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Abstract  A number of fragmentary reports suggest that the endangered diving beetle 

Cybister japonicus larvae feed on tadpoles, fish, and aquatic insects. However, no 

quantitative study on the feeding habits of C. japonicus larvae has been reported. In the 

present study, field observations and rearing experiments were carried out in order to 

reveal the feeding ecology of C. japonicus larvae. Unlike previous commentaries, the 

1st and 2nd instar larvae of C. japonicus preyed on insects, mainly Odonata nymphs 

and Notonecta triguttata irrespective of prey availability, but did not eat vertebrates 

such as tadpoles and fish in the field. On the contrary, the 3rd instar larvae fed on both 

insects and vertebrates. Rearing experiments revealed that the number of Odonata 

nymphs consumed was significantly more than the number of tadpoles consumed by 

the 1st and 2nd instars but 3rd instar larvae ate both the Odonata nymphs and tadpoles 

in the tadpole-Odonata nymph mixture experiment. The total body lengths of C. 

japonicus new adults in the Odonata nymph and tadpole-Odonata nymph mixture 

treatments were statistically equal. These results suggested that the 1st and 2nd instar 

larvae of C. japonicus prey mainly on insects and do not eat vertebrate animals 

(insectivore), whereas the 3rd instar larvae fed on both insects and vertebrates 

(generalist). 
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Introduction 

Predatory diving beetles (Dytiscidae: Coleoptera) prey upon various dietary items such 

as cladocerans, insects, amphibians, and fish (Bay 1974, White and Brigham 1996). 

Cybister japonicus Sharp, the largest species of Japanese diving beetles (33-42 mm in 

body length), is distributed in the Korean Peninsula, Taiwan, China, Siberia and Japan 

excluding the Ryukyu islands (Mori and Kitayama 2002). The numbers of C. japonicus 

are declining in most regions of Japan, and this species is designated in the Red Data 

List of species in 45 of 47 prefectures of Japan (Japan Environment Agency 2000, 

Association of Wildlife Research and EnVision 2007). The populations of C. japonicus 

became extinct in Chiba and Kanagawa, central Japan (Nishihara et al. 2006). 

Contributing factors, such as decreasing amounts of suitable aquatic habitats including 

the abandonment of rice paddies, water pollution, pesticide application, and invasion by 

alien species are of great concern (Japan Environment Agency 2000, Nishihara et al. 

2006). In addition, the population size of predatory invertebrates is limited by its food 

resources, as for any other predatory insect (e.g., Lenki 1984, Pearson and Knisley 1985, 

Juliano 1986). Thus, understanding of the trophic ecology of all life stage is needed to 

support an insect conservation program.  

Cybister japonicus lives in rice paddy water systems, and they reproduce from 
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May to July in rice fields in Shimane Prefecture, western Japan (Saijo 2001). Saijo 

(2001) discussed that the reason why C. japonicus reproduces in rice fields is the 

abundant food resources present. A number of fragmentary reports (e.g., Ichikawa 1984, 

Tsuzuki et al. 1999, Uchiyama 2005, Ichikawa 2007) suggest that C. japonicus larvae 

feed on tadpoles, fish, and aquatic insects. However, no quantitative study on the 

feeding habits of C. japonicus larvae has been reported. In order to reveal the feeding 

ecology of C. japonicus larvae, field observations and rearing experiments were carried 

out. 

 

Materials and Methods 

Study site. To investigate the dietary items of C. japonicus larvae, field censuses were 

carried out in a rice paddy water system in eastern Shimane from 26 April to 27 August 

in 2007. The field censuses were weekly from April to July and biweekly during August. 

Censuses were conducted along the ridges around rice paddy water systems such as rice 

fields. Three ditches (600, 500, and 150 m2) were set up as census plots in which to 

investigate the diet of C. japonicus and the occurrence frequencies of C. japonicus and 

potential prey. Rice fields were surrounded by a ridge covered with weeds, making a 

small convenient footpath that reduced site disturbance between adjoining rice fields. 
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The rice fields are filled with water to depths of 5–15 cm. The water levels in all rice 

fields were maintained from mid-May to mid-June (irrigation period). In mid-June, the 

water was drained from the field, and the rice field continued draining for a few weeks, 

eventually becoming fully drained, with the ground exposed to the sun (drainage period). 

Nevertheless, the ditch water remained at 3–5 cm depth, even during the drainage 

period. These water management practices have been described in detail by Saijo 

(2001). 

 

Occurrence frequency of prey animals. To evaluate the food types available to C. 

japonicus larvae, the relative abundance of prey was investigated during the daytime 

(1200–1700 h). In consideration of the differences in relative abundance of prey by 

different sampling methods, both sweeping and quadrat were adopted in this study. A 

3-mm-mesh D-frame dipnet (28 cm wide) was pulled 5 times for 50 cm along the 

bottom of the ditches (hereafter referred to as the sweeping). This procedure was 

replicated 4 times within one day. Simultaneously, 5 quadrats (see Krebs 2001, 30 cm × 

15 cm mouth opening, 20 cm height, 1 mm mesh) were used in order to compare with 

the data estimated by the sweeping method. The quadrats were established in the ditch, 

and then all animals were caught using a 500 μm mesh dipnet (10 cm × 4 cm mouth 



 6

opening). The sweeping in the quadrat was finished if no animals were captured during 

the 5 sweepings. After this survey, the prey was released immediately back into the 

ditch. These censuses were conducted on the same day. Two-way multiple analysis of 

variance (MANOVA), with “method” and “day” as main factors, was used to compare 

the species composition (Odonata nymph, Notonectidae, mosquito larva, tadpole and 

fish) estimated by two sampling methods (sweeping and quadrat) during the research 

periods. 

 

Frequency of occurrence of C. japonicus and prey animals. Beetle individuals were 

observed directly in the field using a flashlight (11,000 lx) from 2000 to 0200. In the 

daytime, the observation for beetle was difficult because of the reflection of sunlight on 

the water surface. The flashlight did not interfere with the foraging behavior of beetle 

larvae as they did not stop feeding or ambushing prey (S. Ohba, unpublished data). On 

the contrary, it was impossible to observe the beetle adults because they disappeared 

into the water immediately when investigator approached. When beetle larvae were 

found, it was noted if prey was held in their mandibles. The body width of the prey was 

measured as an index of prey body size and the head width of the C. japonicus larva 

was measured using calipers. The C. japonicus larvae were assigned to instars based on 
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their head width data obtained from preliminary survey (S. Ohba, unpubl. data) as 

follows: first instar, 2.4–2.9 mm; second instar, 4.1–4.4 mm; and third instar, 5.9–8.6 

mm. The type of prey held in the mandibles was recorded as a dietary item and 

preserved in 70% ethyl alcohol for later identification. After measurement, the C. 

japonicus larvae were released immediately back into the ditch. Spearman’s rank 

correlation coefficient was used to evaluate the association between the head widths of 

C. japonicus larvae and the body widths of their prey (n = 14). 

 

Rearing experiment. Five male and five female C. japonicus adults were collected as 

breeding stock from an irrigation pond in the eastern Shimane, Japan, in April 2008, and 

kept in an aquarium (55 cm × 40 cm mouth opening, 35cm height) maintained at 27.4 ± 

0.11°C (S.E.) water temperature and with a 16L:8D light cycle. River gravel was laid on 

the bottom of the aquarium in a 20 cm thick layer, and dechlorinated tap water was 

added over the sand surface to a depth of 15 cm. Three water hyacinths Eichhornia 

crassipes (ca. 5 cm in stock diameter) and six narrow leaf Amazon swords Echinodorus 

amazonicus (ca. 10 cm in plant length) were planted in the aquarium as oviposition 

sites. 

First and 2nd instar larvae were reared individually in a plastic container (6 cm 
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× 6 cm mouth opening, 5 cm height) with one hole (5-mm diameter) in the bottom, and 

the tops were covered with a plastic board. The bottom hole in each plastic container 

was covered with net (3 mm mesh). Third instar larvae were transferred to a plastic cage 

(10 cm diameter × 10 cm height). Both the plastic container and cage were laid on a 1 

cm layer of river gavel. To prevent the water quality deteriorating drastically, all of the 

plastic containers and cage were placed in a large aquarium (63.5 cm × 43.9 cm × 22.6 

cm) kept at 29.3 ± 0.07°C (S.E.) water temperature with a 16L:8D light cycle. The 

aquarium was filled with water to a depth of 15 cm, and aerated with an per air pump 

and air stone (Ohba 2008). All of the plastic containers were fixed within the aquarium 

to keep the water depths at 3 for the 1st and 2nd instar and 5 cm for 3rd instar, 

respectively. 

Experiments were conducted separately for three prey treatments: tadpole, 

Odonata nymph and a tadpole-Odonata nymph mixture. But, the tadpole treatment was 

not included because it was confirmed by preliminary experiments that first instar larvae 

(n = 4) could not grow when fed on tadpoles (Hyla japonica and/or Rana 

nigromaculata). Because it is known that some insect predators can get high 

performance when they are provided mixture prey animals (e.g., Sonoda et al. 1992), 

two prey treatments, the Odonata nymph and the tadpole-Odonata nymph mixture 
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treatment were conducted. Prey animals in this study were collected from rice fields and 

irrigation ponds in the field. In the tadpole-Odonata nymph mixture treatment, small 

tadpoles for 1st instar (<10 mm in SVL), medium tadpoles for 2nd instar (10-25 mm), 

and large tadpoles for 3rd instar (26-50 mm) of the pond frog R. nigromaculata were 

provided. In the Odonata nymph and tadpole-Odonata nymph mixture treatment, small 

damselfly nymphs for 1st instar (Platycnemididae: Copera spp. and Lestidae: Lestes 

spp., <15 mm), medium damselfly nymphs for 2nd instar (same species, 15-20 mm), 

and large dragonfly nymphs for 3rd instar (Libellulidae: Orthetrum albistylum 

speciosum Uhler, Sympetrum frequens Selys, S. infuscatum Selys; Aeshnidae: 

Planaeschnu milnei Selys, and Anax parthenope Brauer 20–30 mm) were provided. The 

density of prey in each plastic container was kept constant (6 Odonata nymphs in the 

Odonata treatment, and 3 tadpoles and 3 Odonata nymphs in the tadpole-Odonata 

nymph mixture treatment). The prey density levels were set to supply enough food for C. 

japonicus larvae during their development. To maintain a constant prey density in each 

larval stage, the number of prey was checked each day and additional prey were 

provided as necessary. Simultaneously, dead prey were removed immediately from the 

containers. Third instar larva that did not eat the prey within one hour after it was 

provided were moved to a cup (10 cm diameter × 10 cm height) filled with peat moss 



 10

for pupation. The day 3rd instar burrowed into the peat moss was recorded as the last 

day of the larval period. New adults emerging from the peat moss were measured for 

their total length using calipers. The Odonata nymph and tadpole-Odonata nymph 

mixture treatments were replicated 8 times each. Data from dead individuals, 1 in the 

Odonata nymph and 2 in the tadpole-Odonata nymph mixture treatments, were excluded 

from the analysis. One individual in the Odonata nymph treatment was excluded from 

the measurement and analysis of adult body length because of failure adult eclosion. 

After all field censuses were finished, all beetle adults were released in the irrigation 

pond in which beetles were captured. 

To evaluate the effect of the prey on the total body length of new adults, 

one-way analysis of variance (ANOVA) with prey (Odonata nymphs, and 

tadpole–Odonata nymph mixture) was performed. The larval period of C. japonicus in 

the two prey treatments was compared using repeated-measures one-way ANOVA, with 

prey (Odonata nymph, or tadpole-Odonata nymph) as the between-subject factor and 

larval stage (1st–3rd instar) as the within-subject factor. Because Mauchly’s test did not 

indicate a significant violation of the assumption of sphericity in the analysis of the 

larval period (P =0.31), significance levels for within-subject effects were not corrected 

using Greenhouse–Geisser for the degrees of freedom (see Quinn and Keough 2002). 
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Log10 transformations for exact values were made in order to standardize and normalize 

variances, if necessary to satisfy the assumptions of the ANOVA model. Statistical 

significance was set at 0.05. All statistical tests were conducted using JMP software 

(JMP version 7.0, SAS Institute 2007). 

 

Diet selection. To reveal the diet selection of C. japonicus larvae, the number of each 

prey item consumed in the tadpole-Odonata nymph mixture treatment was recorded for 

each larval instar. Paired t-test was used to compare the number of prey consumed 

between tadpoles and Odonata nymphs for each larval instar. 

 

Results 

Frequency of occurrence of C. japonicus larvae and prey animals. First and second 

instar larvae of C. japonicus appeared from mid-May to mid-June and mid-May to early 

July, respectively (Fig. 1). The third instar larvae appeared from June to mid-July. The 

frequencies of prey animals were estimated by two methods (sweeping and quadrat). 

The two-way MANOVA on the species composition revealed significant “method” (F5, 

452 = 80.6, P < 0.001 for Log10 (x + 1) transformed data), “day” (Roy’s Greatest Root; 

F13, 456 = 80.6, P < 0.001) and “method-by-day” interaction effects (Roy’s Greatest 
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Root; F13, 456 = 17.7, P < 0.001). The relative abundances of tadpoles, Odonata nymphs 

(mainly Orthetrum spp. and Sympetrum spp.) and Notonecta triguttata collected by five 

sweeps were greater than those by the quadrat method, but their occurrence periods 

were almost the same between the two methods. Tadpoles (Hyla japonicus, Rana 

nigromaculata, and Rhacophorus schlegelii) were abundant in June; as the season 

progressed, they became frogs and their numbers declined. The abundance of fish 

increased gradually from June to July. The observed fish species were rice fish, Oryzias 

latipes and loach, Misgurnus anguillicaudatus. In contrast, Odonata nymphs, N. 

triguttata and mosquito (Culicidae) larvae were present at a low density throughout the 

season. Only one mosquito larva was captured by the quadrat method on 22 May but no 

mosquito larvae were captured by five sweeps throughout the season.  

 

Prey composition of C. japonicus larvae. There was a significant positive correlation 

between the head width of C. japonicus larva and their prey (rs = 0.49, P = 0.04, n = 

14, Spearman’s rank correlation coefficient). First and 2nd instar of C. japonicus larvae 

fed on insects, mainly Odonata nymph and N. triguttata, and did not prey on 

vertebrates such as fish and anuran larvae in the field (Table 1). On the other hand, 

third instar fed on insects, including mainly Odonata nymphs and Coleoptera larvae, 
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and vertebrates such as Rana nigromaculata tadpoles and Misgurnus anguillicaudatus.  

 

Effect of diet. From the rearing experiment, the effects of two prey diets, Odonata 

nymph and the tadpole-Odonata nymph mixture, on the development of C. japonicus 

larvae were evaluated by the total body length of new adults. A one-way ANOVA 

revealed that the prey effect was not significant (F1, 10 = 0.20, P = 0.66). 

 For the larval period, repeated-measures one-way ANOVA revealed that the 

larval stage effect was significant but the prey and prey-by-larval stage interaction 

effects were not significant (prey: F1, 11 << 0.001, P = 0.95; larval stage: F2, 22 = 124, P 

< 0.001; larval stage*prey: F2, 22 = 1.80, P = 0.19 for log-transformed data). The larval 

period of 3rd instar tended to be longer than those of the 1st and 2nd instars, 

irrespective of prey treatment (Table 2). 

 

Diet selection. In the tadpole-Odonata nymph mixture treatment, the number of 

Odonata nymphs consumed was significantly more than the number of tadpoles 

consumed by 1st and 2nd instar larvae (Paired t-test, 1st: t5 = 9.13, P < 0.001; 2nd: t5 = 

5.77, P < 0.001 for log-transformed data; Fig. 2). However, third instar larvae consumed 

both prey animals almost the same (t5 = 0.95, P = 387). 
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Discussion 

 

The body size of prey animals increased as the larvae of C. japonicus grew, as for any 

other predatory insect (Cloarec 1992, Perez Goodwyn 2001, Ohba et al. 2008). The 

emergence of 1st and 2nd instar larvae of C. japonicus seemed to coincide with the 

appearance period of Odonata nymphs and tadpoles (Fig. 1). However, 1st and 2nd 

instar larvae fed on insects and did not utilize vertebrates such as fish and tadpoles 

(Table 1). On the contrary, third instar larvae appeared during the period that tadpoles 

and fish became abundant (Fig. 1), and fed on Odonata nymphs, tadpoles, and fish 

(Table 1). The larvae of some dytiscid species are regarded as effective predators of 

mosquito larvae (Bay 1974, Berman et al. 2000, Lundkvist et al. 2003) but C. japonicus 

larva did not feed on mosquito larva. Mosquito larva might be either too small for C. 

japonicus larva or too low density in this study site. 

In the tadpole-Odonata nymph mixture treatment in the rearing experiment, the 

number of Odonata nymphs consumed was more than that of tadpoles for 1st and 2nd 

instar larvae (Fig. 2). On the other hand, 3rd instar larvae fed on the both Odonata 

nymphs and tadpoles. These results were in accordance with the field observation 
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shown in Table 1. Unfortunately, the sample size of 2nd instar larvae in the field 

observation was too small (n = 2), but the results of the rearing experiment in 2nd instar 

larvae may compensate for the field observation; second instar larvae preferred insects 

to the tadpoles. The total body length of adults reared in the Odonata nymph treatment 

and those in the tadpole-Odonata nymph mixture treatment were almost the same. This 

reason might be that 3rd instar larvae could eat both the Odonata nymphs and tadpoles 

(Fig. 2). 

Interestingly, all larval stages of the congeneric C. brevis larvae fed on insects 

and did not utilize vertebrates such as fish and tadpoles in the present study site (Ohba S. 

unpublished data). Although the reason why the dietary items were different between C. 

japonicus and C. brevis was not known, this may be induced by the differences in the 

head width between the two species (2.4-8.6 mm for C. japonicus, 1.4-4.3 mm for C. 

brevis in the head width of larvae) (Ohba S. unpublished data). Or, the different feeding 

habits might be attributable to differences in the digestive enzymes between the two 

species, as identified previously in predatory belostomatid bugs (Swart et al. 2006). 

In conclusion, unlike in previous commentaries (e.g., Ichikawa 1984, Tsuzuki 

et al. 1999, Uchiyama 2005, Ichikawa 2007), the 1st and 2nd instar larvae of C. 

japonicus were found to prey mainly on insects and did not eat vertebrate animals 
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(insectivore) in the field. On the contrary, the 3rd instar larvae fed on both insects and 

vertebrates (generalist). These results suggested strongly that environments with 

abundant aquatic insects and vertebrates were favorable for maintaining the population 

of C. japonicus. 
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Figure Legend 

Fig. 1. Seasonal changes in the frequency of C. japonicus larvae and prey animals. 

Data in the prey animals are mean ± S.E. 

Fig. 2. The number of tadpoles and Odonata nymphs consumed by Cybister japonicus 

larvae. Data are mean + S.E. *P < 0.05, Paired t-test.
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Table 1. The list and its percentage of dietary items consumed by Cybister japonicus 

larvae in the field. 

    First instar (N = 5)    Second instar (N = 2) Third instar (N=14)  

Insect       

  Odonata       

    Aeshnidae nymph     -     -   7.1  

    Libellulidae nymph  20.0  100.0  14.3  

    Damselfly nymph  20.0     -   7.1  

  Heteroptera       

    Notonecta triguttata  40.0     -   -  

  Coleoptera       

    Cybister japonicus larva     -     -   7.1  

    Hyphydrus japonicus larva    -     -  14.3  

  Trichoptera       

    Unknown   20.0     -   -  

  Orthoptera 

    Gryllotalpa orientalis     -     -   7.1 

Amphibia      

    Rana nigromaculata larva (tadpole)  -     -  28.6  

Fish       

    Misgurnus anguillicaudatus    -     -  14.3  

Total     100.0  100.0  100.0 
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Table 2. The larval period in each instar of Cybister japonicus in the rearing experiment  

     Larval instar (average days ± SE)   

Treatment   n 1st    2nd         3rd  

Odonata nymph   7 5.14±0.14   5.90±0.26    9.70±0.36  

Tadpole-Odonata nymph mixture 6 5.00±0.37   5.50± 0.37   10.80±0.54  
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