenesis or tube formation) of endothelial cells through its specific receptor 

tyrosine kinase, c-Met/hepatocyte growth factor receptor (HGFR) [1-5]. In addition, HGF 

mobilizes endothelial progenitor cells from bone marrow, which contributes to 

vasculogenesis [6]. HGF also indirectly induces angiogenesis through the upregulation of 

platelet-activating factor, vascular endothelial growth factor, interleukin 8, and ets-1, and 

downregulation of thrombospondin 1 [7-11]. The Ras/mitogen-activated protein kinase 

pathway and phosphoinositide 3-kinase/Akt pathway are implicated in cell survival, 

matrix metalloproteinase production, proliferation, and cell migration [4, 12-14]. 

However, signal transduction pathways leading to the differentiation of HGF-treated 

endothelial cells are largely unknown.  

        The Src family protein tyrosine kinases play crucial roles in a variety of cellular 

responses, embryonic development, and pathological conditions such as tumor 

progression and angiogenesis [15, 16]. Blockade of common signaling molecules 

downstream of a panel of growth factor receptors such as the Src family of kinases is an 

attractive strategy to inhibit tumor angiogenesis because the angiogenic signals via 

several proangiogenic growth factor receptors could be inhibited simultaneously. Since 

signals via HGFR are involved in tumor progression and angiogenesis in many human 

cancers, it is important to determine whether the Src family kinases are required for 

HGF-induced angiogenesis. While a Src family kinase inhibitor PP1 inhibited 

HGF-mediated nitric oxide production along with proliferation of human umbilical vein 
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endothelial cells (HUVECs) [17], the role of Src family kinases in HGF-induced cellular 

responses of endothelial cells is still poorly understood.  

        In the present study, we show for the first time that Src activity is required for the 

HGF-induced capillary morphogenesis of endothelial cells.  

 

 

Materials and methods 

 

    Materials Recombinant human HGF was obtained from R & D Systems, Minneapolis, 

MN. Type I collagen gel was purchased from Cohesion Technologies Inc., Palo Alto, CA. 

Growth factor-reduced Matrigel® matrix was purchased from BD Bioscience, Bedford, 

MA. Anti-Src antibodies (N-16 for immunoprecipitation and SRC2 for immunoblotting) 

were purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). FuGENE® 6 

transfection reagent was obtained from Roche Diagnostics Corporation, Indianapolis, IN. 

The cDNA encoding kinase-inactive Src in the pUSE plasmid was purchased from 

Upstate Cell Signaling Solutions, Lake Placid, NY. HiPerFect® transfect reagent, Alexa 

Fluor 555-labeled negative control siRNA (5’-UUCUUCGAACGUGUCACGU-3’), and 

human Src siRNA (Hs_SRC_5_HP Validated siRNA) were purchased from Qiagen K.K., 

Tokyo, Japan. The Src inhibitor PP2 was obtained from Merck Company, Tokyo, Japan. 

PP2 was dissolved in dimethyl sulfoxide (DMSO) at a concentration of 5 mM as stock 

solutions and stored at -20°C before use. A working solution of PP2 was made by further 
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dilution of the stock solution in DMSO before being dissolved in culture medium. The 

final concentration of DMSO in the culture medium was always 0.1% (Vo/Vo). 

 

    Cell culture A murine spleen endothelial cell line, MSS31 cells [18], were the kind gifts 

of Drs. M. Abe and Y. Sato (Department of Vascular Biology, Institute of Development, 

Aging and Cancer, Tohoku University, Sendai, Japan) and were cultured in 

alpha-modification of minimum essential medium (-MEM) supplemented with 10% 

fetal bovine serum (FBS). HUVECs and their culture medium were obtained from 

Cambrex, Walkersville, MD, and the cells were cultured in endothelial cell basal 

medium-2 (EBM-2) supplemented with 2% FBS, 10 ng/ml VEGF-A, 20 ng/ml fibroblast 

growth factor-2, 10 ng/ml endothelial growth factor, 10 ng/ml insulin-like growth factor-I, 

50 g/ml ascorbic acid, 100 ng/ml heparin, and 10 pM dexamethasone. 

 

    Capillary morphogenesis assay MSS31 cells suspended in serum-free -MEM with or 

without indicated treatments were cultured between two layers of type I collagen gels for 

18-20 h, as described previously [19]. Briefly, MSS31 cells were seeded onto the first 

collagen gel layer in the presence or absence of the indicated treatments. After 4 h the 

medium was removed, and the cells were overlaid with a second collagen gel layer, and 

the culture was continued for 16 h. HUVECs suspended in EBM-2 medium containing 

0.5% FBS with or without the indicated treatments were seeded onto growth 

factor-reduced Matrigel and cultured for up to 24 h [20]. To quantify the length of 

capillaries, 3 different phase-contrast photomicrographs (x 4 objectives) per well were 
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taken, and the length of each capillary was measured using NIH image software (version 

1.64). The capillary length of HGF-stimulated parental or empty vector-transfected cells 

was set to 1.0. 

 

    Transfection of kinase-inactive Src into MSS31 cells MSS31 cells were transfected 

with a mixture of plasmid containing the cDNA encoding kinase-inactive Src, and 

FuGENE 6 reagent. After 48 h, stable transformants were selected with G418. After 2 

weeks, colonies from a single G418 resistant cell were picked up, and the overexpression 

of kinase inactive Src was determined by immunoblotting. To identify stable cell lines 

expressing the kinase inactive, dominant negative Src, cells were either stimulated with 

HGF or left untreated and the activity of the dominant negative was estimated by in vitro 

kinase assays. 

  

    Transfection of siRNA in HUVECs HUVECs were transfected with siRNA using 

HiPerFect reagent. To examine the transfection efficiency, Alexa Fluor 555-labeled 

negative control siRNA was tranfected into HUVECs.  The following day, the cells were 

washed, fixed with paraformaldehyde, and examined with a fluorescent microscope. To 

downregulate Src protein in cells, Src validated siRNA was transfected into HUVECs 

cultured in 6-well plates. After 2 days, cells were detached from the wells and the 

capillary morphogenesis assay was performed. Four thousand cells from each treatment 

were lysed, and the expression of Src was examined by immunoblotting. 
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    In vitro kinase assay The in vitro kinase assay for Src was described previously [21]. 

Briefly, cells were serum-starved for 2 h then were either left untreated or stimulated with 

HGF for 10 min. The Src was immunoprecipitated, and the kinase assay was performed 

using acid-denatured enolase as the substrate. The incorporation of [-32P] ATP into 

enolase was examined by SDS-PAGE, followed by autoradiography. 

 

    Immunoblotting Ten percent of the total cell lysate for the in vitro kinase assay or the 

cell lysate from 4,000 siRNA-treated cells was separated on SDS-polyacrylamide gels. 

Proteins were electrotransferred onto polyvinylidene difluoride membranes. Membranes 

were incubated with the indicated antibodies followed by incubation with 

peroxidase-conjugated secondary antibodies. Proteins were visualized using enhanced 

chemiluminescence reagents (Pierce Biotechnology, Rockford, IL) and exposed to X-ray 

film. 

 

    Statistical analysis Values are presented as the mean capillary length ± SD. Differences 

between two groups were determined by Mann-Whitney’s U test. Differences were 

considered significant when the P value was less than 0.05. 
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Results 

 

HGF induces capillary morphogenesis in MSS31 cells and is dependent on Src activity 

        We examined the effect of HGF on capillary morphogenesis in MSS31 cells. As 

shown in Fig. 1, HGF stimulated capillary morphogenesis, and the Src inhibitor PP2 

dose-dependently inhibited this effect in MSS31 cells. HGF also activated Src in MSS31 

cells (not shown). We then established MSS31 cell lines stably expressing kinase-inactive 

Src and examined the dominant-negative effect on endogenous Src. As shown in Fig. 2A, 

HGF activated endogenous Src in empty vector-transfected MSS31 cells (Mock cells). 

However, in two stable cell lines expressing kinase-inactive Src (denoted SrcKD-10 and 

-14 cells, respectively), HGF failed to increase Src activity. We next examined the effect 

of HGF on capillary morphogenesis in these cells. As shown in Fig. 2B, Mock cells 

formed capillary structures in response to HGF-treatment. However, HGF failed to 

induce capillary morphogenesis in the SrcKD-10 and -14 cell lines, suggesting that 

HGF-induced capillary morphogenesis requires Src activation in MSS31 cells.  

 

Src activity is required for HGF-induced capillary morphogenesis in HUVECs 

        We next examined the effect of HGF on capillary morphogenesis in HUVECs. As 

shown in Fig. 3A, HGF induced capillary morphogenesis in HUVECs and this effect was 

attenuated by treatment of the cells with PP2. As shown in Fig. 3B, HGF activated Src in 

HUVECs. To examine the transfection efficiency, Alexa Fluor 555-labeled negative 

control siRNA was tranfected into HUVECs and we observed that more than 95% of cells 
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were labeled with Alexa Fluor 555 (submitted for publication). We then transfected Src 

siRNA into HUVECs and HGF-induced capillary morphogenesis was examined. As 

shown in Fig. 4A, siRNA efficiently downregulated Src in HUVECs. HUVECs treated 

with Src siRNA, but not with control siRNA, exhibited impaired capillary morphogenesis 

in the presence of HGF (Fig. 4B) suggesting that Src is required for HGF-induced 

capillary morphogenesis in HUVECs.  
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Discussion 

 

        In the present study, we show that HGF activated Src in two different endothelial 

cells, MSS31 cells and HUVECs. A Src family kinase inhibitor, PP2 inhibited 

HGF-induced capillary morphogenesis in these cells (Fig. 1 and 3A). Inhibition of 

endogenous Src via stable expression of kinase-inactive Src (MSS31 cells; Fig. 2B) or 

downregulation of Src with siRNA (HUVECs; Fig. 4B) blocked HGF-induced capillary 

morphogenesis. These results indicate that Src is a downstream signaling target of 

c-Met/HGFR in endothelial cells, and that HGF-induced capillary morphogenesis of 

endothelial cells requires Src acitivity. 

        Src was involved in the fibroblast growth factor-2 (FGF-2) induced migration of 

endothelial cells [22]. The Src family inhibitor PP2 inhibited FGF-2-induced capillary 

morphogenesis, tube formation, and in vivo angiogenesis [21, 23, 24]. Expression of 

dominant negative Fyn blocked FGF-2 and angiopoietin 2 (Ang2) induced tube formation 

[21, 25]. Inhibition of Src attenuated VEGF-induced in vivo angiogenesis by inducing 

apoptosis of endothelial cells [26]. Src is also involved in VEGF-induced migration [27, 

28]. Selective downregulation of Src family kinases by small interfering RNA (siRNA) 

demonstrated that Yes was important for VEGF-mediated migration, whereas Fyn was 

required for VEGF-promoted tube formation [29]. It has been shown that the 

anti-VEGF-A monoclonal antibody bevacizumab (Avastin) showed antivascular effect in 

human rectal cancer [30]. However, targeting solely VEGF signaling failed to 

demonstrate potent antitumor activity in clinical trials. Recent study using a preclinical 
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model has shown that blocking VEGF signaling changed the VEGF-dependent 

angiogenesis to other proangiogenic factor-dependent angiogenesis, such as FGF-2 [31]. 

Thus, the inhibition of signaling molecules commonly working downstream of several 

proangiogenic growth factor receptors, such as Src family kinases, by small molecule 

protein kinase inhibitors could represent a broad range antiangiogenic strategy.  
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Figure legends 

Fig. 1. HGF induces capillary morphogenesis by MSS31 cells, which is inhibited by PP2. 

MSS31 cells were cultured between two collagen gel layers in the presence or absence of 

HGF (50 ng/ml) with either 0.1% DMSO or PP2 at the indicated concentrations. To 

quantify the length of capillaries, 3 different phase-contrast photomicrographs (x 4 

objectives) per well were taken, and the length of each capillary was measured using NIH 

image software. Values are expressed as the mean ± SD of 3 pictures. Capillary length of 

HGF-stimulated cells was set at 1.0. Bar; 100 m. Reproducible data were obtained from 

two independent experiments. 

 

Fig. 2. Stable expression of kinase inactive Src in MSS31 cells inhibits HGF-induced Src 

activation and capillary morphogenesis. A. MSS31 cells transfected with empty vector 

(denoted Mock cells) or stable cell lines expressing kinase-inactive Src (denoted 

SrcKD-10 and -14 cells, respectively) were cultured in 6 cm dishes. After 

serum-starvation, cells were either stimulated or left unstimulated with 100 ng/ml HGF 

for 8 min. Cells were lysed and Src was immunoprecipitated from 90% of cell extracts 

and the kinase activity was determined by in vitro kinase assays. Acid-denatured enolase 

was used as the substrate. The remaining 10% of the cell extract was used to assess the 

loaded amount of Src. Reproducible data were obtained from two independent 

experiments. B. HGF-induced capillary morphogenesis was impaired in SrcKD-10 and 

-14 cells. Cells were cultured between two collagen gel layers in the absence or presence 

of HGF at 50 ng/ml. Values are expressed as the mean ± SD of 3 pictures. Capillary length 
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of HGF-stimulated Mock cells was set to 1.0. Bar; 100 m. Reproducible data were 

obtained from two independent experiments. 

 

Fig.3. A. HGF promotes capillary morphogenesis of HUVECs, and this effect is inhibited 

by PP2. HUVECs were cultured on the surface of growth factor-reduced Matrigel in the 

presence or absence of HGF (20 ng/ml) with either 0.1% DMSO or PP2. Values are 

expressed as the mean ± SD of 3 pictures. Capillary length of HGF-stimulated cells was 

set to 1.0. Bar; 100 m. Reproducible data were obtained from two independent 

experiments. B. HGF activates Src in HUVECs. HUVECs were serum-starved, untreated 

or treated with 100 ng/ml of HGF for 8 min.  Afterward, in vitro kinase assays and 

immunoblotting were carried out as described in the legend of Fig. 2 A. Reproducible 

data were obtained from two independent experiments.  

 

Fig. 4. A. Src is downregulated by treatment with Src siRNA in HUVECs. Equal numbers 

of HUVECs treated with either control siRNA (10 nM) or Src siRNA (10 nM) were lysed 

and proteins were separated by SDS-PAGE followed by the immunoblotting. 

BHGF-promoted capillary morphogenesis is impaired in HUVECs treated with Src 

siRNA. HUVECs treated with either control siRNA (10 nM) or Src siRNA (10 nM) were 

cultured on growth factor-reduced Matrigel, and capillary morphogenesis assays were 

carried out as described in the legend of Fig. 3B. Values are expressed as the mean ± SD 

of 3 pictures. Capillary length of HGF-stimulated cells was set to 1.0. Bar; 100 m. 

Reproducible data were obtained from two independent experiments. 
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